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Abstract: Metabolic diseases caused by gene and unhealthy living habits are increasing, which
seriously threaten the life of people worldwide. Moreover, the microbiome has been shown to play
an active role in the prevention and treatment of metabolic diseases. However, reliable evidence on
renalase gene (Rnls), as a common gene related to metabolic diseases, is still lacking with regard to the
influence on the microbiome. Hence, we investigated the effect of a normal diet (ND) and a high-fat
diet (HFD) on the gut microbiota of Rnls knockout (Rnls−/−) and wild-type (Rnls+/+) mice. At the
end of the 8-week experiment, DNA samples were extracted from fresh feces, and the composition of
microbiota was profiled. The species in Rnls+/+-ND group were Bifidobacterium pseudolongum and
Lactobacillus reuteri. Conversely, the species in Rnls−/−-ND group belonged to the genera Lactobacillus
and Turicibacter. The HFD changed the ratio of Firmicutes/Bacteroidetes; while the bacteria in the
Rnls+/+-HFD and Rnls−/−-HFD groups were different. Overall, this study not only revealed the
composition of microbiota in Rnls−/− mice, but also indicated that Rnls and the bacteria related to
Rnls may be new candidates in the prevention and diagnosis of metabolic diseases at an early stage.

Keywords: Rnls knockout; normal diet; high-fat diet; gut microbiota; Firmicutes/Bacteroidetes
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1. Introduction

The renalase gene (Rnls) was first discovered in 2005 as a flavoprotein oxidase [1].
It mainly regulates blood pressure and catecholamine metabolism. In recent years, Rnls
has been suggested to suppress apoptosis, fibrosis, and inflammation [2,3], especially, the
positive effect on gastrointestinal diseases [4]. A study carried out by our team showed
that the absence of Rnls enhances oxidative stress, macrophage infiltration, and transforms
growth factor-β expression in nonalcoholic steatohepatitis [5]. Moreover, another study
identified that environmental oxidative stress changes Rnls expression in small intestinal
crypts and overexpression of Rnls protects the Caco-2 cells against oxidative stress [6].
These results demonstrate the importance of Rnls in suppressing oxidative stress, apoptosis,
and inflammation. It is well-known that progression of type 2 diabetes (T2D) is attributed
to several factors, including inflammation and oxidative stress [7,8]. Together, it suggests
that Rnls could have essential roles in modulating the progression of T2D. In addition, Rnls
has been reported as a common polymorphism gene since it was discovered. For example,
the rs2576178 polymorphism is common among patients with diabetes compared to those
without; particularly rs2296545 and rs10887800 polymorphisms have been associated with
hypertension and stroke among patients with type 2 diabetes (T2D) [9–12]. In other words,
specific single-nucleotide polymorphisms of Rnls are highly related to increased risks of
diabetes as well as complications. Nonetheless, the mechanism by which Rnls affects
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diabetes and its complications is unknown, and considerable research is needed. T2D is
most likely triggered by obesity and shows a significantly increasing trend [13]. The early
detection of T2D aids in effective treatment and reduces morbidity. Hence, the potential
mechanism involved in the effect of Rnls on obesity must be understood.

Intestinal microbiota plays an essential role in obesity and metabolic syndrome oc-
currence. Usually, the composition of the microbiome is considerably different in obese
individuals compared to that in nonobese individuals; for example, bacteria of genera
Akkermansia, Faecalibacterium, Oscillibacter, and Alistipes sharply decrease in obese individu-
als [14,15]. Similar results are also found by mouse models. Undoubtedly, HFD elevates the
ratio of Firmicutes/Bacteroidetes in mice to increase the risk of obesity, aggravate intestinal
dysfunction even systemic injury [16]. HFD decreases the abundance of some bacteria,
such as Akkermansia muciniphila, which are positive reacting to weight loss, glucose, and
lipid controlling [17]. Meanwhile, genotype is another factor to influence the composition
of microbiota. According to intestinal microbiota genome-wide association studies, gene
expression may affect intestinal microbial composition [18–21]. With in-depth develop-
ment in research, association of a growing number of host genes with microbiota and
diseases is confirmed. For example, the knockout of urate oxidase gene is related to the
decreasing of Akkermansia and Ruminococcus and hyperuricemia. Moreover, apolipopro-
tein E, which relates to the development of insulin resistance also has been related to
the influence on the composition of gut microbiota [22].These results clearly indicate that
the genotypic differences may have an overall enhancement in pathogenic behavior by
controlling microbiota, thus reduces capabilities beneficial to health. Moreover, metabolism
is influenced by metabolites from microbiota, including secondary bile acids, short-chain
fatty acids, trimethylamine, farnesoid X receptor, activating G protein-coupled recep-
tor, transmembrane G protein-coupled receptor5, phosphatidylinositol 3-kinase/Protein
Kinase B(PI3K-AKT), and mitogen-activated protein kinase (MAPK), which improved
inflammation and glucose/lipid metabolism [23–25]. A study revealed that Akkermansia
muciniphila promotes the secretion of gut hormone glucagon-like peptide 1 for maintain-
ing the homeostasis of glucose through the production of protein P9 and increases the
thermogenesis of mice, leading to weight loss [17]. Moreover, according to intestinal mi-
crobiota genome-wide association studies, gene expression may affect intestinal microbial
composition [18–21]. However, how Rnls affects the composition of gut microbiota and the
underlying mechanism is still unclear, and substantial research in this area is warranted.

At present, no study compares the intestinal microbial composition of Rnls knockout
mice under diet intervention; therefore, the effect of intestinal microbiota on metabolic
disturbance remains unclear. Therefore, exploring the relationship between Rnls and
microbiota composition is imperative. The present work focused on discovering differences
in microbial abundances with or without Rnls and diet intervention.

2. Materials and Methods
2.1. Mice Management and Experimental Design

We obtained B6;129S1-Rnlstm1Gvd/J mice from the Jackson Laboratory. Mouse
genomic DNA was subjected to polymerase chain reaction amplification according to the
method described in a previous study to identify wild-type (Rnls+/+) and Rnls knockout
(Rnls−/−) mice [5]. After obtaining the animals, they were housed in a room with 20–26 ◦C
and 12-h/12-h light-dark cycle conditions. In total, 10 Rnls−/− mice (male, 4-week-old)
and 10 Rnls+/+ mice (male, 4-week-old) were acclimatized for 7 days and then grouped
randomly. Mice were assigned different feeding routines for a total duration of 8 weeks
(Figure 1). They were raised with a high-fat diet (HFD; Cat#D12492, 60 kcal% fat; Research
Diets, New Brunswick, NJ, USA) or normal diet (ND; Cat#MF, Oriental Yeast, Itabashi,
Tokyo, Japan), with free access to water. The fatty acids composition of HFD is shown in
Table 1.
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Note: fatty acid profile was calculated based on assays of fats and oils performed in the 4th quarter 
of 2011. An example was given: D12492 was formatted by Lard (245 g) and soybean oil (25 g). 

They were grouped as follows: Rnls–/–-HFD (n = 5) and Rnls+/+-HFD (n = 5) groups 
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weight (BW) of mice every week. Additionally, we conducted an intraperitoneal insulin 
tolerance test (IPITT) and intraperitoneal glucose tolerance test (IPGTT) on the seventh 
and eighth weeks of the study, respectively. Feces were collected at the end of 8 weeks for 
gut microbiota analysis. Figure 1 presents the flowchart of the experimental design. Some 
details of the methods are described in the following sections. The Animal Subjects Com-
mittee, University of Tsukuba, Japan (approval number: 21–027), approved the study pro-
tocol. 

 
Figure 1. Experimental design. Mice were randomized into four groups: Rnls–/–-ND, Rnls+/+-ND, 
Rnls–/–-HFD, and Rnls+/+-HFD (n = 5 in each group). IPGTT and IPITT were conducted in the seventh 
and eighth weeks of the experiment, respectively. Fecal samples were collected weekly.♂, male; 
Rnls–/–-ND, renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with 
normal diet; Rnls–/–-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-

Figure 1. Experimental design. Mice were randomized into four groups: Rnls−/−-ND, Rnls+/+-ND,
Rnls−/−-HFD, and Rnls+/+-HFD (n = 5 in each group). IPGTT and IPITT were conducted in the
seventh and eighth weeks of the experiment, respectively. Fecal samples were collected weekly.♂,
male; Rnls−/−-ND, renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice
fed with normal diet; Rnls−/−-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-
HFD, wild-type mice fed with high-fat diet; IPITT, intraperitoneal insulin tolerance test; IPGTT,
intraperitoneal glucose tolerance test.

Table 1. Typical composition of fats used by research diet (D12492).

Fatty Acids Name Contents Fatty Acids Name Contents Fatty Acids Name Contents Fatty Acids Name Contents

C10, Capric 0.1 C16:1, Palmitoleic 3.4 C18:3, Linolenic 5.2 C20:4, Arachidonic 0.7
C12, Lauric 0.2 C17 0.9 C20, Arachidic 0.4 C22:5, Docospentaenoic 0.2

C14, Myristic 2.8 C18, Stearic 26.9 C20:1 1.5
C15 0.2 C18:1, Oleic 86.6 C20:2 2.0

C16, Palmitic 49.9 C18:2, Linoleic 73.1 C20:3 0.3

Note: fatty acid profile was calculated based on assays of fats and oils performed in the 4th quarter of 2011. An
example was given: D12492 was formatted by Lard (245 g) and soybean oil (25 g).

They were grouped as follows: Rnls−/−-HFD (n = 5) and Rnls+/+-HFD (n = 5) groups
were fed HFD, whereas Rnls−/−-ND (n = 5) and Rnls+/+-ND (n = 5) groups were fed ND.
A study reported placing mice on HFD (40–60% fat calories) for 8–12 weeks to induce
obesity [26]. Therefore, HFD mice were raised with HFD (60% fat calories) for 8 weeks
in our study. The ND mice were fed with ND for 8 weeks. In this study, we measured
the body weight (BW) of mice every week. Additionally, we conducted an intraperitoneal
insulin tolerance test (IPITT) and intraperitoneal glucose tolerance test (IPGTT) on the
seventh and eighth weeks of the study, respectively. Feces were collected at the end of
8 weeks for gut microbiota analysis. Figure 1 presents the flowchart of the experimental
design. Some details of the methods are described in the following sections. The Animal
Subjects Committee, University of Tsukuba, Japan (approval number: 21-027), approved
the study protocol.

2.2. Body Weight

BW of the mice was measured (to the nearest 0.1 g) every week until the end of 8 weeks.
The weekly average BW of each group was calculated to record changes in BW during
the experiment.

2.3. IPGTT and IPITT

The IPGTT was conducted on the seventh week of the experiment. In brief, 1–2 mm
of the tail tip was cut off by using a pair of sharp scissors after subjecting the mice to
overnight fasting. To avoid hemolysis and tissue fluid contamination, the first blood
drop was eliminated before collecting samples to determine blood glucose (BG) levels.
Approximately 3 µL of blood was sampled to measure the baseline BG level (at time
point 0) by using a glucometer (ACE-Quick, ACUU-CHEK, Roche, Basel, Switzerland).
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Subsequently, the mice were administered glucose (20% D (+)-glucose, 2 mg/g BW) through
intraperitoneal injection. Tail vein blood was sampled at 15-, 30-, 60-, and 120 min; the
measurement method used was similar to that used at time point 0. After 1 week, IPITT
was conducted. After 4 h of fasting, IPITT was conducted, and insulin was intraperitoneally
injected into the mice (0.75 U/kg BW, Humulin-R; Lilly Research Labs, Indianapolis, IN,
USA) to measure BG levels at time point 0 (pre-injection) and at time points 15-, 30-, 60-,
and 120-min post-injection. Additionally, 20% glucose (D-(+)-glucose solution was added
to distilled water and injected into the hypoglycemic mice. We used GraphPad Prism 8.0.1
(GraphPad Software. Inc.) for calculating the area under the curve (AUC) for IPGTT. Data
are presented as mean ± standard deviation (SD).

2.4. Feces Collection

The feces of mice were collected at the end of the 8-week experiment. At first, 1.5-mL
sterile tubes were labeled with Mouse ID (ID used on mouse shipment inventory sheet
and/or in the colony); then, each mouse was individually placed into a clean cage without
bedding to avoid the accumulation of mouse defecation in the cage; furthermore, plastic
gloves were used to handle the mice. The fecal pellets were eliminated from the collection
cage after the mice defecated 2–3 fecal pellets (~10 min). The fecal pellets were picked with
sterile tweezers and placed into the 1.5-mL tubes marked with Mouse ID. The tubes with
fecal samples were placed on ice until all samples were collected. The aforementioned
steps were followed for all the housed mice. We changed gloves and collection cages while
handling each sample to avoid contamination. The reuse of collection cages was permitted
if used for the same mouse. The date and time of fecal collections were recorded. Once all
samples were collected, the sample tubes were removed from the ice and placed in labeled
baggies, which were preserved at −80 ◦C until the extraction of feces DNA.

2.5. Feces DNA Extraction and 16S rRNA High Throughput Sequencing

Microbial genomic DNA from the fecal samples of mice (n = 5 per group) was extracted
using the NucleoSpin DNA tool (U047A, Takara Bio, Tokyo, Japan) in line with specific pro-
tocols. The dual-indexed V3-V4-region primer (314F, 5′-TCGTCGGCAGCGTCAGATGTGTA
TAAGAGACAGCCTACGGGNGGCWGCAG-3′, and 806R, 5′-GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGGATACHVGGGTWTCTAAT-3′; Takara Bio, Japan) was used
to amplify 16S ribosomal ribonucleic acid (rRNA) gene V3-V4 region by using barcodes.
The PCR procedure was conducted using AMPure XP. PE300 sequencing was conducted
using Illumina MiSeq. Quant iT dsDNA Assay Kit (Invitrogen, Thermo Fisher Scientific,
San Jose, CA, USA) was used for evaluating library quality. The Illumina MiSeq platform
was used for library sequencing followed by the generation of the 300-bp paired-end reads.
Takara Bio, Japan, was responsible for the sequencing of the 16S rRNA gene. For generat-
ing taxon bins with a specific taxonomy, operational taxonomic units (OTUs) of identical
taxonomic classification were pooled into one bin upon the threshold of 99% identity. Then,
α- and β-diversity indexes were determined using quantitative insights into microbial
ecology 2 (QIIME2) when analyzing microbial communities [27–29]. In addition, Shannon
Diversity Index, Chao1, observed species OTUs, and Faith’s phylogenetic diversity (Faith-
pd) were used for α-diversity calculations and for β-diversity distances, unweighted and
weighted UniFrac were used to generate principal coordinate analysis (PCoA) plots [30].
R (http://www.r-project.org/, accessed on 19 August 2020) was used for generating the
heatmap profile, whereas linear discriminant analysis (LDA) effect size (LEfSe) was used
to elucidate differences in bacterial taxa. The cladogram was plotted using the LEfSe
algorithm with the Huttenhower Galaxy web application (The Huttenhower Lab, Boston,
MA, USA; http://huttenhower.sph.harvard.edu/lefse/, accessed on 19 August 2020).

2.6. Mice Euthanasia

After the experiment, the mice were euthanized through cervical dislocation under
general anesthesia from isoflurane inhalation. The mice were anesthetized by placing them

http://www.r-project.org/
http://huttenhower.sph.harvard.edu/lefse/


Obesities 2022, 2 307

in a closed bright evaporation glass container, and a large cotton ball with isoflurane was
quickly put into this container and allowed to evaporate. We observed the mice’s behavior
closely during anesthesia. We observed that their respiratory frequency decreased and the
depth increased, after which they were taken out for cervical dislocation. After euthanasia,
mice were frozen in a −20 ◦C freezer in the animal carcass disposal room. All operations
complied with animal ethics committee management standards.

2.7. Statistical Analysis

GraphPad Prism 8.0.1 (GraphPad Software. Inc., San Diego, CA, USA) was used for
statistical analysis. Results are presented as mean± SD. This work used a two-way analysis
of variance as well as Tukey’s post hoc test for the analysis. The p value of <0.05 was
considered for statistical significance.

3. Results

3.1. Rnls−/− Mice Fed with HFD for 8 Weeks Exhibited Impaired Glucose Tolerance

To evaluate the influence of Rnls knockout and HFD on glucose homeostasis, we con-
ducted IPGTT and IPITT. However, Rnls−/− and Rnls+/+ mice fed with ND did not exhibit
any difference (Figure 2A). Interestingly, BG levels were significantly high at 60 and 120 min
in Rnls−/− mice compared with Rnls+/+ mice under HFD (Figure 2A). Moreover, the glu-
cose level of Rnls−/− mice under HFD increased quickly from 0 to 15 min (Figure 2A).
For IPGTT, the AUC of Rnls−/−-HFD was the highest and differed from the other groups
(Figure 2B). Subsequently, IPITT was conducted. Although HFD influenced the glucose
level at 15 min after IPITT (Figure 2C), the AUC for IPITT did not significantly differ among
the four groups (Figure 2D). Thus, no significant difference was observed in mice with or
without Rnls and HFD in terms of IPITT. Additionally, BW recorded weekly showed that
the effect of HFD was the same in Rnls+/+ and Rnls−/− mice (Figure 2E).

Obesities 2022, 3, 6 
 

 

 

 
Figure 2. Phenotype of mice with or without Rnls and food intervention. (A) IPGTT, (B) AUC for 
IPGTT, (C) IPITT, (D) AUC for IPITT, (E) body weight. Values are presented as mean ± standard 
derivation; n = 5 per group. Data are predicted through two-way ANOVA (Tukey’s post hoc test) 
with repeated measures. a: p < 0.05, b: p < 0.01, indicating significant differences among diverse 
mouse groups compared with the Rnls+/+-ND group under the same timeline (time point or weeks). 
#: p < 0.05, indicating a significant difference compared with the Rnls+/+-HFD group. Rnls–/–-ND, 
renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with normal diet; 
Rnls–/–-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-type mice fed 
with high-fat diet; AUC, area under the curve; IPITT, intraperitoneal insulin tolerance test; IPGTT, 
intraperitoneal glucose tolerance test; ANOVA, analysis of variance. 

3.2. Individual Taxa Richness and Evenness of Microbiota in Rnls+/+ and Rnls-/- Mice 
We used α diversity measures to identify within-individual taxa richness and even-

ness. The stable species rarefaction curve showed that sampling size (sequencing depth) 
data were large enough to reflect the majority of microbial diversity information in the 
sample and met the requirements for data analysis (Figure 3A). Shannon, Chao1, and 
Faith-pd indices indicated no significant difference in microbiota community diversity 
between the four groups (Figure 3B–D). 

Figure 2. Phenotype of mice with or without Rnls and food intervention. (A) IPGTT, (B) AUC for
IPGTT, (C) IPITT, (D) AUC for IPITT, (E) body weight. Values are presented as mean ± standard



Obesities 2022, 2 308

derivation; n = 5 per group. Data are predicted through two-way ANOVA (Tukey’s post hoc test)
with repeated measures. a: p < 0.05, b: p < 0.01, indicating significant differences among diverse
mouse groups compared with the Rnls+/+-ND group under the same timeline (time point or weeks).
#: p < 0.05, indicating a significant difference compared with the Rnls+/+-HFD group. Rnls−/−-ND,
renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with normal diet;
Rnls−/−-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-type mice fed
with high-fat diet; AUC, area under the curve; IPITT, intraperitoneal insulin tolerance test; IPGTT,
intraperitoneal glucose tolerance test; ANOVA, analysis of variance.

3.2. Individual Taxa Richness and Evenness of Microbiota in Rnls+/+ and Rnls−/− Mice

We used α diversity measures to identify within-individual taxa richness and evenness.
The stable species rarefaction curve showed that sampling size (sequencing depth) data
were large enough to reflect the majority of microbial diversity information in the sample
and met the requirements for data analysis (Figure 3A). Shannon, Chao1, and Faith-pd
indices indicated no significant difference in microbiota community diversity between the
four groups (Figure 3B–D).
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Figure 3. Rarefaction curves showing α-diversity indexes for bacterial communities based on 16S
rRNA sequencing. (A–D) Intestinal microbial α-diversity in male Rnls−/− and Rnls+/+ mice fed
normal diet or high-fat diet. (A) Observed Species OTUs, (B) Shannon, (C) Chao1, and (D) Faith-pd.
The Emperor α rarefaction was produced based on alpha _diversity.py script in QIIME 2. Rnls−/−-
ND, renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with normal
diet; Rnls−/−-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-type mice
fed with high-fat diet; OTUs, operational taxonomic units, Faith-pd, Faith’s phylogenetic diversity.

3.3. Microbial Distribution in Rnls+/+ and Rnls−/− Mice

Thereafter, the total microbial diversities were compared across diverse groups based
on weighted and unweighted UniFrac distance matrices. As expected, microbiota clustering
was affected by Rnls and diet. In Figure 4A, four distinct microbial clusters are exhibited,
which indicate different microbiota compositions among the four groups. Weighted UniFrac
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PCoA verified the identical clustering to some extent (Figure 4B), regardless of the limited
graphical evidence.
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pal coordinate analysis. 
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script in QIIME 2. Purple, Rnls−/−-ND, renalase gene knockout mice fed with normal diet; pink,
Rnls+/+-ND, wild-type mice fed with normal diet; blue, Rnls−/−-HFD, renalase gene knockout mice
fed with high-fat diet; cyan, Rnls+/+-HFD, wild-type mice fed with high-fat diet; PCoA, principal
coordinate analysis.

3.4. Overall Compositions of Microbiota in Rnls+/+ and Rnls−/− Mice

A total of 160 bacterial genera were observed among the four groups (Figure 5A),
and each group maintained a unique microbiota. Venn diagrams revealed that Rnls−/−

and Rnls+/+ mice fed with ND had different microbiota (Figure 5A). To analyze the mi-
crobiota distribution in all the groups, the abundance of microbiota at the phylum level
was first investigated. In mice fed with HFD, Firmicutes showed an increased abun-
dance, whereas Bacteroidetes showed reduced abundance (Figure 5B). Notably, compared
with the Rnls+/+-ND group, the Rnls−/−-ND group exhibited an increased Firmicutes
abundance and decreased Bacteriodetes abundance (Figure 5B). Furthermore, the ratio
of Firmicutes/Bacteroidetes was also calculated since it was related to obesity, and no
difference was observed among the four groups (Figure 5B). Subsequently, microbiota
distribution at the family level was analyzed. Similarly, the HFD groups had a decreased
abundance of S24-7, Lactobacillaceae, and Bifidobacteriaceae while an increased abundance of
Ruminococcaceae, Clostridiales, [Paraprevotellaceae], and Desulfovibrionaceae in comparison
with the ND groups (Figure 5C). Statistically, the ratio of S24-7, Lactobacillaceae, Ruminococ-
caceae, and Clostridiales had a significant difference of HFD groups in comparison with ND
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groups (Figure 5C). In addition, the ratio of S24-7 and Desulfovibrionaceae had a significant
difference between Rnls−/−-HFD group and Rnls+/+-HFD group. Notably, the ratio of
Desulfovibrionaceae only increased significantly in Rnls+/+-HFD group (Figure 5C).
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Figure 5. Relative microbial phylum and family abundances based on 16S ribosomal RNA gene
sequencing. (A) Venn diagram showing OTUs among diverse groups. The 160 ‘core’ OTUs are shown.
The mice of the Rnls+/+-ND, Rnls−/−-ND, Rnls+/+-HFD, and Rnls−/−-HFD groups presented 270,
290, 252, and 236 OTUs, respectively. The inside numbers represent the common OTUs among
two or more samples and specific families. (B) Relative phylum abundances across Rnls+/+ and
Rnls−/− mice fed with HFD or ND. (C) Relative family abundances among Rnls−/− and Rnls+/+

mice fed normal diet or high-fat diet. Data are predicted through two-way ANOVA (Tukey’s post
hoc test) with repeated measures. a: p < 0.05, b: p < 0.01, c: p < 0.001 indicating significant differences
among diverse mouse groups compared with the Rnls+/+-ND group. #: p < 0.05, $: p < 0.01, &:
p < 0.001 indicating a significant difference compared with the Rnls+/+-HFD group. Rnls−/−-ND,
renalase gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with normal diet;
Rnls−/−-HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-type mice fed
with high-fat diet; F, Firmicutes; B, Bacteroidetes; OTU, operational taxonomic unit.
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3.5. Significant Differences in Species Were Observed in the Microbiota of Rnls+/+ and
Rnls−/− Mice

To identify significant differences in species based on Rnls−/− or diet, the fecal mi-
crobiota of the four groups were compared using LEfSe. The significant difference of
species among the four groups at the genus level is presented in Figure 6. Bifidobacterium
pseudolongum (B. pseudolongum) and Lactobacillus reuteri (L. reuteri) were the representa-
tive species in the Rnls+/+-ND group, whereas the species belong to genera Lactobacillus,
Turicibacter, and S24-7 were in the Rnls−/−-ND group. Furthermore, the abundance of
Oscillospira, Parabacteroides, Anaerotruncus, and Anaerofustis was high in the Rnls−/−-HFD
group, whereas the abundance of species belonging to genera Bacteroides, Prevotella, and
Mucispirillum was high in the Rnls+/+-HFD group.
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3.6. Dominant Patterns of Microbiota Composition in Rnls+/+ and Rnls−/− Mice

To present the alteration in the overall composition of the dominant microbial commu-
nity based on Rnls and HFD, a two-dimensional heatmap of the 20 most dominant orders
was constructed (Figure 7). A hierarchical clustering based on the relative abundances
of different orders could sufficiently differentiate between Rnls−/− from Rnls+/+ mice.
Bifidobacteriales exhibited high abundance in the Rnls+/+-ND group compared with the
other groups, whereas Lactobacillales exhibited high abundance in the Rnls+/+-ND and
Rnls−/−-ND groups. Furthermore, the abundance of orders Coriobacteriales, Rickettsiales,
and Erysipelotrichales was high in the Rnls+/+-ND group, whereas the abundance of
Turicibacterales, Bacteroidales, Burkholderiales, and Anaeroplasmatales was high in the
Rnls−/−-ND group. Clostridiales exhibited a high abundance in the Rnls+/+-HFD and
Rnls−/−-HFD groups. The abundance of Desulfovibrionales, Deferribacterales, and Gemel-
lales was high in the Rnls+/+-HFD group, whereas RF32 and RF39 had a high abundance
in the Rnls−/−-HFD group. Overall, our results illustrated the distinct patterns of gut
bacterial composition in Rnls−/− and Rnls+/+ mice under diet intervention.
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the order level shared by all samples tested (core microbiome) are displayed. Rnls−/−-ND, renalase
gene knockout mice fed with normal diet; Rnls+/+-ND, wild-type mice fed with normal diet; Rnls−/−-
HFD, renalase gene knockout mice fed with high-fat diet; Rnls+/+-HFD, wild-type mice fed with a
high-fat diet.

4. Discussion

In this work, HFD in Rnls−/− mice led to glucose tolerance impairment, but their
BW was not significantly different from that of Rnls+/+ mice (Figure 2A,B,E). This result
proves that Rnls is associated with diabetes risk [11,31]. Diabetes is a metabolic disease
characterized by hyperglycemia mainly because the liver is unable to effectively decrease
the BG level through glycogen synthesis [32]. Glycogen synthesis is inseparable from high
levels of AKT phosphorylation in the liver [33]. Notably, a study by our team showed that
AKT phosphorylation in the liver decreased in Rnls−/− mice [5], which explains why the
glucose level of mice in the Rnls−/−-HFD group during IPGTT decreased slowly compared
to that in the other groups. In addition, extracellular Rnls exerts cell protection through the
PI3K-AKT and MAPK pathways in different types of cells [34–36]. Obesity and diabetes
are frequently accompanied by chronic inflammation, and Rnls knockout may reduce the
innate ability against inflammation. Furthermore, it leads to impaired glycogen synthesis.
According to various animal models [37,38], insulin resistance occurs before obesity until
the age of 20 weeks. Our experimental period of 8 weeks is short, which may be the reason
for the absence of distinct insulin resistance in Figure 2C,D. Additionally, the mice in the
HFD group tended to develop insulin tolerance. The BG of mice in the Rnls−/− HFD group
decreased slowly from 0 to 15 min after insulin injection compared to the ND group, which
paves the way for metabolic disorder development.

In recent years, researchers have been focusing on microbiota as a vital aspect of
metabolism. Genotype, growth, and diet habit affect microbiota distribution, which is
further associated with obesity, diabetes, and its complications [21,23]. Owing to the close
relationship between diabetes and microbiota, microbiota composition was well analyzed
in our study. First, α diversity and β diversity were compared. We concluded that se-
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quence depth is sufficient for all samples among the four groups and exhibited different
clustering (Figures 3 and 4). Subsequently, microbiota composition was evaluated at the
phylum level, order level, genus level, and so on. HFD remodeled the composition of the
microbiota, such as S24-7, Lactobacillaceae, Ruminococcaceae, and Clostridiales (Figure 5).
Moreover, the increased Firmicutes abundance and decreased Bacteroidetes abundance
are coincident with dysbiosis microbiota and obesity caused by HFD [39,40]. Interestingly,
Rnls−/− mice under ND also exhibited a high abundance of Firmicutes, which suggests
that Rnls knockout promotes the development of obesity or diabetes through changes in
the proportions of Firmicutes and Bacteroidetes. For identifying significantly different
species across groups, the LDA score was used in our study (Figure 6). L. reuteri and B.
pseudolongum were considerably different in the Rnls+/+-ND group, and both have been
described as probiotics in previous studies [41–43]. S24-7 and Lactobacillus were consid-
erably different in the Rnls−/−-ND group, and both have been reported by decreasing
the risk of obesity [44]. Moreover, we found that some bacteria are associated with T2D
and obesity in the Rnls+/+-HFD, Rnls−/−-HFD and Rnls−/−-ND groups (Figure 6), such
as Prevotella, Bacteroides, Desulfovibrionaceae, Anaerotruncus, and Turicibacter [14,45].
Increased abundance of Anaerotruncus and Desulfovibrionaceae were corroborated in
human hypercholesteremia patients [46]. Due to the increased abundance of these harmful
bacteria, even though Oscillospira and Parabacteroides existed in Rnls−/−-HFD group, and
they are beneficial to glucose metabolic and lipid metabolic pathways [47,48], they still did
not exert a similar function as L. reuteri and B. pseudolongum of the Rnls+/+-ND group. Our
results are consistent with previous studies, although genetic inheritance affects the estab-
lishment and configuration of microbiota, differences exist among bacterial populations,
whereas some bacterial populations have the same function [15,49]. Our results suggest
that Rnls knockout possibly affects the composition of microbiota and abundance of some
bacteria. Additionally, to evaluate the dominant species among the four groups, the top 20
orders of species were displayed using a heatmap. The bacteria of orders Lactobacillales
and Bifidobacteriales were dominant in the Rnls+/+-ND group, whereas bacteria of the
orders Lactobacillales and Anaeroplasmatales were dominant in the Rnls−/−-ND group.
Clostridiales were the dominant bacteria in the HFD group (Figure 7). Overall, Rnls and the
bacteria related to Rnls may be new candidates in the prevention and diagnosis of diabetes
at an early stage, as previous studies have suggested [9,50].

Moreover, mouse models are important tools for studying the pathogenesis and
treatment of metabolic diseases, because they share a distinct genetic similarity to humans
and are also economically efficient for scientific study. In our study, we demonstrated that
the composition of microbiota was closely related to Rnls knockout. These results confirm
the advantages of mice as an experimental model again. Over the years, many mouse
models have been developed and have provided valuable insights to the pathogenesis of
metabolic diseases with on doubt. Of course, our study is no exception. The potential of
Rnls as predictors of metabolic diseases was provided. However, since almost all mouse
models can only mimic specific features, to understand well the occurrence and progression
of human diseases, a lot of work still need to be done in the future.

5. Conclusions

Rnls knockout leads to glucose tolerance impairment and intestinal microbial disrup-
tion in mice. Furthermore, Rnls knockout increased the abundance of bacteria belonging to
the Firmicutes phylum and decreased the abundance of those belonging to Bacteroidetes.
Moreover, Rnls may regulate the abundance of genera Lactobacillus and Turicibacter under
ND, and Oscillospira, Parabacteroides, and Anaerotruncus under HFD. Rnls−/− mice exhibited
glucose intolerance compared to Rnls+/+ mice under HFD. Overall, Rnls knockout may
accelerate dysbiosis of microbiota, increasing the risk of metabolic diseases.
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