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Abstract: Hydrogen is a versatile energy vector for a plethora of applications; nevertheless, its
production from waste/residues is often overlooked. Gasification and subsequent conversion of
the raw synthesis gas to hydrogen are an attractive alternative to produce renewable hydrogen. In
this paper, recent developments in R&D on waste gasification (municipal solid waste, tires, plastic
waste) are summarised, and an overview about suitable gasification processes is given. A literature
survey indicated that a broad span of hydrogen relates to productivity depending on the feedstock,
ranging from 15 to 300 g H2/kg of feedstock. Suitable gas treatment (upgrading and separation) is
also covered, presenting both direct and indirect (chemical looping) concepts. Hydrogen production
via gasification offers a high productivity potential. However, regulations, like frame conditions or
subsidies, are necessary to bring the technology into the market.

Keywords: hydrogen production; waste gasification; thermochemical conversion

1. Introduction

Environmentally benign fuels, which can replace today’s fossil-based fuels, such as oil,
natural gas, and coal for combustion, either in stationary or traction applications, are of the
utmost importance. One such fuel is hydrogen, which is the fuel of the future. Hydrogen is
an energy carrier and energy storage medium, maintaining potential applications in many
industrial processes and power generations. Hydrogen has gained momentum in recent
years as a potential fuel for aviation, vehicles, and domestic heating requirements, either
by direct combustion or in so-called “cold combustion” in fuel cells to realize a sustainable
world. The introduction of hydrogen in our societies would mean a paradigm shift in the
use renewable energy sources, leading principally to the decarbonization of the energy
sector and ecosystem and, hence, a substantial decrease in greenhouse gases. Owing to its
abundance bound in the form of compounds and complexes, it is estimated that over 75%
of the mass of the universe is primarily hydrogen [1]. The combustion product of hydrogen
practically being water makes it strategically important for clean and sustainable energy
production. The calorific value for hydrogen combustion is 120 MJ/kg (LHV), showing its
superior quality compared to gasoline [2]. However, currently, 96% of the global hydrogen
production relies mainly on industrial processes derived from fossil fuel feedstocks [3].
Biomass with its huge sources and diverse compositions, waste products, and water
have been considered as an alternative source of hydrogen production by thermolysis,
biolysis, photolysis, and electrolysis. Hydrogen produced by valorization of waste materials
provides both a clean energy vector and sustainable waste management compared to
landfill and incineration methods [4]. Thus, waste-to-energy (WtE) and/or waste-to-
hydrogen (WtH) processes or syngas have the potential to be utilized as a reliable transition
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from fossil fuel, globally emitting 900 Mt CO2 associated with hydrogen production [5].
Currently, there are several different “colors” of hydrogen, which give the production
pathway and, indirectly, the sustainability of the produced hydrogen. They are summarised
in Table 1. Hydrogen from waste does not have its own color but can be classified as
green hydrogen.

Table 1. Types of hydrogen.

Color Production Pathway Byproducts

black Gasification of coal CO2
grey Steam reforming of natural gas without CCS * CO2
blue Steam reforming of natural gas with CCS * -

turquoise Pyrolysis of natural gas Elemental carbon
white Naturally occurring -
pink Electrolysis of nuclear power O2

green Electrolysis of renewable energy
Conversion of biomass

O2
Carbon negative with CCS *

* CCS = carbon capture and storage.

Waste management, as one of the most crucial societal challenges with the ever-
growing discharge of municipal solid waste (MSW), waste products from industries,
agroresidues, sewage sludge, and animal manure, is closely related to welfare, hygiene,
health, and bionomical issues. With the global surge of population, economic develop-
ment, and standard of living, there is a remarkable increase in and disposal of MSW from
cities and towns, plastics, and tires, with enormous impacts on health, economy, and envi-
ronment.Thus, annual generation and production increased to 2.01 billion tons of global
waste and 460 million tons of plastic in 2019 [6,7]. A significant volume of these waste
products is poorly managed and ends up in landfills, leading to the resistance of biological
and chemical degradation or emission of leachate and gases as well as the requirement
of huge acreages with large-scale environmental concerns. At the global scale, only a
quarter of the MSW, 15 wt% of plastics, and 17 MT of tires were collected and recycled for
the respective years, showing the magnitude of waste management [7,8]. Though waste
with its inhomogeneity is composed of biodegradable and non-degradable contents, its
organic fraction as an economic and renewable resource has great potential for energy
recovery technologies in the form of heat, power, and chemicals. EU Directive 2008/98/EC
establishes a legal framework of waste hierarchy for (i) prevention, (ii) reuse, (iii) recycling,
(iv) recovery (energy, etc.), and (v) disposal in a bid to protect the environment and human
health. Therefore, appropriate policy measures and interventions are key roadmaps for
the utilization of waste as useful and sustainable fuel and products with considerable
effects on the circular economy and, at the same time, decreasing the negative role on living
organisms and the environment.

Biomass and its derivatives in the form of organic waste are readily converted to
their final products by a set of different technologies, including mechanical, chemical,
biochemical, and thermochemical processes. Among these, thermochemical methods by
combustion, pyrolysis, gasification, and liquefaction have gained increased attention for
the conversion of biomass and waste, with a high proportion of hydrocarbon content in
renewable fuel for energy and product retrieval [9–15]. These technologies differ substan-
tially in reactor configurations, particle size of feedstock, heating rate, residence time, type
and yield of product, reactor temperature intervals and pressures, product treatment and
enrichment, type of reactant, and use of catalyst. Although the combustion of biomass and
solid waste to CO2 and H2O has shown to effectively reduce the mass and volume of the
MSW by 80–95% to be used in power and heat generations, it is essentially associated with
emissions of toxic substances, such as furans, dioxins, NOx, SOx, and particulate matter,
compared to gasification [16–18]. The pyrolysis and gasification of wastes (municipal, tires
and plastics) are among the most mature technologies, showing different reaction products
and operating at different temperatures, as shown in Figure 1.
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Figure 1. Schematic diagram of thermochemical recycling of municipal solid waste (MSW), waste
tires (WTs), and waste plastics (WPs).

Although gasification is a mature technology with large-capacity plants generating
syngas/fuel gas in many countries [12], its successful implementation for the production
of WtH or syngas as an alternative and renewable fuel is closely related to the release of
byproducts, such as ash, sulfur, alkali metals, particulates, and tar, and the subsequent
product cleanup systems. Tar as condensable organic molecules is especially challeng-
ing, affecting operational and environmental problems during gasification by settling in
filters and downstream flow in equipment, resulting in interruptions [19–21]. Different ap-
proaches for the containment of tars and related byproducts are used in the form of physical,
thermal, and catalytic processes for achieving high-purity hydrogen and/or syngas. The
present work focuses on the available literature for the generation of hydrogen, i.e., waste
to hydrogen (WtH) or syngas, as a valuable source replacing the current fossil fuel-based
production. It is a primary aim of this coverage not only to dwell on municipal waste
but also on plastics and tires by implementing the gasification technology for conversion
and valorization of the waste products generated in huge amounts as renewable sources
for sustainable energy use. Although plasma gasification has been shown to be a viable
technology to convert MSW, plastics, and rubber with various challenges remaining to be
addressed [22], the focus of this review is mainly on conventional gasification technologies.

2. Gasification to produce Hydrogen from Waste
2.1. Gasification Basics

Gasification is a process where solid carbonaceous materials are converted to com-
bustible gases (H2, CO, CH4, and CO2) in a reaction with a co-reactant (gasification
agent/medium) in a temperature range of 550–1000 ◦C [23]. However, byproducts of
tar as a mixture of high-molecular-weight aromatic and oxygenated hydrocarbons, C2–C3
hydrocarbons, solid residues of char, ash with metals, and minerals are formed [19,20,23].
Depending on the gasifying agent, the producer gas heating values can vary significantly,
being 4–7 MJ/Nm3 for air due to dilution with nitrogen, 10–12 MJ/Nm3 for pure oxy-
gen, and 15–20 MJ/Nm3 for steam [13]. CO2 is also used as an agent for gasification
and has resulted in reduced energy input to the reactor with efficient gasification of the
solid fuel [23,24]. The product gas can be upgraded to a syngas (mainly, CO and H2
but sometimes also CO2) used for synthesis processes or further upgraded to, e.g., pure
hydrogen gas.
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The gasification of biomass and solid waste occurs often not delineated in a reactor
through a set of complex endothermic and exothermic reactions, consisting of (i) dehydra-
tion by drying the biomass with its inherent moisture, (ii) pyrolysis (thermal decomposition)
in the absence of oxidant, (iii) partial oxidation or gasification, and (iv) reduction zone [25].
The set of complex heterogeneous and homogeneous reactions is shown in Table 2 [18,26].
Gasification involves reactions with different phases, such as gas–liquid, gas–solid, liquid–
solid, and gas–gas, where diverse phenomena such as chemical reactions and transport
phenomena (heat, mass and momentum transfer) between the gasification agent and
feedstock take place.

Table 2. Main reactions in gasification reactions [18,26].

Reaction ∆HR (kJ/mol) Equation

C + ½ O2 → CO −111 (1)
C + O2 → CO2 −394 (2)
C + 2 H2 ⇌ CH4 −85 (3)
CO + ½ O2 → CO2 −283 (4)
CO + H2O ⇌ H2 + CO2 −41 (5)
CO + 3 H2 ⇌ CH4 + H2O −206 (6)
C + CO2 ⇌ 2 CO +173 (7)
H2 + ½ O2 → H2O −242 (8)
CH4 + ½O2 → 2 H2+ CO −110 (9)
C + H2O → H2 + CO +131 (10)
CH4 + CO2 ⇌ 2 CO + 2 H2 +247 (11)
CxHy + x H2O → (x + y/2) H2 + x CO Endothermic (12)
CxHy + x CO2 → (y/2) H2 + 2x CO Endothermic (13)
primary and secondary tars → CO, H2, CO2, C, CxHy * Endothermic (14)

* CxHy = hydrocarbons.

In most processes for increased hydrogen or syngas production, steam is the most
preferred gasifying agent for increased hydrogen or syngas production, albeit the energy
requirement is high, as shown by Equations (6) (reverse), (10), and (12). In Table 2, the
oxidation (1, 2, 5, 8, and 9) and methanation (3) reactions are exothermic, implying that
reactor temperatures beyond 900 ◦C can maintain the autothermal reactions of the gaseous
products within the reactor regime, validating Le Chatelier’s principle of favorable reactants
and products in exothermic and endothermic reactions, respectively. Steam addition as
an agent allows the tars to react via steam reforming, as shown in Equation (13). Tars
can also decompose by increasing the equivalence ratio (ER-oxygen used for gasification),
higher temperatures, and gas residence time as well as by using catalysts for higher-purity
hydrogen or syngas production.

2.2. Gasification Research on Waste to Hydrogen

To increase the combustible part and, thus, also the energy content, unsorted waste
such as MSW passes a mechanical and biological treatment installation (MBT) to recover
recyclable materials separating inert and wet organic wastes to a fuel termed RDF (refuse-
derived fuel). There is, however, no quality requirement for RDF, and, therefore, the
gasification research presented below is for MSW. As special waste types, tires and waste
plastics are also included [14,27,28].

2.2.1. Municipal Solid Waste

MSW with typical physical compositions varies significantly according to geographical
location, socioeconomic factors, and society, where more than half of the organic waste is
generated across all regions, except for Europe, Central America, and North America having
higher portions of dry waste [6]. These waste products contain different combustible mate-
rials with high energy content, including polymeric materials, rubber, cardboard, paper,
textiles, food waste, and biomass as their main components [14,29]. The physicochemical
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characterizations by proximate and ultimate analyses of various studies [22,27,29–35] ac-
cording to standard methods are presented in Table 3 showing the non-uniformity of the
MSW samples, deriving from various proportions of the residual source.

Table 3. Representative proximate (P) and ultimate (U) analyses of MSW samples.

P-U/Ref. [27] [29] [30] [31] [32] [33] [36] [34] [35]

Moisture content (wt% wb) 20.86 5.46 5.06 - 4.69 3.82 14.3 1.5 -
Volatile matter (wt% db) 69.03 64.76 59.34 82.28 60.28 83.31 47.0 86.6 77.52
Fixed carbon (wt% db) 3.27 6.44 8.36 11.79 8.5 8.64 8.5 - -

Ash (wt% db) 6.87 23.34 27.24 5,93 26.53 4.23 44.6 8.3 7.12
C (wt% db) 40.49 61.13 48.61 51.81 57.86 65.25 46.3 69.7 49.51
H (wt% db) 5.81 6.78 6.01 5.76 6.70 9.1 5.2 10.1 6.42
O (wt% db) 31.53 30.28 12.49 30.22 33.62 20.74 44.8 10.0 31.86
N (wt% db) 0.61 0.89 3.87 0.26 0.81 0.44 2.9 0.57 0.78
S (wt% db) - 0.92 0.33 0.36 1.01 0.16 0.86 0.054 0.48

LHV (MJ/kg) 16.02 - 18.59 21.306 - - 10.0 - 19.99

wb: wet basis; db: dry basis.

The status of MSW in gasification technology is mostly used for CHP, power, fuel
gases, and biofuels, except for hydrogen generation from plastics by Showa Denko in
Japan [12]. MSW gasification technology to produce hydrogen has been researched in
various studies looking into different reactor configurations and process parameters, such
as temperatures, gasifying agents with or without co-mixtures, particle sizes, heating rate,
and residence time.

The moisture content is usually removed by heating at temperatures above 100 ◦C
as this influences the overall calorific value of the feedstock and must be suppressed for
increasing the conversion efficiency. However, the presence of high moisture content
without a high input of steam is regarded as beneficial for in situ downstream gasification
and hydrogen and syngas production [37,38]. The volatile matter is an indication of the
formation of syngas (CO, H2, CH4, CO2), H2O, and tar after the devolatilization step in the
pyrolysis zone [39]. The fixed carbon or char and total carbon originate with more than half
as biogenic and the rest as fossil-based, which together with hydrogen defines the usable
heating value of the fuel, while the fuel reactivity of the fuel increases with the contents of
hydrogen and oxygen [40,41]. The fuel during gasification has an ash content related to the
fuel quality and the quantity of the volatile matter along with the presence of inorganic
materials. The oxygen contained in the fuel is part of the gasification process and, as such,
also defines the important parameter of the equivalence ratio (ER) (actual air/fuel ratio
to the stoichiometric air/fuel ratio) for syngas production. The mass fraction of hydrogen
has high relevance regarding hydrogen production, as 6–7 wt% in biomass is equivalent to
0.67–0.90 Nm3 gaseous hydrogen in 1 kg biomass [42,43]. Thus, any increment or reduction
in the fuel hydrogen content in MSW or any waste influences the yield of hydrogen gas
and/or syngas.

A summary of operating process conditions with the respective gasifier type and
hydrogen and CO production of MSW is given in Table 4. Most experiments were per-
formed at bench-scale, from micro to batch level fixed-bed reactors, except a few with a
continuous fluidized bed and pilot plant, with a feed capacity of feedstock at 100 kg/h.
Steam gasification has shown increased H2 concentration and yield (g/kg MSW), primarily
due to the set of gas-phase reactions involving Equations (5), reverse (6), (10), (12), and
(14). Higher temperatures would also entail the discharge of H2 of the rather hard-to-crack
endothermic reactions of char and tars, with high carbon conversion efficiency [44]. Thus,
the increase in the syngas yields of H2 and CO as a building block for the application
in chemical processes from an indigenous resource of municipal solid waste as a fuel
source has significant bearing capacity. This applies to improving pollution in cities by
‘green’ strategies across societies by mitigating climate change, increasing national revenues
through the introduction of innovative technologies, replacement of fossil-derived fuels and
independency from unstable regions, and insecurity on energy supply. The implementation
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of gasification technology on MSW by harnessing H2 production fulfils the bulk of the UN
2030 Agenda for Sustainable Development.

Table 4. H2 and CO production of MSW by gasification.

Reactor Type Agent ER T
(◦C)

H2
(vol%)

CO
(vol%)

H2
(g/kg MSW)

LHV
(MJ/Nm3) Ref.

Downdraft
fixed bed Air 0.4 900 36.51 26.23 21.6 14.59 [27]
Bubbling

fluidized bed Air 0.4 900 35.7 36.79 24.1 12.57 [27]

Tube Air - 703.5 45.79 33.33 27.69 9.96 [29]
Drop tube CO2/steam - 1000 43.44 28.85 37.69 12.41 [30]
Fixed bed Steam - 950 53.29 16.92 77.28 9.36 [31]

Tube Air 0.241 758 41.36 28.46 32.0 12.48 [32]
Fluidized bed Air/O2 0.2 900 9.57 * 31.56 * 19.24 [33]

Bubbling
fluidized bed Air 0.34 770 10.2 * 12.4 * 11.03 3.70 [36]

Fixed bed Steam - 800 70.0 7.0 [34]
Fixed bed Steam - 850 59.0 15.0 98.15 9.34 [35]
Fixed bed Steam - 750 49.42 13.0 24.8 [38]
Fixed bed Steam - 900 53.22 25.72 86.05 9.0 [31]

Downdraft
fixed bed Air 0.2 800 10.2 * 14.1 * 6.8 [45]
Fixed bed Steam - 900 58.2 13.7 [46]
Fixed bed Steam - 900 54.22 22.72 84.72 [44]
Fixed bed O2 - 600 50.65 34.0 [47]

Fluidized bed Steam - 900 49.6 22.0 80.0 [48]
Fluidized bed Air/CO2 0.25/0.4 900 39.8 50.0 81.7 [11]

ER: equivalent ratio; * N2 included.

Ma et al. [32] studied MSW by varying the temperature in a range of 700–900 ◦C,
ER 0.2 to 0.3, and residence time of 10 to 30 min and found out that the maximum yield
of H2 was 41.36 mol% (~32 g/kg MSW) in conditions of 757.7 ◦C, 0.241, and 22.26 min
for temperature, ER, and residence time, respectively. This study was based on response
surface methodology (RSM) as central composite design (CCD) to optimize the effect of
process variables on the final product. Ying et al. [30] varied temperatures at 1000–1100 ◦C
and the CO2/steam ratio in a range of 0.5–3, with the CO2 derived from gasification and
reused. The experiments showed that the Boudouard reaction (Equation (7)) dominates
above 700 ◦C, where CO2 reacts with the solid char to produce CO. An optimal CO2/steam
ratio of 2.5 at 1000 ◦C resulted in a H2 yield of 37.7 g/kg MSW and 338.9 g/kg MSW of
CO. Seo et al. [27] carried out a comparative study of gasifiers with downdraft fixed bed
(DFB) and bubbling fluidized bed (BFB) performed in terms of ER in a range of 0.2 to
0.6, gas yield, and composition as well as the important parameters of carbon conversion
efficiency (CCE) and cold gas efficiency (CGE). CGE is expressed as total reacted carbon
in the system (kg)/total carbon fed into the system and CCE as LHV of fuel gas × fuel
gas production/LHV feed [31,49]. The results obtained in BFB showed a higher syngas
composition of 72.53 mol% (H2 + CO), 63.70% CCE, and 67.31% CGE at ER 0.4 and at
900 ◦C. Ma et al. [27] utilized experimental validation using statistical methods to analyze
the effects of temperatures (700, 800, 900 ◦C), particle sizes in mm (1, 2.5, 3.5), and heating
rates in ◦C/min (5, 1, 15). They were able to obtain optimum H2 production of 45.8 mol%
with H2 + CO of 72.8 mol% with lower tar and char contents at 703.49 ◦C, particle size of
3.21 mm, and a heating rate of 5 ◦C/min. The H2 production rate was believed to increase
with the reaction temperatures from 700 to 900 ◦C by both steam-reforming (reverse
Equation (6)) and water-gas shift (WGS) (Equation (5)) and the endothermic reaction of
Equations (8) and (10). Campoy et al. [36] compared various wastes (orujillo, meat, and
bone meal, dried sewage sludge (DSS) and MSW) in a 100 kWth fluidized-bed pilot plant
and showed that the H2 content of MSW was greater than the other wastes, depending on
process parameters.

One of the approaches receiving increased attention without the need for increased
temperature, displaying selectivity for tar removal by catalytic cracking, steam reforming
of hydrocarbons, and absorption of byproducts during gasification of MSW, is catalysts and
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sorbents. He et al. [31] studied steam gasification of MSW in a bench-scale downstream
fixed-bed reactor, using a calcined dolomite (CaMg(CO3)2) as a catalyst. The tar decom-
position was complete at a temperature of 950 ◦C with a H2 yield of 77.3 g/kg MSW but
achieved a maximum potential yield of 140.4 g H2/kg MSW at 900 ◦C. This high yield was
attributed to the catalytic effect of dolomite in steam gasification of both tar and char, where
the steam-to-MSW ratio was held at 0.77 for a weight hourly space velocity of 1.29 h−1.
Likewise, dolomite as a catalyst was studied, where the influence of the steam-to-MSW
ratio was varied between 0.39 and 1.04 and weight hourly space velocity in the range of
1.22–1.51 h−1 at 900 ◦C by He et al. [31]. The highest H2 content of 53.2 mol% and hydrogen
yield of 86 g/kg MSW with a hydrogen potential yield of 119.8 g/kg MSW was at the level
of 1.04 steam-to-MSW ratio.

CaO has been applied both for in situ CO2 adsorption and as a catalyst in MSW
gasification. MSW containing four main components, plastics (43 wt%), paper (37 wt%),
wood (12 wt%), and textiles (8 wt%), was studied in steam gasification using different mass
ratios of CaO-to-carbon in MSW in a temperature range of 650 to 850 ◦C for hydrogen
production [38]. The results show that in situ carbon capture increased the H2 concentration
to 49.42 vol% and a H2 yield of 24.8 g/kg MSW at 750 ◦C and a Ca/C ratio of 0.7. A recycle
looping system formed of CaCO3 and tar was used to regenerate into CaO, converting the
tar into non-condensable gases in a heating chamber to be fed into the gasifier.

In a study by Zhou et al. [34], steam gasification in a batch-type fixed bed using the
CaO additive at different CaO/MSW ratios at temperatures of 700–900 ◦C was investigated.
At 800 ◦C, an optimum production of H2 is achieved during both the devolatilization and
char gasification stages by more than 10% compared to gasification without CaO. However,
the effect of CaO seems to be reduced by an increase in temperature to 900 ◦C.

Nickel-supported catalysts and their combinations with other metals are commonly
known for their high catalytic effect and stability for steam reforming reactions of hydrocar-
bons with high conversions at relatively high temperatures and have been applied for MSW
gasification reactions. In a study by Li et al. [46], three different reaction conditions, without
catalyst, calcined dolomite and nano NiLaFe/γ-Al2O3 at 750–900 ◦C, catalyst particles, cat-
alyst to MSW, and steam to MSW ratios were varied and compared in a combined fixed-bed
reactor. The investigation showed that the most important factor was temperature at 900 ◦C
and at a steam-to-MSW ratio of 1.33, rendering a significant increase in H2 by 59 mol%. % of
a total of 2.40 Nm3/kg MSW for the supported tri-metallic catalyst. The effects of catalyst
type (NiO/γ-Al2O3 or calcined dolomite), reactor temperature, and steam-to-carbon (S/C)
ratio were investigated by Luo et al. [50]. At a temperature of 900 ◦C, catalytic steam
gasification, performed in a fixed-bed reactor, contributes to a H2 content of 54.2 mol%
and gas yield of 1.75 Nm3/kg MSW for the active γ-Al2O3 catalyst, S/C ratio of 2.41, and
a higher CCE of 84.87%, with H2 dominating in the syngas production. Nano-catalysts
of Ni/γ-Al2O3 and Cu/γ-Al2O3 were prepared by Gao et al. [47] for steam gasification
in a micro-FB system in a temperature range of 650 to 800 ◦C with varying catalyst load-
ings for reforming reactions and char conversion. A higher yield of 32 g/kg MSW was
obtained at 800 ◦C for 4 g loading of Ni/γ-Al2O3 with 97% conversion of char, showing the
activity of the catalyst. NiO on modified dolomite was compared with NiO/γ-Al2O3 and
studied for a period of 10 h to observe the lifetime test for tar reduction at different reactor
temperatures [35]. The effective conversion of 99% with an increased hydrogen yield of
80.7 g/kg MSW and CCE of 76.8% was achieved with no deactivation of the catalyst at
850 ◦C and steam-to-MSW ratio of 1.23. Couto et al. [11] investigated MSW gasification
in a semi-industrial fluidized-bed gasifier using NiO on modified dolomite. The effects of
ER, rector temperature, CO2-to-MSW and steam-to-MSW ratios were investigated with
mathematical modelling and experimental validation. The results show that at operating
ER 0.25, steam-to-feed ratio of 1 at 900 ◦C and CO2-to-MSW ratio of 0.4, the H2 yield was
81.7 g/kg MSW with a H2 and CO content of 39.8 mol% and 50 mol%, respectively. It
is interesting to note, however, that the effect of CO2 leads to higher concentrations of
CO and CO2 with decreased H2 content due to reverse WGS reactions (Equation (5)) and
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Boudouard (Equation (8)), while a significant amount of the gasifying agent leaves the
reactor unreacted, as observed by the authors.

Co-gasification with other biomass residues of wheat straw is another way to enhance
the production of H2, as in a study by Zhao et al. [33]. The study shows an overall
incremental increased H2 production of 14% when the oxygen concentration increases by
5% in the range of ER 0.2–0.5 and between 600 and 900 ◦C. Moreover, a ratio of 1:1 of wheat
straw to MSW increased the H2 yield by 6.4%, mainly due to the reduced availability of
plastics in the MSW and the presence of alkali metals (K+, Na+, Ca2+) as inherent catalysts
for enhancing char oxidation [49]. However, gasification with oxygen enrichment shows a
moderate increase in H2 content as more combustibles are exposed to oxidation reactions,
resulting in higher concentrations of CO2. Co-gasification of switchgrass with MSW was
performed by varying the ratios in a commercial-scale downdraft gasifier to increase the
syngas compositions, yield, and heating values by Bhoi et al. [45]. The results show that
the co-gasification ratios of 0, 20, and 40 wt% of MSW show variations in the syngas yield
from 1.6 to 1.4 Nm3/kg, with 10 mol% H2 and 17 mol% CO, respectively.

2.2.2. Waste Tires (WTs)

Tires contain non-decomposable and non-biodegradable components, which, upon
disposal in landfills or incineration, create toxic chemicals, solid residues, particulate
matter, heavy metals, and pyrolytic oils containing polycyclic aromatic hydrocarbons,
causing environmental and health issues [51]. Many countries and regions have strict
regulations and legislation regarding scrap tire management and harnessing used tires
in energy and material recovery. According to ETRMA (European Tire and Rubbers
Manufacturers’ Association), in 2018, 91% of end-of-life tires were collected and treated
for material recycling (2 Mt, 61.75%) for reuse in secondary materials and 1.25 Mt (32.85%)
for energy recovery in cement kilns, urban heating, and power plants [52–54]. Moreover,
scrap tires have also found applications as rubber powder in small amounts as flooring
in sport courts, children’s playgrounds, shoe soles, gaskets, shims, ribbons, transport
belts, motorway barriers, filler in asphalt for roads, artificial reefs, breakwaters, reclaim
rubber, etc. [52,53]. However, considering the voluminous production rate of tires and
their properties as durable and difficult to degrade with minor recycling/recovery levels,
alternative routes for utilization have been considered as viable energy sources being
abundant with carbon and hydrogen.

Tires have diverse contents and are composed of elastomers of natural rubber (NR),
styrene-butadiene rubber (SBR), cis-polyisoprene or synthetic rubber (SR), carbon black,
zinc oxide, textiles, additives, and sulphur [51,55]. Typical tire substances with different
results depending mainly on the type and brand, characterized by corresponding authors
of the proximations and analyses, are shown in Table 5. The sulphur content, typically
1–3 wt%, is vulcanized with raw rubber to cross-link for hardening with ZnO as an acti-
vator compounding together with carbon black to improve elasticity, thermal resistance,
conductivity, support, and strengthening the abrasion resistance of the rubber. Steel cords,
textiles, ZnO, S, rubber extender oils, and carbon black are blended during the tire manu-
facturing process. The scrap tires are treated and removed of the heavier parts, followed by
shredding, grinding to be reduced and sifted to different particle sizes, and to be used as
tire-derived fuel (TDF). The moisture and ash contents are relatively low, the C higher, and
the FC several folds higher than in MSW. Waste tires have calorific values higher than a
range of biomass (15–22 MJ/kg) [56] and different coal samples (13.49–24.88 MJ/kg) [57],
making them suitable for the potential recovery of energy by waste to hydrogen, syngas,
and liquid feedstock.
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Table 5. Representative proximate (P) and ultimate (U) analyses for waste tires.

P-U/Reference [58] [59] [60] [61] [62] [63] [8] [64] [65]

Moisture content (wt% wb) 0.76 1.62 ns 1.21 0.68 ns 0.8 0.82 0.75
Volatile matter (wt% db) 63.04 63.41 67.7 65.1 65.1 61.8 62.4 62.7 64.97

Fixed carbon (wt%) 32 21.86 25.5 8.8 28.95 33.8 29.4 32.31 30.08
Ash (wt% db) 4.2 13.21 6.8 4.9 46.63 4.4 7.4 4.17 4.16

C (wt% db) 83.34 80.46 77.3 67.9 79.55 85.2 87.1 81.2 83.92
H (wt% db) 6.56 8.14 6.2 6.6 7.99 7.3 7.7 7.2 6.83
O (wt% db) 2.78 6.9 7.1 17.4 2.53 0.5 3.1 8.7 7.55
N (wt% db) 0.79 0.82 0.6 1.9 0.15 0.4 0.4 0.8 0.78
S (wt% db) 1.33 3.68 1.8 1.28 2.47 2.3 1.7 2.1 0.92

LHV (MJ/kg) - 36.34 - 29.5 37.4 37.1 35.8 - 38.6

wb: wet basis; db: dry basis.

Pyrolysis and gasification as thermochemical conversion technologies of WT have
been extensively studied for obtaining various products. Several review papers and
studies [58,59,65–68] have recently covered the research progress on the pyrolysis of waste
tires for the optimization of important factors in the process and the products of char, oil,
and gases. Although pyrolysis has its own advantage in lower-temperature operations
for the products, it is a primary focus of this work to dwell on the gasification of WT for
product yields of non-condensable gases of hydrogen and other syngases, including CO.
Currently, there are no large-scale gasifiers operating using TDF as a feedstock, with most
research being conducted at laboratory scale [69].

The fundamental chemical reactions taking place during the gasification of WT are
valid, like those described in Table 2. However, as rubber is a thermosetting polymer with
different physicochemical properties, it is initially decomposed into heavy and light hydro-
carbons (waste tire → heavy and light hydrocarbons + char), subsequently followed by sec-
ondary and tertiary reactions (heavy hydrocarbons → light hydrocarbons + H2 + CO + CO2;
light hydrocarbons → hydrocarbons + H2 + CO) [70].

Table 6 shows the results of gasification of WT and/or combined pyrolysis–gasification,
as given in the references. The types of reactors from a laboratory-scale fixed bed to rotary
kilns to fluidized-bed pilot plant, where the feed varies in particle sizes from 0.14 mm to
2 cm, a temperature range of 500–1300 ◦C, with or without gasification agents, are key
among the studies. Furthermore, dual-purpose two-stage fixed-bed reactors with different
catalysts [64,71–73] and steam gasification and reforming reactor [63] with increased hy-
drogen concentration were obtained. Steam, catalysts, and high-temperature gasification
seem to show promising results for hydrogen and CO production, with lower char content,
implying increased tar and char reactions. The char and tar yields may depend on the
optimum operating conditions of ER and tire particle sizes for higher syngas yield, gas
HHV/LHV, and energy recovery ratio [52]. The use of catalysts for both reforming and
shift reactions for a combined system of pyrolysis and gasification is mainly interesting for
the high-rate conversion of tire products into hydrogen. However, the presence of sulphur
in the fuel feed and tars makes the catalysts prone to poisoning and coke deposition on the
active sites, leading to deactivation [64,71–73].

Table 6. H2 and CO production of WT by gasification.

Reactor Type Agent ER T
(◦C)

H2
(vol%)

CO
(vol%)

H2
(g/kg MSW)

LHV
(MJ/Nm3) Ref.

Rotary kiln Steam - 1000 65.0 17.25 100.1 25.0 [60]
Tube Steam - 625 46.7 5.2 39.44 - [61]

Bubbling
fluidized bed Air 0.15 805 20.0 b 3.52 b - 7.03 [62]
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Table 6. Cont.

Reactor Type Agent ER T
(◦C)

H2
(vol%)

CO
(vol%)

H2
(g/kg MSW)

LHV
(MJ/Nm3) Ref.

Rotary kiln Steam - 750 73.3 21.5 - 17.74 [63]
Hybrid

filtration Air - 1294 3.3 b 4.1 b - 10.26 [8]

Rotary kiln Steam - 850 57.0 17.7 - 22.56 a [74]
Fixed bed Air 0.07 500 30.4 8.2 32.0 6.0 [52]
Fixed bed Steam 787 50.0 9.8 30.37 22.0 [70]
Fixed bed Steam 800 48.81 3.89 - 15.21 [75]
Fixed bed Air/Steam 800 22.63 4.88 - 7.34 [75]

Two-staged
fixed bed - 600/800 57.47 16.06 36.32 - [64]

Two-staged
fixed bed - 500/800 60.8 9.7 - - [72]

Two-staged
fixed bed Steam 500/900 56.8 15.0 - - [73]

Two-staged
fixed bed - 500/800 56.0 11.0 - - [71]

Fixed bed Air 700 2.8 b 4.0 b - 7.5 [76]
a MJ/kg; b N2 included.

Based on a thermodynamic modelling study for tire oil composed of mainly limonene
(C10H12), Mastral et al. [53] found that an appreciable hydrogen yield of 158 g/kg compared
to what was achieved for those represented in Table 5 is also far from the maximum
theoretical amount of H2 available in WT, estimated to be 387 g/kg [68]. Donatelli et al. [74]
showed both in a numerical model and through experimental results of energy balance on
syngas production that the available energy by combustion of gases produced compared
to experimentally required energy for gasification of 1 kg of WT was 32.5 MJ. In a recent
study [77] using models for WT gasification with steam and the other steam-integrated
steam methane reforming unit, Ahmed et al. showed that the cost of hydrogen lies between
5.57 and 4.46 EUR/kg.

Considering the highly extractable and inexhaustible resource from the ever-increasing
vehicles with pneumatic tires in traction, the high H/C ratio, and environmental remedia-
tion, WT can be potentially utilized by conversion into WtH and/or syngas for the further
production of fuels and chemicals. The product distribution of gas, liquid, and appreciable
amounts of char, whose high carbon content and surface areas can be used as activated
carbon for different adsorption processes, catalyst support, and power sources, has a sup-
ply chain in the circular economy. Thus, there is a great incentive to dwell on research
orientations for process optimizations of WT along with tar-free higher heating value fuels
for sustainable value-added products for industrial processes and power generation as well
as pollution and emission control by thermochemical methods.

2.2.3. Waste Plastics (WPs)

Plastics, polymers with different functional groups of monomers consisting mainly
of carbon, and hydrogen chains with or without additives have become an indispensable
commodity product for everyday use due to their performance, low cost, and various
application areas. The production and consumption rates of plastics have shown an
upsurge, culminating in 368 Mt in 2019, with a nearly 20% increase in the last 5 years.
Typical sources of plastic wastes generated may encompass both low-density (LD) and
high-density (HD) polyethylene (PE), polyethylene terephthalate (PET), polypropylene
(PP), polystyrene (PS), and polyvinyl chloride (PVC). The release of plastics due to a lack of
proper management and strategy has led to serious problems for marine and terrestrial
ecosystems. An estimated 8 Mt of plastic litter has entered the world’s oceans, degrading
into microplastics and nanoplastics and causing impairments for marine living organisms
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and humans [78–80]. Therefore, a multifaceted solution is needed to utilize these abundant
polymeric materials by collection, treatment, and recycling through re-polymerization,
energy, and chemical application.

Table 7 shows the proximate and ultimate analyses by those given in the references.
The volatile contents of the samples and calorific values are by far the highest among those
previously reported for MSW and WT in Tables 3 and 5, respectively. The ash content is,
likewise, low, resulting in high conversion of the feedstock for increased gas concentrations
and high quality of char. There is variation among the pure polymers, often obtained from
a supplier, but they are treated under different conditions of the analytical and combustion
method used. However, the mixed plastics can usually be blends of pure polymers or
collected from MSW mixtures and are, therefore, contaminated from the raw solid, showing
higher ash contents than those of the pure plastic materials, while the oxygen content
shows not-too-high deviations.

Table 7. Representative proximate (P) and ultimate (U) analyses of different waste plastics.

Type MC
(wt% wb)

VC
(wt% db)

FC
(wt% db)

Ash
(wt% db)

C
(wt% db)

H
(wt% db)

O
(wt% db)

S
(wt% db)

N
(wt% db)

Cl
(wt% db)

LHV
(MJ/kg) Ref.

PE 0.02 99.85 0 0.15 85.81 13.86 0 0.06 0.12 - - [31]
0.01 99.9 0 0 85.60 13.72 0.68 0 - - - [81]

0 >99 - <0.01 85.84 14.07 <0.01 0 0.09 - 43.38 [82]
0.08 99.92 0 0 85.29 14.51 0.20 0 0 - 43.30 [83]

PET 0 87.96 12 0.04 62.8 4.3 32.79 0.04 0.07 - 22.77 [84]
0.21 94.69 5.1 0 60.97 4.25 32.82 0 0.03 - 21.97 [85]

PP 0 100 0 0 86 14.0 0 0 0 - - [84]
0.4 99.6 0 0 85.18 14.39 0.43 0 0 - - [85]
- >99 - <0.1 85.86 13.91 0.13 0 0.10 - 43.42 [82]
0 99.0 - 0.94 85.25 14.71 0 0 0.04 - - [86]

0.1 96.7 3.2 0.03 84.3 13.8 1.7 - 0.6 - 45.1 [87]
PS 0 84.6 14.4 0.97 46.87 6.06 45.48 0 0.62 - 18.09 [64]

LDPE 0.1 99.9 0 0 92.3 7.4 0.2 0 0 - 40.3 [88]
- - - - 85.38 14.62 0 0 0 - - [88]

HDPE 0 99.7 0.3 0 85.71 14.29 0 0 0 - 43.10 [64]
0 99.1 0.01 0 85.4 14.6 0 0 0 - - [89]

PVC 0.1 66.6 29.0 4.3 50.1 6.2 22.3 0 0 20.5 - [87]
MP - 96.3 1.1 2.6 77.1 11.5 11.2 - 0.2 - - [90]

0.47 - - 2.04 76.54 12.84 7.91 - 0.2 - 39.7 [91]
0.3 - - 1.3 84.4 14.0 0 0 0 - 45.5 [92]
0.4 98.9 - 2.7 82.3 12.3 5.0 0.1 0.3 - 42.2 [93]
4.4 86.73 4.1 9.2 68.85 8.89 21.3 0.14 0.4 0.32 24.68 [94]
4.4 82.91 3.9 8.8 62.52 8.07 19.34 0.13 0.36 0.37 24.68 [95]
0.51 62.35 18 19.1 65.18 15.61 9.15 0.11 0.16 2.98 - [96]

- - - - 77.1 11.5 11.2 - 0.2 - - [90]
- 93.2 3.5 3.3 68.9 12.8 14.3 0.2 0.5 - 35.2 [97]

0.38 94.71 4.37 0.54 82.41 13.42 2.86 0 0.18 1.13 43.17 [98]

wb: wet basis; db: dry basis; MC: moisture content; VC: volatile content; FC: fixed carbon; MP: mixed plas-
tics = not specified.

The disposal of waste plastics in landfills or by incineration for energy recovery is
widely implemented around the world, though both systems contributing to leakage and
emissions of toxic substances, impacting health and the environment. The status of plastic
waste treatment in the EU is that 42.6% is used for energy recovery, 24.9% landfilled, and
32.5% recycled, with the aim, in the latter case, to increase it to 55% by the year 2030, as
stipulated by the European Green Deal [99]. Thermochemical recycling by pyrolysis and
gasification of waste plastics is among the most effective methods for the recovery of liquid
compounds, solid residues, and gases. Advanced microwave-assisted reactors for the
production of gasoline, jet fuel by subsequent catalysis, and other valuable products are
reported in the literature [100–105]. Gasification offers a flexible means to handle mixed
plastic waste blended with other mixtures of biomass and municipal waste to valorize for
chemicals and other energy as well as reductions in environmental pollution [106,107].

Table 8 summarizes the hydrogen and CO production together with the operating
conditions and gasifier types for some studies using waste plastics.

Wilk et al. [82] investigated different types of plastic materials in a dual-fluidized
bed by superheated steam in a 100 kW gasification pilot plant with olivine as the bed
material at 850 ◦C. Depending on the monomer used for the specific plastic (polyethylene
(PE), polypropylene (PP), PE + polyethylene terephthalate (PET), PE + polystyrene (PS)
and PE + PP), different reaction products were observed, yielding different rates of tars,
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primarily for PE, PP, and PE + PET in the range of 44 to 60 g/Nm3, while this was less
pronounced for PE + PP, where alkanes and alkenes are converted during the reforming
reactions. The H2 and CO concentration distributions for the various plastics, however,
were in the order of PE + PS > PE + PP > PE > PP > PE + PET. A small-scale fluidized-bed
pilot plant with dolomite and olivine at a gasification temperature of 850 ◦C and ER of 0.32–
0.36 was performed on PP, with the objective of effective tar removal [86]. It was asserted
that dolomite was more active in tar elimination than olivine but produced particulates
purged together with the reaction products plugging downstream devices. The use of
olivine showed promising results, with a tar content of 2 g/Nm3.

A two-stage gasifier comprising a fluidized bed supplied by steam and a tar cracking
reactor with active carbon (AC) was assembled for the gasification of PE [85]. A tar content
in gas of 0 mg/Nm3 was obtained in the presence of the high-surface-area active carbon
(BET surface area 1126 m2/g) compared without AC, with a tar yield of 8.4 g/Nm3. The
effect of a steam-to-feed ratio in the range of 1.5–2.5 seems not to change the syngas
concentration significantly, with an almost constant H2 concentration of 65 vol%. The in
situ regeneration of active carbon with steam, however, showed that the recovery rate
of the surface area and total pore volume were 63% and 64%, respectively, after seven
runs of gasification and tar cracking operations. PET gasification was conducted using
a two-stage gasifier in a fluidized bed at ER = 0.27 at a temperature of 778 ◦C and a tar
cracking reactor of 844 ◦C filled with active carbon, resulting in a minimum 7 mg/Nm3

gas [85]. The syngas production of H2 and CO was between 17–22 vol% and 18–27 vol%,
respectively, compared without the presence of active carbon having 3 vol% H2 and 15 vol%
CO. However, regeneration due to pore plugging of the porous structure of the active carbon
might hamper long-term use for tar removal. Air gasification of PVC in a two-stage reactor
comprising a fluidized-bed reactor with a tar cracking reactor and chlorine removal was
studied in the presence Ni/AC and calcined Ca-based additives [87]. The temperatures
for both reactors were kept at 800 ◦C and an ER for the gasifier at 0.32. Effective tar-free
and higher HCl removals in producer gases were obtained with activated carbon and Ca
from oyster shells. Furthermore, Ni as an active catalyst showed an increase in H2 content
through steam reforming reactions. A conical spouted-bed reactor (SBR) was used to study
the effects of temperature (800–900 ◦C), steam plastic ratio (0–2) with olivine, and γ-Al2O3
as bed materials and catalysts for tar removal for the gasification of HDPE. The H2/CO
ratio of 2.2 with olivine having 4.8 wt% tar less than γ-Al2O3 and sand at 900 ◦C shows the
effective use of the SBR for high heat transfer rates by steam gasification.

He et el. [108] studied the effect of temperature on the gasification of waste PE in
the presence of steam using NiO/γ-Al2O3 as a catalyst to induce tar cracking. Catalytic
gasification at lower temperatures instead of the high-temperature decomposition of tars
containing different compounds can be an effective method for tar removal and reactions.
Comparisons of H2, CO, CO2, CH4, C2H4, and C2H6 contents for pyrolysis, catalytic
pyrolysis, steam gasification, and catalytic steam gasification showed a marked output
for H2, while the concentrations of CH4 C2H4, C2H6, tar, and char decreased substantially
due to steam reforming and water–gas shift reactions. At a reaction temperature of 900 ◦C,
stable performances of the catalyst with all the gaseous reaction products were observed.
Similarly, Yang et al. [81] studied the gasification of waste PE and PP in a fluidized-bed
reactor at ER = 0.1, with sand particles at 600 ◦C for the production of hydrocarbons,
followed by a fixed-bed catalytic reactor with Ni/Al2O3 for the co-production of hydrogen
and carbon nanotubes (CNTs). Among the various Ni/Al2O3 catalysts, the one calcined
under a reductive hydrogen atmosphere with nanocatalysts of Ni showed the highest H2
and CO contents, with H2 and CNT yields of 68 g/kg WP and CNT 30.5 wt%, respectively.
The increase in H2 and CO and decrease in CO2 and hydrocarbons are due to the dry
reforming of methane (Equation (11)) and hydrocarbons (Equation (13)).

Different types of Al2O3 supports having 30 wt% Ni catalyst loadings were studied
in fixed-bed reactors for the gasification of HDPE with ER 0.2 in a catalyst bed reactor for
enhanced hydrogen production [89]. Air contributes to the combustion reaction at the
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sub-stoichiometric level by pyrolysis. High H2 generation was observed when <50 nm
sized Al2O3 was used as a support for Ni catalysts in the other structures of Al2O3. The
differences in product selectivity might be attributed to the dispersion of the active catalysts
on the support and textural properties of the support. However, coke deposition due to the
breakup of the tars of unsaturated compounds on the catalyst and support is considered
to have an impact on the long-term activity for hydrogen production. The pyrolysis and
gasification of PP, PS, HDPE, and their mixtures and plastic wastes were studied at a pyrol-
ysis temperature of 500 ◦C and a gasification temperature of 800 and 850 ◦C in the presence
of Ni-Mg-Al catalysts [90]. The effect of the catalysts in the decomposition hydrocarbons
(C1–C4), steam reforming, and water–gas shift reactions is enhanced. However, due to the
structural properties with different monomers of the plastics, different H2 contents were
obtained, as shown in Table 8.

Coke deposition in the form of filamentous carbon was found in samples for the
pyrolysis–gasification system of PP, HDPE, and the plastic waste mixture. A chemical loop-
ing tar cracking–gasification process of simulated plastic waste products was investigated
to produce H2 and syngas by pyrolysis with Ni-Fe-Al catalysts at a cracking temperature of
800 ◦C [109]. The catalysts were regenerated due to coke formation by steam. Among the
catalysts tested, the coke removal efficiency was found to decrease in the following order:
NiFeAl > NiFeAl2 > NiFeAl4 > NiFeAl10.

Arena et al. [91] carried out experiments on two plastic wastes, one mainly with
poly-olefins and the other with a plastics-to-biomass ratio of 4:1 in a pilot-scale bubbling
fluidized-bed reactor, with a feedstock capacity of 100 kg/h, a maximum thermal output of
400 kW with ER of 0.2–0.3, and a temperature of 840–930 ◦C. Olivine was used as a bed
material for tar removal but showed a reduced tar cracking performance with 59 g/Nm3

and 34 g/Nm3 for plastics only and mixed with biomass, respectively. The results show
that carbon particles and heavy condensable hydrocarbon compounds are correlated to the
compositions and structures of the fuel feedstock, giving rise to particulate matter for the
one blended with biomass and larger quantity of tars for plastics. The results also showed
that a high-quality producer gas with 76–86% carbon conversion efficiencies seem possible.

Co-gasification on a mixture of pine sawdust and HDPE was carried out in a two-stage
pyrolysis–gasification system with pyrolysis at 550 ◦C and a gasification temperature of
700 ◦C using Ni-Fe@CNF/porous carbon as a tar cracking catalyst [110]. The catalytic per-
formances and syngas production were optimized by varying the operating temperatures
and biomass/plastic ratios. The synergistic effect on gas yield from the combinations of
the system shows that the tar yield was reduced with the increase in the ratio of the plastic
added, with the plastic being a source of H2 and CH4, while the decrease in the biomass
feedstock reduced the CO and CO2 contents due to the decrease in oxygenated compounds.
The biomass/plastic ratio of 1:2 showed a positive effect, resulting in a high H2/CO ratio of
5.63. Higher-temperature operation implies that reactions (Equations (4), (5) and (11)–(13))
take place both thermally and catalytically. It was found that at 550 ◦C, the tar yield was
83.01 mg/g feed but was suppressed to 5.22 mg/g feed at 750 ◦C, a decrease of more than
90%. The effects of feedstock ratio, pyrolysis temperature, reforming temperature, water
flow rate on co-pyrolysis, and gasification of pine saw dust and LDPE on Ni + CaO/C at
different temperatures were studied by Gao et al. [88]. A feedstock ratio of 5:5, a flow rate
of 5 mL/h, and pyrolysis and reforming temperatures of 700 and 600 ◦C, respectively, were
found optimal for maximizing the generation of H2. The results also showed that the use
of Ni for reforming and CaO for CO2 adsorption promote high H2 content and yield. The
co-gasification of low-sulphur-containing lignite and waste plastics gathered from MSW
was studied in a gasifier with H2O/CO2 as gasifying agents at 700–750 ◦C and a thermal tar
reformer unit at 1200 ◦C [93]. The composition of the gas produced shows that the H2 and
CO contents decrease from 55 vol% for lignite alone to 51.87 vol% for the 20% WP mixture
and CO from 19.54 vol% to 15.55 vol%, while CO2 increases from 21.44 vol% to 27 vol% for
the same cases. It was concluded from the chars analyzed by Raman spectroscopy that the
ratio of disordered carbon to ordered carbon is higher for char emanating from lignite than
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for the mixtures of lignite and WP with disorder to be more reactive than the ordered one.
Table 8 shows a review of the results obtained in studies regarding H2 and CO production
via WP gasification.

Table 8. H2 and CO production of WP by gasification.

Reactor Type Agent ER T
(◦C)

H2
(vol%)

CO
(vol%)

H2
(g/kg MSW)

LHV
(MJ/Nm3) Ref.

Fluidized bed/Fixed bed Air 0.1 600/750 36.85 35.91 65 - [81]
Dual fluidized bed Steam - 850 51.2 23.3 86.94 - [82]

Fluidized bed/Tar cracker Steam - 800/850 66.02 9.78 150 12.23 [83]
Fluidized bed/Tar cracker Air 0.27 778/844 22.2 b 25.3 b 46 7.27 [85]

Bubbling fluidized bed Air - 850 9.72 b 8.6 b 49.16 5.8 [86]
Fluidized bed/Tar cracker Air 0.32 796/805 29.8 b 15.5 b - 7.8 [87]

Two-stage fixed bed - - 550/750 53.0 11.5 73 - [110]
Fixed bed Air 0.2 700 36.25 24.7 b - - [89]

Two-stage fixed bed Steam - 500/850 66.18 28.6 241 - [90]
Two-stage fixed bed Steam - 850 60.0 33.18 196 - [90]
Two-stage fixed bed Steam - 850 65.45 25.19 303 - [90]

Bubbling fluidized bed Air 0.248 850 6.3 b 6 b - 6.6 [91]
Fluidized bed Air 0.2 850 8.63 b 5.2 b 16.12 7.78 [92]
Fluidized bed Steam/CO2 - 900 55.73 24.21 - 11 [93]

Bubbling fluidized bed Air/Steam 0.25 800 36.4 34.8 11.5 16.3 [94]
Bubbling fluidized bed Air/Steam 0.25 900 7.0 b 16.5 b 13.5 - [95]

Two-stage fixed bed Steam - 500/700 68 22 258 - [90]
Bubbling fluidized bed Air/Steam 0.28 800 27.25 b 7.15 b - 6.11 [98]

Fixed bed - - 800 86.8 5.1 - - [109]
Bubbling fluidized bed Air 0.25 750 3.29 7.53 126 5.61 [111]

Two-stage fixed bed Steam - 600/800 53.8 26.4 90 - [112]
Spouted bed Steam - 900 61.6 27.8 184 15.5 [113]

b N2 included.

In summary, depending on the monomers and physicochemical properties of the
feedstock in the form of waste plastics, there is a varying degree of alterations in gasification
product quality and distribution with different gasifying agents, pyrolysis stage, steam and
catalytic reforming, bed material and catalysts for tar purification, and temperature interval
used. Thermochemical recycling using different operating conditions has shown potential
perspectives for the production of high concentrations of H2 and syngas purity along
with the high heating values (5.6–16 MJ/Nm3) to be used for further chemical upgrading
through synthesis (DME, ammonia, methanol, F-T diesel, fuel, etc.). The works shown in
Table 8 imply the feasible application of gasification technology for small- and large-scale
applications. However, high contents of volatiles suggest challenges in the final product
due to tar formations, which inevitably needs in situ tar cracking beds and catalysts of
dolomite, olivine, activated carbon, CaO, and supported and unsupported metals.

Han et al. [114] utilized thermodynamic modelling for simulating the potential of
H2 production from different plastic waste (HDPE, PP, PS, PET, PVC) and compared the
obtained results against experimental findings. All the simulation results were in agree-
ment with experimental findings, with the H2 production being sensitive to the operating
conditions applied (mainly the gasification temperature being positively correlated to H2
production, whereas pressure was negatively correlated to CGE and H2 production). H2
productivity ranged from 1.3 g/kg of feedstock to 23 g/kg feedstock, with PP being the
most efficient.

Gasification has also shown its flexibility when different feedstock mixtures of plas-
tics or plastics with lignite and biomass are used, improving the heat and mass transfer
characteristics. Thus, valorization through thermochemical means establishes the circular
economy and environmental sustainability of the exceedingly high-rate production and
consumption of waste plastics.
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2.3. Gasification Processes

The advantage of gasification-based processes, compared to conventional combustion-
based systems used today, is its ability to convert a solid fuel in such a way that specific
chemical compounds can be isolated, e.g., CO and hydrogen, for use as a basis for the
synthesis of chemical products or upgrading and separation to pure hydrogen. As waste
contains numerous amounts of impurities, it is evident there is need for gas cleaning and
upgrading, ranging from a few to several process steps, depending on the requirements
of the application of the produced gas. Table 9 shows selected data for contaminants in
raw product gas from waste gasification together with gas cleaning requirements related to
different applications.

Table 9. Selected data for raw product gas content and gas cleaning requirement related to different
applications [115–118].

Contaminants/Applications Raw Product Gas Gas Engine Gas Turbine Fuel Cell Syngas

Particles (mg/Nm3) 100–50,000 <50 <10 <0.1 <1
Tar (mg/Nm3) 20–100,000 <50 <10 n.a. 0.1–1

Sulfur species (ppmv) 50–5000 <20–50 <20
SOFC < 0.06–10

PAFC < 50
MC < 0.5

<0.01–1

Nitrogen species (ppmv) 100–20,000 <80 <50 a Not limited <0.02–1
Alkali species (ppmv) 10–1000 <0.025–0.1 <0.025–0.1 Not specified <0.01

Halides (Cl + F + Br) (ppmv) 5–1000 <100 <1 <1 <0.01
a Emission limited.

Figure 2 shows an example of a gas cleaning and purification train for upgrading
to a synthesis gas. Note that the gas may be separated at different stages of cleaning for
different application purposes and that some of the steps are optional depending on the
needs for gas cleaning. Also, in the case of hydrogen production steps for upgrading by,
e.g., WGS (Equation (5)), the separation of hydrogen should be added.

Prior to operation in the gasifier, the different types of waste including MSW must
be prepared, sorted, and pretreated as they contain heterogeneous degradable and non-
degradable mixtures in the form of food waste, yard waste, paper and cardboard, plastics,
rubber, glass, electronic waste, metal, inert, and miscellaneous refuse [16,119]. Therefore, it
is, in many cases, important to process the waste into structured forms of small pellets, fluffs
with small particle sizes for increased bulk, and energy densities of the fuel, i.e., so-called
RDF or SRF.

The next step is gasification, where the solid feedstock is converted to a combustible gas
in a gasifier (various gasifier technologies are described in the subsequent section) followed
by certain gas cleaning steps to convert tar and, if also needed, all other hydrocarbons,
particulates, and alkali-, chloride-, fluoride-, and nitrogen-containing species. At this stage
of cleaning, the produced gas may be used for heat and electricity production by, e.g., direct
combustion in a boiler or in a gas engine.

In gas purification, the gas is further purified to meet the requirements of the final use
of the gas by removal of trace levels of hydrocarbons, mainly aromatics, tars, and heavy
metals, such as mercury, sulphur compounds, and HCN.

Figure 2 clearly shows that upgrading a raw gas, produced in waste gasification, to
hydrogen is rather costly and adds significantly to the plant investment and operating costs.
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Figure 2. Example of a waste gasification process for production of a clean synthesis gas. Adapted
from [120]. Reproduced with permission from L. Waldheim, IEA Bioenergy, Paris, France 2019.

Another option for the purification of the hydrogen is indirect processes, also called
“chemical looping”. Here, the raw syngas is used to reduce a metal oxide to the metal and, in
a subsequent step, the metal is then oxidized by steam, producing clean hydrogen. Several
groups are working on this so-called steam–iron process, like TU Graz [121], who recently
realized a 10 kW unit, or [122] demonstrated this for 250 kW or [123] 25 kW. Chemical
looping for hydrogen production is based on very old methods of producing hydrogen,
where one of the first patents were examined in 1911 [124]. The principle is that the fuel is
gasified to a lean reducing gas, containing carbon monoxide and hydrogen. This gas reacts
with iron oxides (hematite Fe2O3, magnetite Fe3O4, wuestite FeO) to produce a reduced
form of iron oxide (wuestite FeO, iron Fe). The reduced iron oxide is re-oxidized with steam
to form magnetite and hydrogen. In this way, very clean hydrogen can be produced from
raw synthesis gas and dilution by inert gases, like nitrogen does not constitute a problem.
An ongoing project in Austria converts biogas to hydrogen in the scale of 10 kW [125].

Gasifiers

There are several literature sources describing gasifier technologies and their features,
and in the present review, we do not intend to be inclusive and only summarize based on
information from selected sources [21,120,126,127].

Since most reactions occurring in the gasifier are endothermic, with the main exception
being the oxidation of char (Equations (1) and (2)) or combustible gases (Equations (4),
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(8) and (9)) by oxygen, WGS (Equation (5)) and pyrolysis, which in certain temperature
windows is exothermic, there is a need to supply or generate heat within the gasifier to
balance the overall process. Gasifiers providing the needed heat by adding an oxidation
agent, such as oxygen or air, to achieve partial oxidation of the fuel are called autothermal
gasifiers or direct gasifiers. Thus, the heat produced is directly in the reactor. In case the
heat is provided separately from a source outside the gasifier, it is referred to as allothermal
gasifiers or indirect gasifiers. This means the heat consumed in a gasifier, where the fuel is
gasified, is separated from the source of heat. Allothermal gasifiers can be divided into two
main types: processes using a heat carrier, such as sand, circulating between a gasifier and
combustion reactor; transfer of heat via an indirect heat exchanger where heat in, e.g., a
hot flue gas, is transferred in the form of radiation and convection to the gasifier. There are
certain disadvantages and advantages of the two types, as briefly outlined in Table 10.

Table 10. Advantages and disadvantages of autothermal and allothermal gasifiers [120,126,127].

Autothermal Gasifiers Allothermal Gasifiers

One reactor Two reactors or a separate heating system
Simpler design More complex design

One gas stream to clean Cleaning of two streams often needed.
Oxygen or steam/oxygen as gasifying agent

for syngas production
Gasification by steam/CO2, so air separation

unit is not necessary
Generally lower tar content in the produced

gas due to higher temperature.
High tar content in the produced gas due to

lower temperature.

In addition to pure autothermal and allothermal gasifiers, hybrid gasifiers also exist,
as exemplified by indirect plasma gasifiers where heat from electricity is transferred via an
injection of a plasma gas (most often air) as a heat carrier to the gasifier.

The type of gasifier used for the conversion greatly impacts the distribution and yield
of the main reaction products of the raw product gas. Gasifiers are typically classified
into three main groups viz. fixed-bed gasifiers, fluidized-bed gasifiers, and entrained-flow
gasifiers, as shown in Figure 3. Table 11 shows selected characteristics for the main types
of gasifiers.
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Figure 3. Fixed-bed gasifiers (counter and co-counter flow), fluidized-bed gasifiers (station-
ary/bubbling and circulating) and entrained-flow gasifier [128]. Reproduced with permission from J.
Hrbek, IEA Bioenergy, Paris, France, 2016.

Fixed-bed or moving-bed gasifiers including updraft and downdraft configurations
have been used for waste gasification (Figure 3). The configuration relates to the input of
feedstock and the gasifying agent. In the case of an updraft gasifier, the gasifying agent and
the feedstock enter the bottom and the top of the reactor, respectively. Hot gases produced



Hydrogen 2024, 5 87

from oxidation in the bottom of the gasifier flow through the reduction zone (gasification,
pyrolysis, and drying zone during its way out at the top of the reactor). This results in a
subsequent decrease in the gas temperature, from high in the oxidation zone to low at the
top and, as a consequence, a product gas with a high tar content (Table 11) as the tar-laden
pyrolysis gas, produced in the pyrolysis zone, never passes through the high-temperature
zone. The high tar content as well as the low product gas temperature are limiting factors,
selecting this technology for the production of clean syngas or hydrogen as extensive tar
decomposition mitigations are needed. The restricted capacity of <10 MW (Table 11) is
mainly related to heat transfer and flow issues in the bed [120]. In downdraft gasifiers, the
input of a gasifying agent is on the side or top of the gasifier, resulting in a different flow
pattern compared to updraft gasifiers. This results in a lower tar content in the product gas
as the gas passes through the high-temperature oxidation zone on its way out of the reactor.
Although several studies report the use of this technology for various types of waste [129],
a limiting factor is the potential capacity limited to <1 MW (Table 11). The limiting factor
is the throat section of the gasifying agent inlet, where a scale up results in a bad mixing
over the cross-section, causing channeling in the bed due to a less-uniform movement in
the bed [120]. Waste used in moving-bed gasifiers needs be relatively uniform without
too many fines and with sufficient mechanical strength to avoid the breakdown of fuel
particles, caused by the weight of the bed. This is important as the bed porosity needs to be
maintained to keep a realistic pressure drop.

Table 11. Selected characteristics for the main gasifier types. Adapted from [120]. Reproduced with
permission from L. Waldheim, IEA Bioenergy, Paris, France, 2019.

Characteristic/Gasifier Type Fixed Bed BFB CFB Entrained Flow

Capacity range MW thermal
(Typical operation pressure)

Downdraft < 1
Updraft < 10

(mainly atmospheric)

10–50
(atmospheric)

<200
(<3 MPa)

20–150
(<3 MPa)

100–400
(1–8 MPa)

Bed particle size (mm) none 0.1–1 0.1–0.4 None
Fuel particle size (mm) 10–100 1–100 1–100 <1

Operating temperature (◦C) 800 800–950 800–950 1400–1500
Gas superficial velocity (m/s) 0.1–0.5 0.5–1.5 4–8 15–25

Solids mixing Very low High, complex High complex Low

Tar content in gas (g/Nm3)
Downdraft < 1
Updraft >> 10 >10 >10 <<1

Particles in gas (g/Nm3) 0.1–0.2 0.1–1 2–20 1

BFB: bubbling (stationary) fluidized bed; CFB: circulating fluidized bed.

Fluidized-bed gasifiers are mainly divided into bubbling (stationary) or circulating
fluidized beds based on the principles of fluidization, where a fluidizing medium (generally
a gas stream of air, steam of steam/oxygen mixtures in case of gasification) with a high
enough gas velocity causes a bed material (inert or catalytically active) with a fuel to behave
like a fluid. The fluidized bed provides high rates of heat and mass transfer and good
mixing of the solids. This means that the temperature is relatively constant throughout the
bed and that chemical reactions proceed at high rates. In the case of bubbling fluidized-bed
gasifiers, the gas velocity is rather low and between 1 and 3 m/s to keep the bed material
suspended by the gas. A freeboard (an enlargement in the reactor cross-section area) is used
to separate particles, ejected by erupting bubbles, back to the bed. For a circulating fluidized
bed, the gas velocities are much higher, 3–10 m/s, resulting in different hydrodynamics,
where the solids are dispersed all over the tall riser. This allows for a long residence time
for both the gas and the fine particles. The particles are, thereafter, separated from the gas
in a cyclone and recycled back to the bottom of the reactor. Direct fluidized-bed gasifiers
with large capacity are possible, as exemplified by the atmospheric biomass CFB gasifier
at Vaskiluodon Voima in Vaasa, Finland, with a capacity of 140 MW thermal [130], but
CFB boilers at even higher thermal capacities are also available. Dual-bed fluidized-bed



Hydrogen 2024, 5 88

gasifiers, as illustrated in Figure 4, are allothermal examples where two fluidized beds,
any type, are combined, one acting as a gasifier and the second as a combustor [131]. They
work in the same way as direct fluidized beds, but no oxidant is used in the gasifier; only
steam and the heat required is supplied by hot bed material transferred from the combustor
reactor. Fluidized-bed technologies have all been used for waste, but there are some specific
requirements for the waste feedstock to be used. The feedstock particle size of any kind
must have characteristics, such as particle size and density, to be able to sustain floating
properties in the dense bed. For example, fines in the feedstock are entrained and leave the
bed. In the case of waste, pre-treatment to RDF quality removing glass, metal, and other
large inorganic objects is required.
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Entrained-flow or suspension gasifiers are generally used for pressurized industrial
large-scale coal (Table 11) gasification because of its higher availability, higher throughput,
and better product gas quality [132]. In the case of coal, pulverized fuel (<1 mm) is injected
together with the oxidant in a burner. The high temperatures used result in a very low
content of tar and condensable gases, with methane composition close to the equilibrium.
Entrained-flow gasifiers are generally not suitable for waste gasification, as either pumpable,
atomizable liquid, or fine-powdered solid homogeneous feedstock is required. This restricts
entrained-flow gasifiers to waste oils or potentially plastic wastes.

Other than the main gasifier types, there is also a number of other gasifier types, such
as grate [133] and rotary kiln gasifiers [134], typically classified as moving-bed gasifiers, as
illustrated in Figure 5. Grate and rotary kiln gasifiers are more suitable for non-uniform,
compared to updraft and downdraft moving-bed gasifiers, as the movement of the bed
is caused by mechanical work, improving the fuel mixing. Other examples are plasma
gasifiers, which is not a basic type of gasifier but is a way to supply the heat at very high
temperature to a gasifier or a downstream post-treatment reactor. The plasma is, in many
cases, used in the updraft moving-bed gasifier type, where a carrier gas, e.g., air, steam,
CO2, is ionized, generating a plasma in an electric arc at high temperature [133]

There are several aspects to consider when selecting a gasifier suitable for converting a
solid feedstock to a gas suitable for further upgrading to chemicals or hydrogen. As waste is
a fuel consisting of a variety of components, such as food waste, paper, plastic, rags, metal,
glass, etc., a selected technology either needs to be able to handle the inhomogeneous waste
feedstock as is, or different degrees of extensive pre-treatment of the waste are needed prior
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to feeding into the gasifier. There are pros and cons in both cases, as the former implies
extensive gas cleaning and purification after the gasifier compared to the latter case, where
some of the impurities may be mitigated in the pre-treatment process. In principle, costs
related to investments in process or operation either end up before or after the gasifier. In
any case, it is beneficial if both the feeding system and the gasifier can handle both course
and fine materials and a varying degree of fuel quality.
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Of special concern in the gasification of waste are the inorganics, particularly metallic
compounds, such as heavy metals. They tend to evaporate at high temperatures and leave
as aerosol particles [135]. Preferentially, they should be recovered in, e.g., the bottom ash,
and this is one of the reasons many so-called waste gasifiers are operated at 400–600 ◦C,
compared to biomass gasifiers operating at 800–900 ◦C [135]. However, a high gasification
temperature benefits the thermal cracking of tars and hydrocarbons [44]. In any case, even
when a high-grade pre-treatment of the waste is used, the non-combustible “ash” content
is still higher compared to a typical biomass fuel, and, therefore, the capacity to extract ash
and to control the ash inventory is important.

3. Opportunities and Risks
3.1. Potential of Hydrogen from Waste

Approximately 96% of hydrogen (H2) is currently produced by transforming fossil
fuels (48% from natural gas, 30% from heavy oils and naphtha, and 18% from coal), which
leads to CO2 emissions equivalent to 1.7% of the global energy-related CO2 emissions. Only
4% of the globally produced hydrogen stems from water electrolysis [136]. The H2 market
is projected to grow by 50–82 metric tons by 2050 or approximately 5–10% per year [137].

The use of different feedstocks, primarily from biomass sources and wastes, would
allow the full benefits of H2 to be realized as a clean, versatile, and efficient fuel, with
new hydrogen-related policies emerging by 2030 [4,137]. The handling of waste as a likely
source of H2 generation has attracted interest for its sustainable nature and for opening new
opportunities for the comprehensive use of renewable energy sources [138]. Significant
amounts of waste are produced in the agricultural, household, and industrial sectors that
could be used in the production of H2 [139]. These wastes are categorized as organic wastes
from food processing, crop residues, forest residues, industry, animal manure, agricultural
wastes, household, and community wastes (municipal solid wastes, wastewater, etc.) [138].
Approximately 40–50 kg of hydrogen can be produced per ton of dry waste. In contrast,
the amount of hydrogen can vary between 30 kg and 120 kg, depending on whether the
waste mixtures contain water or moisture [140,141].
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The potential of a wide variety of gaseous, liquid, and solid carbonaceous wastes
has been investigated as a renewable source for hydrogen gas formation using various
technologies (biological and thermochemical) [142]. Thermochemical processes such as
gasification have been widely studied as promising processes for hydrogen production.
Table 12 presents further results of potential hydrogen production from waste gasification
using different reactors and gasifying agents.

Table 12. Potential for hydrogen production from waste gasification on dry basis.

Biomass Type Reactor Gasifying Agent H2 Production Reference

Sewage sludge Semi-batch Steam 0.07 g H2/g [143]
Pine sawdust Fixed bed (updraft) Steam 79.91 g H2/kg [144]
Wood chips Dual fluidized bed Steam 39.7 g H2/kg [145]

Municipal solid waste Tubular batch reactor Air 26.53 g H2/kg [29]

Municipal solid waste Allothermal fixed bed
downdraft gasifier

Air 157 g H2/kg
[146]Mixture of air and steam 165.3 g H2/kg

Steam 199.6 g H2/kg
3-ply surgical face masks Bubbling fluidized bed reactor Steam 29.27 g H2/kg [147]

Mixed plastic waste Hybrid Microwave plasma
Enhanced gasification Steam 150.9 g H2/kg [148]

Palm kernel shell Fluidized bed gasifier Steam 150 g H2/kg [149]

Urban forest waste
Simulation (stoichiometric

thermodynamic
equilibrium model)

Steam 84.25 g H2/Kg [150]

Canola meal hydrochar Tubular batch reactor Hydrothermal
co-gasification 11.03 g H2/kg [151]

According to a study by Khan et al. [149], steam gasification of palm kernel shells in
fluidized-bed reactors produced 150 g H2/kg of H2. A similar H2 production potential
(150.9 g H2/kg) was observed by Ganza and Lee [148] in microwave plasma gasification
of mixed plastic waste, which is equivalent to 15 wt% of the initial sample. Lower and
higher values have also been reported in other studies. In a study by Yao et al. [145],
the H2 production potential through steam gasification in a dual-fluidized-bed reactor of
wood chips was 39.7 g H2/kg. A higher potential of 199.6 g H2/kg was observed in the
gasification of MSW in an allothermal fixed-bed downdraft gasifier [146].

Data on H2 production potential through gasification are divergent and show no
patterns. This fact indicates the variability in data between different sources and even
the influence of parameters in each process, so comparisons of data and information can
lead to inconsistent conclusions. Nevertheless, it is possible to verify that the use of steam
as a gasifying agent leads to a higher production of H2. The gasifying agents with the
highest potential for H2 production have the following order: steam > mixture of steam
and oxygen > oxygen.

3.2. Alternative Technologies

In addition to gasification, different production processes can be found, depending on
the original source of hydrogen (e.g., wastewater, waste, and biomass). These production
routes include thermochemical, electrolytic, and biological processes. However, some
production methods are still under investigation [152,153]. Considering the technologies
for converting waste and biomass into H2, the maturity level of the thermochemical
pathways (gasification and pyrolysis) is aligned with TRL 7, whereas biological conversion
is at TRL 4–5 and electrochemical conversion at TRL 2–4 [154]. Table 13 shows the main
considerations for these different processes and Figure 6 represents a schematic of the
different processes for producing H2 using renewable resources.
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Table 13. Considerations of different hydrogen production technologies. Adapted from [154–156].

Technology TRL Process Scale CAPEX (M€) Hydrogen Production
Cost (€/kg) Considerations

Gasification (dry
thermal

and hydrothermal)
7 Mid-scale/Available 11.0–197.5 1.628–1.886

Dry thermal gasification:
Formation of tar and char that deposits on the catalysts
(shorter catalyst life) and need for catalyst regeneration;

High temperature and complex reaction leading to
challenging operation control;

High cost for reactor and apparatus;
Fluctuating and varying gas composition,

CO2 generation

Hydrothermal gasification:
Limited to the material with high moisture content;
High energy input for pressure elevation, and high

reactor cost;
Problems related to corrosion and plugging, difficulty

to recover the catalyst, and CO2 generation.

Pyrolysis 7 Mid-scale/Available 100.9–263.3 1.15–2.024

Lower production cost of H2;
Formation of char and tar, CO2 generation, fluctuating

and varying gas composition;
Tar and char generation poisons catalysts;

Cost of catalyst regeneration;
Energy intensive due to feedstock drying, and elevated

temperatures and pressures; Lower capital cost
than gasification.

Dark fermentation 5 Pilot-scale - 2.364

Higher productivity than photo-fermentation;
Simple design of fermenters;

Requirement for pre-treatment;
Formation of undesired by-products;

Low production rate, low hydrogen yield, low removal
of chemical oxygen demand.

Photo-fermentation 4 Laboratory-scale 106.0 2.604

More sophisticated design and lower productivity than
dark fermentation;

Illumination source required;
Low production rate, low energy conversion efficiency,

requirement of large surface area;
Higher production cost of H2;
Lower capital costs expected.

Microbial electrolysis 2–4 Laboratory-scale 2.8 -

External voltage source needed;
The requirement for external electrical supply, the
economic feasibility of scaling up due to expensive

construction materials, the long-term stability is
questionable;

High capital cost of equipment components and higher
production cost of H2.

Note: Original data presented in USD/kg and converted to EUR/kg (USD 1 = EUR 0.92 according to [157].
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Thermochemical processes, such as gasification, pyrolysis, and steam reforming, are
considered the most mature technologies and ready for application in hydrogen pro-
duction [155]. Despite the low cost of the waste materials used, the high-temperature
requirement is still the main limitation for these processes, particularly the steam reforming
of methane (T = 1200 ◦C) [142]. According to Table 13, the CAPEX and hydrogen production
costs of the biomass/waste gasification process are approximately 11–197.5 MEUR and
1.628–1.886 EUR/kg H2, respectively. According to Lepage et al. [154], both coal gasifica-
tion and steam methane reforming of natural gas have a higher CAPEX, of 257.60 MEUR
and 170.95–240.20 MEUR, respectively. The opposite effect is seen with the unit costs of
hydrogen production are lower than those for biomass/waste gasification. These costs
can be twice as low, ranging from 0.846 to 2.604 EUR/kg H2 for coal gasification and
0.71 EUR/kg H2 for steam methane reforming of natural gas [154]. In general, despite the
lower CAPEX, H2 production via biomass/waste gasification is more expensive than using
fossil resources.

For renewable raw material or waste, the costs of producing hydrogen by thermo-
chemical processes are lower than biological processes according to Table 13. The cost of H2
production by gasification is approximately 22–31% lower than that of dark fermentation
and approximately 28–37% lower than that of photo-fermentation.

Biological processes have a lower CAPEX but a high unit cost of H2 production
(2364 EUR/kg H2 for dark fermentation and 2604 EUR/kg H2 for photo-fermentation).
The possibility of large-scale production of H2 by biological processes is limited because of
its low yield and stability [152], requiring pre-treatment processes to improve conversion
performance [154]. However, biological processes are carried out by hydrogen-producing
microorganisms (such as microalgae and cyanobacteria, which produce the enzymes needed
to synthesize H2, including nitrogenases and hydrogenases). These microorganisms can
be easily regenerated by replication, decreasing the frequency of renewal compared to
chemical catalysts, which are easily deactivated during thermochemical conversions such
as gasification [152,154]. In addition, biological conversion routes have the advantages
of low temperature (30–60 ◦C), pressure (1 atm), and energy input (especially dark fer-
mentation and enzyme-free photobiological processes) [154,155]. The main criteria for
selecting waste for these biological processes are availability, cost, carbohydrate content,
and biodegradability. Simple sugars, such as glucose, sucrose, and lactose, are readily
biodegradable substrates and are preferred for hydrogen production [142]. For economical
H2 production through biological processes, the substrate should be cheap and renewable.
Substrates rich in starch and cellulose, such as plant stems or agricultural waste, or waste
from the food industry are reported to support biological processes [158]. The two-stage
thermophilic fermentation of three organic wastes (potato, kitchen waste, and okara, which
is a bean curd manufacturing waste) was investigated by Chu et al. [159]. The H2 pro-
duction rate was as follows: potato—2.1 LH2/Lfeedstock/d; garbage—1.7 LH2/Lfeedstock/d;
okara—0.4 LH2/Lfeedstock/d in the continuous processes. The H2 yield was shown to be
dependent not only on the proportion of carbohydrates but also on the hydrolysis pH
of the organic waste, which was influenced by the nature of the organic materials in the
waste [159]. Santos [160] studied the potential production of H2 through biological pro-
cesses from the organic fraction of MSW. For a total of 25,758 t/year of of MSW, the author
estimated the production of 411,233 m3/year of H2, corresponding to 32 vol% of the gas
resulting from dark fermentation [160]. The dark fermentation of empty palm fruit clusters
was studied by Gonzales et al. [161] and yields lie between 0.015 and 0.026 g H2/g biomass
(169.53 and 286.98 mL H2/g biomass).

Biogas, produced from the anaerobic digestion of waste, is considered a good source
of hydrogen and is an alternative to natural gas as a feedstock for methane steam reforming
processes [162]. The biogas can be converted into 72% H2, resulting in a 10% reduction in
costs [163]. Cudjoe et al. [164] studied the potential for H2 production from biogas produced
from food waste in China’s Guangdong Province from 2004 to 2019. The authors found that
115.96 billion Nm3 of purified biogas produced during a defined period produced 26.60 bil-
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lion kg of hydrogen [160]. The estimated potential for H2 production in south-western
Nigeria from steam reforming of 1789.09 million Nm3/year purified biogas (methane) was
410.50 million kg H2/year, in Lagos alone, which would be 284.93 million kg H2/year [162].

Thermochemical processes generally have a significantly higher hydrogen production
rate (up to 190 g H2/kg feed in the case of dry thermal gasification) than the biological
process (up to 49 g H2/kg feed for the photo-biological process) [155]. Although dark
fermentation has relatively low yields, experimental studies have favored it as a cheap,
well-understood, and promising method that requires simple reactor designs, making it at-
tractive among biological conversions [138,155]. Dark fermentation is the main mechanism
for H2 production by biological processes [165], and integration with other systems, such
as photo-fermentation and/or electrochemical systems as a secondary step, can pave the
way for sustainable H2 production in large-scale systems, promoting a higher H2 yield and
economic viability [166], being a potential competitor or expansion to the gasification process.

Electrochemical methods, such as electrocoagulation, indirect electrochemical oxida-
tion, anodic oxidation, and electro-Fenton processes, have been effective for industrial
wastewater treatment and H2 production [139]. Microbial electrolysis cells also have
remarkable potential for wastewater treatment and the production of H2 and other value-
added chemicals (e.g., methane (CH4), formic acid (HCOOH), and hydrogen peroxide),
but this is still a laboratory-scale process with a low TRL (TRL 2–4). The specific energy
consumption is considerably lower than the electricity consumed by the H2 production
process through water electrolysis [139]. However, compared to thermochemical and bio-
logical technologies, these electrochemical conversion technologies require a huge energy
input (approximately 45 kWh/kg H2 for typical electrolysis using water), have very low
conversion rates, expensive catalysts, and other technological challenges; therefore, they
are not competitive compared with biomass and waste gasification [155].

4. Regulations, Mandatory Recycling Quotas

The conversion of waste into hydrogen is considered very promising. However, as all
the above technologies are still in research and development, there are many challenges,
including technological, economic, and political aspects, that require further attention to be
resolved [155]. As for policy issues, the question of mandatory recycling quotas for waste
(especially plastics) and landfill reduction targets could contribute to the increased demand
for technologies to convert this waste (e.g., gasification) into hydrogen and other energy
carriers. However, according to an article published in the Yale School of the Environment
(New Haven, Connecticut, USA), this would not be a wise solution, as it is false recycling
that takes away from the political will of waste reduction. First, it is necessary to demand
that the world’s largest plastic polluters reduce the amount of plastic they are pumping
into the market [167].

The availability of biomass resources can also be a driving factor for the waste gasifi-
cation market. It is well known that shrub areas are currently a global forest management
problem, as shrubs are the main fuel for frequent forest fires in Europe [168]. Channeling
this biomass, together with the use of municipal solid waste, could be a strategic measure
for H2 production.

Policies should be strengthened to accelerate the deployment of clean and efficient
energy technologies for hydrogen production and application [169]. The success of the
market for clean hydrogen produced from wastes depends on the ability to define consistent
and transparent norms, standards, and rules to facilitate its deployment. Standard settings
can be an arena for geopolitical competition and international cooperation. Divergent
standards can slow progress, lead to the fragmentation of the hydrogen market, and
erect trade barriers. Standards should be designed to improve market quality, safety, and
interoperability [170].

In 2017, only Japan had a national hydrogen strategy. More than 30 countries have
now developed or are preparing hydrogen strategies, indicating a growing interest in
the development of clean hydrogen value chains. The European Union (EU) published
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its hydrogen strategy in 2020, identifying hydrogen as a key priority for achieving the
European Green Pact [170].

Some countries are implementing concrete policies, with particular emphasis on sup-
porting commercial-scale projects for low-emission hydrogen production and infrastructure,
such as the EU’s Important Projects of Common European Interest (IPCEI Hy2Tech and
IPCEI Hy2Use), REPowerEU (hydrogen vouchers), the US Inflation Reduction Act, and
auction systems for hydrogen procurement (German H2Global Initiative)) [5,171].

Hydrogen valleys contribute to REPowerEU’s goals by increasing the production and
supply of hydrogen, thus meeting the growing demand from industry, transportation, and
other sectors. Hydrogen valleys are regional ecosystems that link hydrogen production,
transportation, and various end-uses, such as mobility or industrial feedstock. They enable
the development of a sustainable hydrogen economy and help to create a virtuous circle
between supply and demand, where large-scale production lowers costs and encourages
greater demand in the same area. Co-location also reduces the immediate need for a
long-haul transportation infrastructure. Even small-scale hydrogen valley projects can shed
more light on the viability of a hydrogen economy that encompasses several industries
simultaneously. The European Commission has allocated a Clean Hydrogen Partnership of
an additional EUR 200 million through REPowerEU to double the number of hydrogen
vouchers in Europe by 2025 [172,173].

Another instrument to support hydrogen technologies and drive the market is to
provide financial assistance by reducing the high cost of market entry barriers. As the
market matures, the nature of financial assistance provided may evolve from direct financial
assistance to tax incentives and other types of subsidies [172].

In addition, phasing out fossil fuel subsidies, carbon pricing, and other market reforms
can ensure appropriate price signals for hydrogen and foster the market [169].

Nevertheless, countries lack institutionalized mechanisms to monitor and identify the
characteristics (origin and life-cycle emissions), production, and consumption of hydrogen.
In addition, hydrogen is not accounted for in the official statistics of the total final energy
consumption, and the economic value of the contribution of clean hydrogen to emission
reductions is not recognized [170].

Therefore, there is not yet sufficient policy activity to create a demand for hydrogen.
The lack of demand creation may hinder final investment decisions [5]. Without demand,
investments are still too risky for large-scale production, which could reduce costs, but
without economies of scale, the technology is still too expensive [170].

5. Conclusions

The gasification of waste is a very promising option to produce renewable hydrogen.
There is significant literature available for experimental results at the lab and pilot scale.
As feedstock, many different types of waste, like MSW, waste tires, or plastic waste, were
investigated. Productivities of up to 300 g H2/kg feedstock have been reported, which
indicates that technology may have a good basis for attractive economics. One main
advantage of the gasification technology is its versatility and suitability for very different
input materials, like different types and qualities of waste, and the syngas after treatment
always has similar quality, independent of the quality of the feedstock.

Gas treatment is a very challenging step and can be a bottleneck for commercialization.
A variety of different process arrangements (e.g., indirect processes such as chemical
looping for gases with high inert content, and direct processes) can be applied, impacting
the overall process performance and economics.

Overall, hydrogen from waste gasification has a high potential, as the productivity
is high and waste is largely available all over the world. Competing technologies include
pyrolysis, biological, or electrochemical processes, but most of them are at a lower TRL
level than gasification. The main competing technology is combustion, where the energy
production has a minor priority, but the main aim is to reduce the volume of the waste.
Under the actual frame conditions, combustion is cheaper compared to gasification, as the
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energetic value is not rated, and the main aim is to remove the waste with as low costs as
possible. By giving the energy in the waste a higher value, this situation could be changed,
and gasification could become more competitive.

There are not only technical or economic aspects for waste gasification but also political
ones. Waste conversion to energy is seen as negative in many countries, as recycling
products is preferred. This is especially true for plastic waste. Conversion to hydrogen is a
highly promosingoption for agricultural residues and waste streams with high contents of
impurities, which are not usable for recycling. If the conversion of waste to hydrogen is
accepted as chemical recycling, a much bigger market can be expected which in turn would
greatly accelerate the technology development.
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147. Kiminaitė, I.; González-Arias, J.; Striūgas, N.; Eimontas, J.; Seemann, M. Syngas Production from Protective Face Masks through
Pyrolysis/Steam Gasification. Energies 2023, 16, 5417. [CrossRef]

148. Ganza, P.E.; Lee, B. A Novel Method for Industrial Production of Clean Hydrogen (H2) from Mixed Plastic Waste. Int. J. Hydrogen
Energy 2023, 48, 15037–15052. [CrossRef]

149. Khan, Z.; Suzana, Y.; Ahmad, M.; Rashidi, N.A. Integrated Catalytic Adsorption (ICA) Steam Gasification System for Enhanced
Hydrogen Production Using Palm Kernel Shell. Int. J. Hydrogen Energy 2014, 39, 3286–3293. [CrossRef]

150. Lamas, G.C.; Chaves, B.S.; de Oliveira Rodrigues, P.P.; da Silva Gonzales, T.; Barbosa, T.; Rousset, P.; Ghesti, G.F.; Silveira, E.A.
Effect of Torrefaction on Steam-Enhanced Co-Gasification of an Urban Forest and Landfill Waste Blend: H2 Production and CO2
Emissions Mitigation. Int. J. Hydrog. Energy. 2023, 48, 27151–27169. [CrossRef]

151. Seraj, S.; Azargohar, R.; Borugadda, V.; Dalai, A. Energy Recovery from Agro-Forest Wastes through Hydrothermal Carbonization
Coupled with Hydrothermal Co-Gasification: Effects of Succinic Acid on Hydrochars and H2 Production. Chemosphere 2023, 337,
139390. [CrossRef]

152. Arcos, J.; Santos, D. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen
Production. Gases 2023, 3, 25–46. [CrossRef]

153. Tunay, D.; Yildirim, O.; Ozkaya, B.; Demir, A. Effect of Organic Fraction of Municipal Solid Waste Addition to High Rate
Activated Sludge System for Hydrogen Production from Carbon Rich Waste Sludge. Int. J. Hydrogen Energy 2022, 47, 26284–26293.
[CrossRef]

154. Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-Hydrogen: A Review of Main Routes Production, Processes
Evaluation and Techno-Economical Assessment. Biomass Bioenergy 2021, 144, 105920. [CrossRef]

https://doi.org/10.3390/waste1010011
https://www.power-technology.com/projects/vaasa-plant/
https://doi.org/10.1016/j.enconman.2013.02.001
https://doi.org/10.1016/j.psep.2021.01.022
https://doi.org/10.1016/j.jhazmat.2013.02.050
https://doi.org/10.1016/j.mset.2019.12.002
https://doi.org/10.1016/j.ijhydene.2021.09.258
https://doi.org/10.1007/s13762-019-02577-z
https://doi.org/10.3390/en16041593
https://www.rechargenews.com/transition/its-much-cheaper-to-produce-green-hydrogen-from-waste-than-renewables/2-1-801160
https://www.rechargenews.com/transition/its-much-cheaper-to-produce-green-hydrogen-from-waste-than-renewables/2-1-801160
https://doi.org/10.1016/j.asoc.2023.110215
https://doi.org/10.1016/j.enzmictec.2005.09.015
https://doi.org/10.1016/j.apenergy.2010.07.001
https://doi.org/10.1016/j.biortech.2009.03.045
https://doi.org/10.1016/j.enconman.2017.04.084
https://doi.org/10.1016/j.energy.2019.05.125
https://doi.org/10.3390/en16145417
https://doi.org/10.1016/j.ijhydene.2023.01.010
https://doi.org/10.1016/j.ijhydene.2013.12.020
https://doi.org/10.1016/j.ijhydene.2023.03.367
https://doi.org/10.1016/j.chemosphere.2023.139390
https://doi.org/10.3390/gases3010002
https://doi.org/10.1016/j.ijhydene.2022.04.299
https://doi.org/10.1016/j.biombioe.2020.105920


Hydrogen 2024, 5 101

155. Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen Production from Biomasses and Wastes: A Technological Review. Int. J.
Hydrogen Energy 2021, 46, 33756–33781. [CrossRef]

156. Wijayasekera, C.; Hewage, K.; Siddiqui, O.; Hettiaratchi, J.; Sadiq, R. Waste-to-Hydrogen Technologies: A Critical Review of
Techno-Economic and Socio-Environmental Sustainability. Int. J. Hydrogen Energy 2021, 47, 5842–5870. [CrossRef]

157. Banco de Portugal. Available online: https://www.bportugal.pt/ (accessed on 25 November 2023).
158. Singh, H.; Tomar, S.; Qureshi, K.; Jaremko, M.; Rai, P.K. Recent Advances in Biomass Pretreatment Technologies for Biohydrogen

Production. Energies 2022, 15, 999. [CrossRef]
159. Chu, C.-F.; Xu, K.-Q.; Li, Y.-Y.; Inamori, Y. Hydrogen and Methane Potential Based on the Nature of Food Waste Materials in a

Two-Stage Thermophilic Fermentation Process. Int. J. Hydrogen Energy 2012, 37, 10611–10618. [CrossRef]
160. Santos, M.A.V. Avaliação do Potencial de Produção de Biohidrogénio na ETVO da Valorsul, Faculdade de Ciências e Tecnologia; Universidade

Nova de Lisboa: Lisbon, Portugal, 2020.
161. Gonzales, R.R.; Kim, J.S.; Kim, S.-H. Optimization of Dilute Acid and Enzymatic Hydrolysis for Dark Fermentative Hydrogen

Production from the Empty Fruit Bunch of Oil Palm. Int. J. Hydrogen Energy 2019, 44, 2191–2202. [CrossRef]
162. Ayodele, T.R.; Alao, M.A.; Ogunjuyigbe, A.S.O.; Munda, J.L. Electricity Generation Prospective of Hydrogen Derived from Biogas

Using Food Waste in South-Western Nigeria. Biomass Bioenergy 2019, 127, 105291. [CrossRef]
163. Seglah, P.A.; Wang, Y.; Wang, H.; Wobuibe Neglo, K.A.; Zhou, K.; Sun, N.; Shao, J.; Xie, J.; Bi, Y.; Gao, C. Utilization of Food Waste

for Hydrogen-Based Power Generation: Evidence from Four Cities in Ghana. Heliyon 2023, 9, e14373. [CrossRef]
164. Cudjoe, D.; Chen, W.; Zhu, B. Valorization of Food Waste into Hydrogen: Energy Potential, Economic Feasibility and Environ-

mental Impact Analysis. Fuel 2022, 324, 124476. [CrossRef]
165. Brentner, L.; Peccia, J.; Zimmerman, J. Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a

Research Agenda. Environ. Sci. Technol. 2010, 44, 2243–2254. [CrossRef] [PubMed]
166. Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A Review on Dark Fermentative Biohydrogen

Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144, 73–95. [CrossRef]
167. Mernit, J.L. As Plastics Keep Piling Up, Can ‘Advanced’ Recycling Cut the Waste? Available online: https://e360.yale.edu/

features/advanced-plastics-recycling-pyrolysis (accessed on 25 November 2023).
168. Rijo, B.; Alves, O.; Garcia, B.; Lourinho, G.; Brito, P.; Nobre, C. Technical and Market Analysis of Biomass Gasification: Case Study

in Alentejo, Portugal. J. Clean. Prod. 2023, 417, 138007. [CrossRef]
169. IEA. Net Zero by 2050—A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021.
170. IRENA. Geopolitics of the Energy Transformation: The Hydrogen Factor; International Renewable Energy Agency: Abu Dhabi, United

Arab Emirates, 2022; ISBN 978-92-9260-370-0.
171. European Commission IPCEI. Available online: https://competition-policy.ec.europa.eu/state-aid/legislation/modernisation/

ipcei_en (accessed on 25 November 2023).
172. IRENA. Green Hydrogen for Industry: A Guide to Policy Making; International Renewable Energy Agency: Abu Dhabi, United Arab

Emirates, 2022; ISBN 978-92-9260-422-6.
173. Clean Hydrogen Joint Undertaking Repowering the EU with Hydrogen Valleys: Clean Hydrogen Partnership Invests EUR 105.4

Million for Funding 9 Hydrogen Valleys across Europe. Available online: https://www.clean-hydrogen.europa.eu/media/news/
repowering-eu-hydrogen-valleys-clean-hydrogen-partnership-invests-eur-1054-million-funding-9-2023-01-31_en (accessed on
25 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijhydene.2021.07.189
https://doi.org/10.1016/j.ijhydene.2021.11.226
https://www.bportugal.pt/
https://doi.org/10.3390/en15030999
https://doi.org/10.1016/j.ijhydene.2012.04.048
https://doi.org/10.1016/j.ijhydene.2018.08.022
https://doi.org/10.1016/j.biombioe.2019.105291
https://doi.org/10.1016/j.heliyon.2023.e14373
https://doi.org/10.1016/j.fuel.2022.124476
https://doi.org/10.1021/es9030613
https://www.ncbi.nlm.nih.gov/pubmed/20222726
https://doi.org/10.1016/j.apenergy.2015.01.045
https://e360.yale.edu/features/advanced-plastics-recycling-pyrolysis
https://e360.yale.edu/features/advanced-plastics-recycling-pyrolysis
https://doi.org/10.1016/j.jclepro.2023.138007
https://competition-policy.ec.europa.eu/state-aid/legislation/modernisation/ipcei_en
https://competition-policy.ec.europa.eu/state-aid/legislation/modernisation/ipcei_en
https://www.clean-hydrogen.europa.eu/media/news/repowering-eu-hydrogen-valleys-clean-hydrogen-partnership-invests-eur-1054-million-funding-9-2023-01-31_en
https://www.clean-hydrogen.europa.eu/media/news/repowering-eu-hydrogen-valleys-clean-hydrogen-partnership-invests-eur-1054-million-funding-9-2023-01-31_en

	Introduction 
	Gasification to produce Hydrogen from Waste 
	Gasification Basics 
	Gasification Research on Waste to Hydrogen 
	Municipal Solid Waste 
	Waste Tires (WTs) 
	Waste Plastics (WPs) 

	Gasification Processes 

	Opportunities and Risks 
	Potential of Hydrogen from Waste 
	Alternative Technologies 

	Regulations, Mandatory Recycling Quotas 
	Conclusions 
	References

