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Abstract: Oxygen bubble accumulation on the anodic side of a polymer exchange membrane water
electrolyzer (PEMWE) may cause a decrease in performance. To understand the behavior of these
bubbles, a deep-learning-based bubble flow recognition tool dedicated to a PEMWE is developed.
Combining the transparent side of a single PEMWE cell with a high-resolution high-speed camera
allows us to acquire images of the two-phase flow in the channels. From these images, a deep learning
vision system using a fine-tuned YOLO V7 model is applied to detect oxygen bubbles. The tool
achieved a high mean average precision of 70%, confirmed the main observations in the literature,
and provided exciting insights into the characteristics of two-phase flow regimes. In fact, increasing
the water flow rate from 0.05 to 0.4 L/min decreases the bubble coverage (by around 32%) and the
mean single-bubble area. In addition, increasing the current density from 0.3 to 1.4 A/cm2 leads to
an increase in bubble coverage (by around 40%) and bubble amount.

Keywords: deep learning algorithm; bubble flow recognition; high-resolution camera acquisition;
polymer exchange membrane water electrolysis

1. Introduction

Most of the energy used by the world’s population comes from fossil sources. However,
their present usage largely contributes to climate change. Alternative solutions, such as
renewable energy sources, must be developed and used in a sustainable manner. Nevertheless,
the intermittent nature of some renewable energy sources (solar, wind, tidal, etc.) makes
their direct integration inadvisable in the existing grid system [1]. To avoid unwanted
supply shortages due to intermittency, tailored solutions are being considered, such as
the deployment of energy storage technologies coupled with energy management and
prediction algorithms [2]. Moreover, traditional rotational electromechanical converters
provide inertia, giving temporal constraints according to grid adjustments. This is not
the case for non-synchronous renewable energy generation, such as hydrogen converters.
Their high penetration can further increase the integration of intermittent energy sources
into the grid, especially in island grids [3,4]. Hydrogen is a promising candidate for
storing energy with zero carbon dioxide and zero greenhouse gas emissions [5,6]. Various
methods exist for producing hydrogen. Among them, water electrolysis is one of the
methods producing the highest purity without carbon dioxide [7]. There are three types of
electrolyzers: alkaline, solid oxide, and proton exchange membrane. Alkaline is the most
widely adopted technology because of its maturity, ability to operate at several megawatts,
simple design, and inexpensive electrolytes. However, it has some drawbacks compared to
polymer exchange membrane water electrolyzer (PEMWE) technology. Indeed, PEMWEs
can achieve higher current densities up to 10.0 A/cm2, are more compact, and significantly
reduce gas crossover phenomena [8,9]. Nonetheless, some obstacles remain, such as the
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cost of required materials, the cross-osmosis phenomenon, and membrane resistance under
high-pressure operations. In addition, the performance of the anode side can be negatively
affected by a non-uniform liquid distribution, excessive pressure drops in the channel, or
the two-phase flow regime [10–13]. In fact, oxygen bubbles generated by the anode catalytic
layer tend to prevent water from reaching the reaction points, mainly when operating at
high current densities. Therefore, understanding the two-phase flow regime is a crucial
challenge to improving the efficiency of PEMWEs [14].

Two-phase flow has been studied in the literature to improve PEMWE efficiency.
Majasan et al. [15] investigated the channel geometry of a PEMWE (with a serpentine
and parallel design) with a transparent window at the anode. Variations in and studies
of operating conditions, such as fluid circulation, water input flow, and water tempera-
ture, conclude that cell performance with a parallel-geometry design is better than that
with a the serpentine design. They reviewed different works about two-phase flow in
PEMWEs [10,13,16–18] and observed that flow regimes states are related to current density.
Dedigama et al. [19] investigated the current density distribution with printed circuit boards
and bubble flow observations. Their results show that the current density at the top of the
circuit boards is higher than that at the bottom for three fixed operating potentials. The
authors hypothesized that this phenomenon is due to the mass transfer produced by the
bubble flow regime. In fact, larger air bubbles lead to more significant water displacement,
removing tiny air bubbles from the electrode surface. They conclude that the local transition
from effervescence (tiny bubbles) to slug flow (large bubbles) increases mass transport,
represented by the current density increase throughout the channel. Aubras et al. [14]
studied the link between the two-phase flow at the anode side and cell performance with
a two-dimensional stationary PEMWE model. They demonstrate that the coalesced phe-
nomenon under slug flow is associated with an improvement in mass transfer, a decrease
in ohmic resistance, and an enhancement of the PEMWE efficiency. Maier et al. [20] used
an acoustic emission analysis in a PEMWE with an optically transparent single channel in
their study. This simple and inexpensive technique shows a good correlation between the
number of acoustic hits and the number of bubbles flowing through the flow channel. This
non-invasive technique can detect transitions between bubble and slug flow states and even
notice changes in bubble size. Maier et al. [21] developed an acoustic emission analysis
coupled with optical access to all anode channels. They observed changes in acoustic
activity when the region of stagnant bubbles in the flow channel expanded significantly.
For this reason, the generated gas must be removed efficiently to solve this problem, and
to achieve this, channel optimization is necessary. Su et al. [22] analyzed the relationship
between bubble growth/detachment, bubble coverage, and electrochemistry. Their results
highlight the increase in the bubble coverage rate on the active surface following the cur-
rent operating point, bubble detachment radius, and temperature. However, the pressure
and inlet flow rate increases negatively impact the bubble coverage rate. A high bubble
coverage rate indicates a deficient water supply, resulting in a higher voltage potential
and lower efficiency. These previous studies show the importance of understanding the
influence of anodic two-phase flow on PEMWE efficiency. It is essential to understand
the evolution of the bubbles in the electrolyzer to evaluate and optimize anodic chan-
nel performances. In this context, optical visualization with bubble detection ability in a
PEMWE is a suitable solution for better apprehending this technology. However, to our
knowledge, only one author has worked with bubble recognition has applied this to PEM
electrolyzers. In fact, Garcia-Navarro et al. [23] studied oxygen bubble radius detachment
using a bubble detection algorithm with MATLAB. It highlighted the small pixel clusters
that show high contrast with the neighboring area. Contrary to other authors [19,22,24],
they found that the bubble detachment radius is not a trend but a constant value even when
the water flow rate increases, which is counterintuitive because it should yield smaller
bubbles. Nonetheless, the study had a few limitations. Some bubbles were false positives,
so they were not detected. It does not work for bubbles in front of the metallic titanium
mesh, so it was not applied on the active surface.
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In recent decades, there has been much research about bubble detection for other ap-
plications, such as chemical production, nuclear reactors, or petrochemical reactors. Due to
the bubble transparency and the fact that illumination conditions can vary the appearance
of the bubbles, bubble detection is a challenging task. Since bubble shapes look like circles,
the task can be simplified to a circle detection problem [25]. There are two main approaches
for bubble detection: geometry-based and appearance-based approaches. Geometry-based
approaches, such as the Hough transform [26], genetic algorithm [27], probabilistic pair-
wise voting [28], and semi-automatic image analysis [29], can be effectively applied to
detect circles. Nevertheless, these methods are designed for a circle detection problem [25]
and are not designed for irregularly shaped circles. Knowing that PEMWEs produce bub-
bles with different shapes, these methods are unsuitable. Appearance-based approaches
such as boosting-based detectors [30], HOG-based detectors [31], and convolutional neu-
ral networks (CNN) can detect different shapes efficiently. However, these approaches
require a large amount of annotated training data covering all possible conditions [25].
Ilonen et al. [25] compared different bubble detection methods, such as concentric circular
arrangements, boosting-based detection, CNNs, the Hough transform, and power spec-
trum analyses. They concluded that the most suitable method depends on the specific
application. CNNs outperform other methods but are slow and are not for in-line use,
contrary to WaldBoost + Trees, which is fast to compute but less accurate than CNNs. Nev-
ertheless, CNNs’ speed and accuracy have recently made remarkable improvements and
tend to be used in real time. They are used in many applications, such as text recognition,
diabetic retinopathy detection, breast cancer, the prediction of epilepsy, facial recognition,
autonomous cars, etc. Additionally, some works have used this tool to study bubbles in
two-phase flow regimes.

Poletaev et al. [32] developed different neural network models to recognize bubble
patterns in images and identified their geometric parameters. Their developed tool was
able to detect overlapping, blurred, and non-spherical bubbles and had a 20% higher
precision for a shorter period (around six to eight times less) than conventional recognition
methods such as correlation-based algorithms. Wang et al. [33] studied a method to
recognize and track bubbles in a plate heat exchanger. They combine the “You Only
Look Once” (YOLO) V3-tiny model, which appeared in 2018 and is widely used for
object detection, with an improved three-frame difference and optimize the results with
an Intersection Over Union algorithm. The proposed method can precisely recognize
and track individual bubbles under a spatiotemporal space. A CNN has an excellent
capability to identify flow rate regimes. Shibata et al. [34] used a CNN with a high-
speed camera to identify two-phase flow regime transitions in a wellbore during methane
hydrate dissociation. The detection accuracies are 91.9% for bubbly and 86.5% for slug
identification. Park et al. [34] compared four optical flow algorithms, the Lucas–Kanade
method, the Farnebäck model, a PWC-Net neural network, and a fine-tuned PWC-Net
neural network (PWC-Net trained with synthetic bubbles images) to the traditional particle
tracking velocimetry approach. In dense bubbly flow, the PWC-Net and PTV approach
leads to bad results contrary to the Farnebäck and fine-tuned PWC-Net models. However,
considering the accuracy and lower computational cost, fine-tuned PWC-Net was the best
method as a new bubble velocimetry. Cui et al. [35] developed a deep-learning-based
image processing method for bubble detection, segmentation, and shape reconstruction in
high-gas-holdup sub-millimeter bubble flows. Mask R-CNN deep learning architecture
and a shape reconstruction module were employed. The algorithm was performed under
several experimental conditions and obtained a mean average precision between 83%
and 96%. Xiang et al. [36] proposed a high-resolution, high-fidelity, and high-diversity
bubble flow generator based on CNN architecture to synthesize bubble images under
different superficial gas velocities. Furthermore, to extract bubble parameters to validate
the reliability of the generator in the picture, YOLOV3 architecture was used. This reached
a mean average precision of 89.43%. Kim et al. [37] presented a universal bubble detection
algorithm based on the Mask R-CNN model, trained with experimental and synthetic
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bubble images. For the same image, the computation time is two to three times shorter
than the conventional method with an equivalent or better mask extraction. The average
precision of the model for the entire test dataset reaches 98.1%. In order to improve
the benchmarking of image processing algorithms, Cerqueira et al. [38] combined image
processing techniques and a convolutional neural network to recognize and reconstruct the
shape of the bubble pattern in dense bubbly flow. They use a set of anchor points associated
with multiple-size anchor boxes. Multiple ellipsoidal shapes are produced for each anchor
box, and a trained CNN chooses the ellipsoidal that fits the best with the bubble. Among the
different CNN architectures tested, the best reached an accuracy of 93.84%. Haas et al. [39]
developed a convolutional neural network tool (BubCNN) to be more generalizable than
traditional image processing algorithms to detect bubbles. A faster region-based CNN was
used to locate bubbles and a shape regression CNN to predict bubble shape parameters.
In order to have the best performances, different hyperparameters were analyzed. A
semi-automatic transfer learning module was created for researchers to customize the
algorithm to their images. The BubCNN algorithm shows a mean average precision of
84% in their study. Gong et al. [40] proposed the BubDepth neural network to reconstruct
the three-dimensional bubble geometry from single-view images. Firstly, a Mask R-CNN
architecture was used to obtain bubble segmentation with an accuracy of 94%. After that,
a pyramidal CNN configuration that had been previously trained was implemented to
predict the relative depth maps of the bubble. The mean and the standard deviation of the
relative errors between the truth depth maps in the dataset with those predicted by the
neural network were 7.01% and 3.75%, respectively. CNNs seem particularly promising
and suitable for analyzing the two-phase flow problem in PEMWEs.

Currently, to our best knowledge, it is the first study in which oxygen bubbles in a
PEMWE are detected with a deep learning algorithm. Moreover, oxygen bubble evolution
curves are for the first time obtained from experimental data. Until now, apart from this
paper, the majority of the authors who worked on bubbles in PEMWEs have described
their evolution with human eyes or with a mathematical model (a simulation). Those who
work with a transparent PEMWE and see the bubble flow work with a real system are
limited by the human ability to process a large amount of information. Those who work
with mathematical models provide results that these authors cannot put forward. However,
they must make assumptions when modeling the PEMWE. The approach proposed in this
paper takes advantage of these two categories of authors.

In the present paper, to tackle the challenging problem of the two-phase flow phenomenon,
a YOLOV7 model is employed in order to detect anodic bubbles in a PEMWE system under
different operating conditions. In this context, the article contributes the following:

− An automated approach is developed to map the bubble regime according to various
operating conditions;

− The YOLOV7 is fine-tuned and particularly efficient for fast and accurate anodic
bubble recognition;

− The proposed approach is experimentally validated and shows promising results.

The rest of this paper is organized as follows. The second section is dedicated to
the experimental setup for the image acquisition in which the test bench, transparent
PEMWE, and fast camera are presented. The third section briefly outlines a basic CNN,
the dataset preparation, dataset preprocessing, and the different steps of the method
used to perform bubble detection. The fourth section presents the experimental results
obtained for an anodic water flow rate variation and current density variation, ending with
a discussion. Finally, the last section provides our conclusion and recommendations for
prospective studies.

2. Experimental Setup

The experimental setup presented in Figure 1 is composed of a custom PEMWE bench
test, the anodic transparent side of a single PEMWE cell, and a high-density, high-frequency
camera. The Italian company Materials Mates® manufactured the custom Electrolyzer Test
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Bench (ETB) system, following specific research requirements (Figure 1a). The test station
is developed to operate an electrolyzer under variable and fully controlled operating condi-
tions. The system provides all the needed devices for water circulation, electrical supply,
gas separation, and heating and cooling circuits, and all the measuring equipment allows
the user to assess the performance of the cell at the given operating point. The cell power
supply keeps the electrical operating conditions under tight control and can optionally offer
EIS capabilities up to 10 kHz. The ETB system can record the I-V polarization curve, the
deionized water conductivity and resistivity, the impedance curves (from 1 Hz to 10 kHz),
the amount of oxygen in the hydrogen tank, the amount of hydrogen in the oxygen tank,
the flow rate, and the temperature of the reactants and products of the electrochemical
reactions. Anodic and cathodic pressure can be measured. The cell power supply can vary
between 0 and 11 V and 0 and 200 A, with up to 2 kW of applied DC power. The cell water
operating temperature can vary between 10 and 150 ◦C, and the maximum cell operating
pressure is 30 atm.
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Figure 1. (a) ETB; (b) visual acquisition systems.

A high-density and high-frequency camera records anodic images of oxygen bubbles
with a frame size of 5120 by 5120 pixels (Figure 1b). CNN computations (training and
inference) were performed with a local workstation equipped with an Intel® Core™ i9-10900
2.80 GHz manufactured Intel Corporation in Santa Clara, California, United States and a
NVIDIA Quadro RTX 4000 manufactured by NVIDIA Corporation, also based in Santa
Clara, California, United States.

In this study, the investigated PEMWE single cell is circular with a transparent area on
the anode side for optical access to the channel. Figure 2 presents the anodic side, where the
membrane electrode assembly (MEA) is stacked with a titanium grid mesh (0.005 cm thick)
which plays the role of the liquid gas diffusion layer. After that, another titanium grid mesh
(0.018 cm thick) with a transparent parallel flow field channel in plexiglass is positioned.
The set of titanium meshes serves as electrical connections. Fuel CellStore (College Station,
TX, USA) provided the MEA used in this study. The MEA is composed of a Nafion®

115 membrane with a catalyst active surface area of 40.71 cm2, an anode electrode consisting
of iridium ruthenium oxide (IrRuOx) with a loading of 3.0 mg/cm2, and a cathode electrode
composed of platinum black (PtB) with a loading of 3.0 mg/cm2 (PtB).
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Figure 2. Expanded view of the circular anodic side of the PEMWE.

Figure 3 shows cropped view through the anode window, with visible bubbles inside
the channel and under the ribs (Figure 3a,b). The water flow inlet is located at the bottom
of the distribution plate, and the outlet is at the top. The bubbles move through the mesh
and are carried away by the water flow passing through the channels. It is important to
note that the water floods the entire active surface of the catalyst during the operation of
the PEMWE cell.

Hydrogen 2023, 4, FOR PEER REVIEW 6 
 

 

grid mesh (0.018 cm thick) with a transparent parallel flow field channel in plexiglass is 
positioned. The set of titanium meshes serves as electrical connections. Fuel CellStore 
(College Station, TX, USA) provided the MEA used in this study. The MEA is composed 
of a Nafion® 115 membrane with a catalyst active surface area of 40.71 cm2, an anode 
electrode consisting of iridium ruthenium oxide (IrRuOx) with a loading of 3.0 mg/cm2, 
and a cathode electrode composed of platinum black (PtB) with a loading of 3.0 mg/cm2 
(PtB). 

 
Figure 2. Expanded view of the circular anodic side of the PEMWE. 

Figure 3 shows cropped view through the anode window, with visible bubbles inside 
the channel and under the ribs (Figure 3a,b). The water flow inlet is located at the bottom 
of the distribution plate, and the outlet is at the top. The bubbles move through the mesh 
and are carried away by the water flow passing through the channels. It is important to 
note that the water floods the entire active surface of the catalyst during the operation of 
the PEMWE cell. 

 
(a) (b) 

Figure 3. View through anode window, in which darker parts with red dotted points are flow
channels and hatched part is a rib (a); bubbles are observed in channels and under ribs (b).

3. Proposed CNN-Based Bubble Detection Method
3.1. Brief Review of CNNs

The following section briefly explains a vanilla convolutional neural network. Figure 4
illustrates the basic components of a CNN model. The objective is to develop a model
capable of recognizing tasks from pipeline images.
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Input layer: This kind of architecture can input grayscale or multi-band images. A
digital grayscale image can be seen as a grid of pixels with different brightness intensities.
The computer interprets this grid of pixels as a 2D tensor with pixel values ranging from 0
for the darker pixels to 255 for the brighter pixels. Contrary to a multi-layer perceptron,
in which the input matrix must be transformed into a 1D vector to go to the next step, a
CNN accepts matrices and spatial context. Input data are normalized for faster learning
convergence and better generalization. Moreover, all pictures must be reshaped to have the
same height and width to feed the convolutional neural network.

Convolutional layer and pooling layer: The first part of the convolutional neural
network is composed of convolution and pooling layers. The image passes through multiple
convolutional and pooling layers to detect patterns and extract features called feature maps.
A feature can be seen as a datum in an image that distinguishes one object from another.
Meaningful features are extracted thanks to a convolutional layer that can be seen as a
sliding window (a convolutional filter) which performs the convolution with the image
pixel by pixel. A modified image with new pixel values is then obtained. After that,
pooling layers can be applied to reduce the computational complexity and keep important
features [41].

Flattening layer: The extracted features must be put into the multi-layer perceptron
for classification tasks. However, a multi-layer perceptron only takes 1D tensors as in-
put. Therefore, a flattening layer is used to convert the feature map’s tensor into this
adapted format.

Output: From the multi-layer perceptron, the classification task can be performed
using the features extracted from the picture. Finally, with a classification problem, the
fully connected layers return probability values for each class.

Figure 4 illustrates how CNN models process a picture to extract useful informa-
tion (features) and perform a required task (classification, regression, segmentation, etc.).
Nevertheless, before having this ability, the model must be trained. During the training
phase, the parameters (weights) of the different layers of the CNN model are optimized to
perform a specific task. This optimization is performed iteratively using a backpropagation
gradient algorithm. In the case of supervised learning, the model prediction is compared
to the ground truth. Finally, an error function (loss function) between the predicted and
ground truth label is computed. The model weights are adjusted consequently to reduce
the loss function value. Among CNN algorithms for object detection [42], the “You Only
Look Once” (YOLO) family has different versions. YOLOV7 is one of the state-of-the-art
object detection models in the YOLO series [43–47]. There are different versions of the
YOLO algorithm; however, controversies are present in the computer community. In fact,
YOLOV1 to YOLOV4 are considered as official YOLO models, but some researchers or
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companies have published YOLOV5 or YOLOV6 models, which are unofficial versions.
The last official YOLO model is YOLOV7 (finally considered as the official YOLOV5).
Compared with other object detection models, it demonstrates notable performance with
its high detection accuracy, real-time monitoring ability, and model complexity [48–52]. In
this study, the YOLOV7 model is used to detect the localization and size of oxygen bubbles
in the PEMWE.

3.2. Dataset Preparation and Preprocessing

The dataset consists of images of the anodic oxygen bubbles of the PEMWE obtained
using the high-density and high-frequency camera and two flashes to increase the illu-
mination. The database consists of approximately 27,000 images in PNG format with a
resolution of 5120 × 5120 pixels. The images were recorded at 65 FPS for about 20 s for
different current and flow rate values of deionized water. First, they were recorded for a
constant flow rate set to 0.4 L/min and with a current value ranging from 0.3 to 1.4 A/cm2.
Then, they were recorded for a constant current set to 1.4 A/cm2 with a flow rate value
ranging from 0.05 L/min to 0.40 L/min. The anodic and cathodic temperatures are reg-
ulated to 60 ◦C, and the cathodic and anodic pressures are set to 1 atm. After modifying
an operating parameter (e.g., the current or water flow), the camera recording was only
activated when the stable operating state of the PEMWE was reached. Each experiment
produced approximately 400 Go of data. A polarization curve of the system is given in
Figure 5.
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Figure 5. Polarization curve of the anode window of the PEMWE cell with anodic and cathodic water
flow rate of 0.4 L/min, pressure of 1 atm, and water temperature of 60 ◦C.

In order to train the model, a labeled dataset is required in supervised learning. La-
belImgtool is written in Python and is a graphical image annotation tool by Tzutalin [53],
available on GitHub. It is used to create annotations, which consists of manually identifying
and locating all bubbles in a frame. Then, a saved file with the positions of all the annota-
tions in the picture is created. To be efficient, the training phase requires a sufficient amount
of data. Therefore, labeling is still the most time-consuming step to obtain a workable
dataset. In order to preserve the high resolution for small bubbles, a slicing operation of
the high-resolution image into about 100 thumbnails is chosen, as illustrated in Figure 6.

The model is designed to accept 512 × 512 pixel images as input. With this sliding
preprocessing, since some bubbles may be cut between two thumbnails, some bubbles
may not be labeled entirely. Nevertheless, the main information (bubble recognition,
identification, and localization) is globally saved. It is essential to note that the labeled
dataset must be divided into three sub-datasets to perform all the learning steps: the
training, testing, and validation sets. For this study, the previous three sub-datasets
represent 80%, 10%, and 10% of the labeled image database, respectively.
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3.3. Training, Inference, and Post-Processing

The training step is performed with Python frameworks, and libraries such as Tensor-
flow or OpenCV are used. The GPU of the computer is used to speed up the calculations.

After specifying the different basic parameters of the standard architecture of YOLOV7,
such as the number of epochs, image size, batch size, or the pathway of the training
dataset, the YOLOV7 algorithm can be trained. It is worth noting that more than 30 other
hyperparameters exist, and their values can be optimized to improve the training step.
However, in this study, the vast majority of default values were kept constant. Table 1
shows some of them.

Table 1. Some customizable hyperparameters, excluding image input size and batch size, which are
all default values.

Image Input Size: 512 Momentum: 0.937

Batch size: 4 Weight-decay: 0.0005

Learning-rate start (lr0): 0.01 Conf threshold: 0.25

It is important to highlight that to reduce the amount of data required to train the
model, a pre-trained YOLOV7 model is used, and only the last layer (the classification
layer) is (re)trained. All other parameters (weights) remain unchanged and are frozen
during the training phase. Note that the YOLOV7 model has been pre-trained using the
MS COCO dataset (328,000 pictures and 80 classes). After the training step, an output file
called the weight file is obtained. This file contains information about the different weight
values required to perform bubble detection. To perform detection on new images, the
weight file path must be specified in the script. After that, new images can be used as
input for the YOLOV7 architecture to perform detection. The model is designed to use
a 512 × 512 pixel picture size, so the inference step requires the same picture size. For
this reason, all pictures in the dataset are also split into one hundred thumbnails. Then,
the detection occurs in these 512 × 512 pictures. It should be noted that slicing before
detecting increases the detection time. Afterward, the neural network architecture produces
a results file for each thumbnail. A post-processing step was performed with the result files
mentioned above to extract essential information, such as the number of detected bubbles
and their position. The detected bubbles are in rectangular boxes, like in the labeling step.
With the box coordinate, the box area can be calculated. However, it is far from the natural
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bubble surface situated in the box. Therefore, a ratio is calculated to be more realistic when
estimating bubble coverage. In the PEMWE, there are different bubble sizes, which is why
the detection boxes also have different sizes. Bubbles of different sizes with their associated
boxes were selected to calculate the ratio. To obtain the correct ratio, the number of pixels
occupied by the bubble in the picture is divided by the number of pixels occupied by its
detection box. A ratio of 0.7 is obtained; in other words, 70% of the pixels contained in a
detection box represent the bubble. Therefore, to estimate the bubble coverage over the
whole anodic side of the PEMWE, all box areas are calculated, and then the ratio is applied.

4. Experimental Results

This section presents the results obtained after the inference and post-processing steps
of the 27,000 images. In this study, the bubble coverage takes into account all the bubbles
present between the liquid gas diffusion layer interface and the channels. Most of them are
bubbles that remain attached due to the surface tension force until the dynamic pressure of
the flowing water becomes greater than the surface tension force. Then they detach and are
evacuated. The mean bubble area is obtained by adding all the area occupied by bubbles
over the liquid gas diffusion layer in an image, divided by the amount of bubbles present in
the same image. Thus, the average size of the bubbles present in the picture is obtained. As
each value of the water flow rate or current density represent around 1300 images (20 s), the
bubble coverage, number of bubbles, and mean bubble area are computed 1300 times. Then
the average values of these 1300 results are calculated, and one box plot can be represented.
According to the literature, these three parameters are influenced by the water flow rate,
which can increase the frequency of bubble detachment, or by the current density, which
acts on the bubble size detachment process [54].

4.1. Inference Results

Figure 7 analyzes the bubble flow’s evolution following the variation in water input
flow. The output of the YOLOV7 model is post-processed to obtain the following: the anodic
bubble coverage (Figure 7A), the number of bubbles over the anodic side (Figure 7B), and
the individual mean surface of the bubbles (Figure 7C). In Figure 7A, the bubble coverage
decreases when the water flow rate increases by around 32%. Su et al. [22] obtained the
same behavior with their simulation. When the water flow rate increases, it facilitates the
evacuation of bubbles and detachment from the electrode surface area due to the higher
flow drag force. If the bubble detachment frequency increases, the number of bubbles
may increase greatly. However, the increase in the bubbles’ evacuation ability created by a
higher water flow rate leads to a counterbalance. The number of bubbles increases slightly,
as seen in Figure 7B. Moreover, a faster bubble detachment frequency leads to a decrease in
the bubble detachment diameter, as mentioned by Li et al. [24]. This is what can be deduced
from Figure 7C, which shows a decrease in the mean bubble area when the water flow rate
increases. It is also in concordance with the observation made by Dedigama et al. [19] in
their paper.

Figure 8 analyzes the evolution of bubble flow following the variation in the current
density. The results show that the bubble coverage increase by around 40% when current
density increase. And the number of bubbles increase too when current density increase.
This behavior is in agreement with the optical visualization allowed by the transparent
cell, which is what Su et al. [22] deduced in their simulation as well as other authors in
the literature, such as Li et al. [24]. The second Faraday law explains this phenomenon
physically. If the amount of electricity increases, the amount of oxygen and number of
reaction sites also increase. Moreover, as Li et al. [24] and Su et al. [22] mentioned, the
bubble detachment diameter will also increase. However, this is not the case in our study,
as depicted in Figure 8C, which gives an idea about the general bubble size in the PEMWE.
This graph appears to have bigger bubbles at around 0.5 A/cm2 and smaller ones at
1 A/cm2. Nevertheless, it should be essential to go deeper to better understand this graph
behavior before interpreting it. Some stagnant bubbles are present among conventional
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bubbles. The size of stagnant bubbles could have a non-negligible influence over the
curve trend.
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4.2. Discussion

One common way to evaluate a CNN model’s performance in detection after training
is to examine the mean average precision (mAP) curve. For this study, four training
rounds have been performed with different seeds (which control the weight initialization
values) and the best train results in a mAP around 70%, as shown in Figure 9, the orange-
colored curve, before stabilization. However, a better mAP could be obtained if the hyper-
parameters are optimized.

In the literature, from one author to another, the effect of the water flow rate on
the electrochemical performance differs. Some of them found that when it increases,
the performance decreases (Dedigama et al. [10]), while others have found the opposite
(Su et al. [22]). With the deep learning approach, as the bubble coverage decreases when
the water flow rate increases, it initially looks as if the performance may increase due to
the better evacuation. However, during our experiments, for a fixed voltage, the current
density of the PEMWE decreased when the water flow rate increased (Figure 10). The
tool is not yet able to link the decreasing performance (showed by the decreasing current
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density) and the oxygen bubbles’ behavior to understand and clarify this question. This is
why an improved version of this tool is so necessary.
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Figure 11b shows the result obtained for one picture after detection with YOLOV7.
Since inference appears on the thumbnails, all the thumbnails are reassembled to obtain the
image shown in Figure 11b. Detected bubbles are represented by red rectangular frames as
seen in Figure 11a,c, which are zoomed-in images of two small parts (the green rectangles)
of Figure 11b. Moreover, the large bubbles are framed by several red rectangles, which
increases the error in identifying the number of bubbles or the bubble rate coverage on the
surface medium. This is why the detection is performed on thumbnail images, and the
large bubbles are divided into several thumbnail images. Therefore, the algorithm cannot
observe the bubble entirely. Typically, this problem occurs when a bubble is involved in
more than two thumbnails. One approach to partially solve this problem would be to
develop an algorithm that can overlap thumbnails to capture a more significant portion of
the large bubbles. However, this approach would again increase the detection time, and
real-time applications may not be possible. Moreover, as shown in the previous section,
stagnant bubbles could have a significant influence on the results, which is why multi-label
detection is necessary to differentiate them.
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In the detection result, some false bubble detections can be observed. Indeed, some red
rectangles do not enclose any bubbles, which leads to an increase in the error associated with
the estimation of the coverage and the number of bubbles. This problem could be solved
by considering an additional post-processing step. Moreover, this step would allow for the
fusion of identical bubbles that are present side by side. However, this would significantly
negatively impact the algorithm’s speed, which prevents real-time applications.

Moreover, through visualization, a non-uniform flow pattern is observed, induced by
the position of the water inlet and outlet located at the lower left and upper right of the
PEMWE. It is noted that there are no stagnant bubbles at the channels’ output, as observed
by Maier et al. [21] with the topology of the PEMWE they used. Lastly, the algorithm can
see more bubbles compared to those detected by hand labeling. In other words, many
tiny bubbles could be missed during the labeling process due to a lack of human vigilance.
Hence, as the model performance is evaluated, compared to that of labeled images, the real
mAP may be up to 70%. Despite our promising results, as discussed, some improvements
can be made for more precise and detailed results.

5. Conclusions and Prospect

In this paper, for the first time, a deep-learning-based bubble flow recognition tool
dedicated to PEM water electrolyzers was developed. The performance of the proposed
tool was experimentally evaluated on a real PEMWE system. The first results were very
promising and showed that bubble information in a PEMWE can be successfully extracted.
The state-of-the-art YOLOV7 architecture was chosen as the most suitable for this study.
It was shown that the proposed CNN model could effectively detect anodic bubbles in a
PEMWE with a mean average precision of 70%. The obtained results were analyzed and
concurred with the experimental visualization and different studies from the literature.
When current density increases, the anodic bubble coverage and bubble number increase.
However, further experiments need to be performed to interpret the bubbles and extract
more information from the mean size curve. The literature mentions that the mean bubble
area decreases when the anodic water flow rate increases. Nonetheless, it has been hypothe-
sized that the water speed and coalescence coupling effect between bubbles should explain
why the number of bubbles remains the same. Further studies must be conducted to verify
this explanation. Further works are in progress to develop an algorithm that can overlap
vignettes to capture a more significant portion of large bubbles. In addition, for the better
discretization of bubble regimes in PEMWEs, it is necessary to distinguish different classes
of bubbles. Bubble tracking is also part of our outlook. We will analyze other configurations
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of the electrolyzer with the developed tool. This will provide more information about
the influence of different components of the PEMWE over the bubbles. Moreover, the
water flow rate and current density are not the only parameters that influence bubble
characteristics. Indeed, higher temperatures, which can enhance upward gas transport [54],
or even the pressure in the PEMWE have an impact on bubbles. Due to the fact that this
is the first time a CNN approach has been used for bubble detection in a PEMWE and,
more generally, the first time that curves have been obtained from experimental data, these
results cannot yet be compared with those of other approaches in the literature. Moreover,
great attention must be paid when comparisons must be made due to the fact that some
parameters (the grid topology, current density, water flow rate, the cell shape, membrane,
dimensions, etc.) are not the same from one PEMWE to another.
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