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Abstract: In this paper we report the effect of three different preparation methods on the first
hydrogenation of the vanadium-rich BCC alloy Ti16V60Cr24: one-time cold rolling, 5 min ball milling
and addition of 4 wt.% of Zr. All samples were synthesized by arc melting. Without Zr addition
the alloy was single phase, but when 4 wt.% Zr was added, a secondary zirconium-rich phase was
present. However, X-ray diffraction patterns only showed a single-body-centred cubic phase before
hydrogenation for all samples. The crystal structure of the fully hydrogenated samples was body-
centred tetragonal. The highest hydrogen capacity (3.8 wt.%) was measured for the Zr-doped alloy.
The ball-milled alloy also exhibited a high storage capacity and fast kinetics. However, the maximum
hydrogen storage capacity slightly decreased after cold rolling. It was found that air exposure
increases incubation time for the first hydrogenation. The incubation time was shortened by cold
rolling which, however, reduced the hydrogen storage capacity. The Pressure-Composition isotherms
of Ti16V60Cr24 + 4 wt.% Zr at 297, 303 and 323 K were determined. The determined enthalpy and
entropy of hydrides formation were −41 ± 5 kJ/mol and −134 ± 14 J/mol/K, respectively.

Keywords: BCC alloys; ball milling; cold rolling; kinetics; hydrogen storage; thermodynamics

1. Introduction

Vanadium-based body centred cubic (BCC) alloys are interesting materials for hydro-
gen storage because of their relatively high gravimetric storage capacity (~4 wt.%) and
fast hydrogenation-dehydrogenation kinetics at room temperature [1–5]. However, the
first hydrogenation (the so-called activation) is slow and usually necessitates high pres-
sure/temperature [6]. Heat treatment is usually required before the first hydrogenation.
This annealing results in good homogeneity, which is claimed to result in better hydro-
gen sorption properties [7–9]. Since this method is expensive for industrial production,
investigations have been carried out to find alternatives. Techniques such as alloying
with additives [10–12] and mechanical processing [13–16] have been found to improve the
hydriding/dehydriding of vanadium based BCC alloys.

The addition of Zr in a Ti-V-Cr system leads to the formation of a secondary phase
that acts as a gateway for hydrogen [17–19]. An amount of 4 wt.% of Zr seems to be the
optimum for obtaining a high capacity and fast kinetics. Higher Zr content results in
faster kinetic but decreases the hydrogen storage capacity [20]. Additionally, mechanical
processing such as cold rolling and ball milling create defects that change the kinetics of
hydrogen absorption/desorption. For example, one-time cold rolling or ball milling for
5 min drastically shortens the activation time [14]. As there are many ways to improve
the first hydrogenation, it is interesting to compare them in order to see which one is the
most efficient. For this investigation, the BCC alloy Ti16V60Cr24 was selected. The effect
of Zr addition and mechanical deformations by cold rolling or ball milling on the first
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hydrogenation were studied. We further examined the effect of air exposure on the first
hydrogenation and how mechanical deformation could regenerate the alloy.

2. Materials and Methods

All elements were purchased from Alfa-Aesar (Tewksbury, MA, USA) and had the
following purities: Ti (99.95%), V (99%), Cr (99%) and Zr (99.95%). The alloys (~3 g each)
were prepared by arc melting under argon atmosphere. Each pellet was melted, turned over
and melted again three times to ensure homogeneity. The pellet was then hand-crushed
using a hardened steel mortar and pestle in an argon-filled glove box.

Cold rolling was performed with a Durston DRM 130 (High Wycombe, UK) by in-
serting the hand-crushed powder between two 316 stainless steel plates. Ball milling was
carried out on a Spex 8000 high-energy ball (SPEX Sample Prep, Metuchen, NJ, USA) in a
hardened 55 cc steel crucible and balls (powder/ball mass ratio was 1/10).

Hydrogenation was performed at room temperature under 30 bars of hydrogen pres-
sure using a homemade Sievert’s apparatus. After full absorption, the desorption pressure–
composition isotherms (PCI) were determined at 297, 303 and 323 K. For the kinetics
measurements, the reactor was first vacuumed for about 1 h. Thereafter, hydrogen gas at a
pressure of 30 bar was rapidly introduced into the reactor. The change of pressure with time
gives the amount of hydrogen absorbed by the sample. For the determination of entropy
and enthalpy from the Van’t Hoff plot, the equilibrium pressure at mid-range was selected
for each isotherm. In the present case, it means the equilibrium pressure was at a capacity
of 0.75 wt.%. Morphology was studied using Hitachi Su1510 scanning electron microscope
(Hitachi High-Tech Canada, Inc., Toronto, ON, Canada). Crystal structures before and after
hydrogenation were investigated with a Bruker D8 Focus X-ray diffractometer (Madison,
WI, USA) using the Cu Kα radiation. Crystal structure parameters were then evaluated
from Rietveld refinement using Topas software (Bruker, Madison, WI, USA) [21].

3. Results
3.1. Microstructure

Figure 1 shows the backscattered electron micrographs of as-cast Ti16V60Cr24 and
Ti16V60Cr24 + 4 wt.% Zr alloys.
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Figure 1. Backscattered electron micrographs of as-cast (a) Ti16V60Cr24 alloy; (b) Ti16V60Cr24 + 4 wt.% 

Zr alloy. 

One can notice that the alloy without Zr addition is single phase while the one with 

zirconium is made up of two phases: a matrix (grey) and a secondary phase (bright). Using 

Figure 1. Backscattered electron micrographs of as-cast (a) Ti16V60Cr24 alloy; (b) Ti16V60Cr24 + 4 wt.%
Zr alloy.

One can notice that the alloy without Zr addition is single phase while the one with
zirconium is made up of two phases: a matrix (grey) and a secondary phase (bright). Using
Image J software (Wayne Rasband, National Institute of Mental Health, Bethesda, MD,
USA) the area fraction of the bright phase is found to be around 7%.
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From EDX bulk measurement, it was confirmed that the composition of the of Ti16V60Cr24
alloy was close to the nominal one. In the case of Ti16V60Cr24 + 4 wt.% Zr, the average
elemental composition of each phase is presented in Table 1. In the matrix phase, the
concentrations of Ti, V and Cr are relatively close to the nominal values, but very small for
zirconium. The zirconium is essentially found in the bright phase. It is known that titanium
is totally miscible in zirconium while chromium and vanadium solubility in zirconium are
small [22]. This may be the reason why the concentration of titanium is high in the bright
phase, while the concentrations of vanadium and chromium are low.

Table 1. EDX analysis showing the elemental composition of phases of Ti16V60Cr24 + 4 wt.% Zr alloy.

Element Matrix Phase Bright Phase

Ti 14.2 33.8

V 62.4 5.1

Cr 22.9 1.8

Zr 0.5 59.3

Figure 2 represents the micrographs of the cold-rolled (a) and the ball-milled (b) Ti16V60Cr24
alloys. Cold rolling leads to the formation of a plate, whereas ball milling results in
fine powder.
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Figure 2. Backscattered electron micrographs of (a) one-time cold-rolled Ti16V60Cr24 alloy; (b) 5-min
ball-milled Ti16V60Cr24 alloy.

X-ray diffraction (XRD) patterns of as-cast Ti16V60Cr24 alloys in various states are
shown in Figure 3. All patterns show a BCC structure. Their crystal parameters are
presented in Table 2.

We see that the differences of lattice parameters between the various states are small.
The as-cast Ti16V60Cr24 with and without Zr have similar crystallite size and microstrains
but mechanical deformation by cold rolling or ball milling reduced the crystallite size.

For the alloy doped with 4 wt.% Zr, peaks corresponding to the secondary phase (seen
in SEM micrographs) were expected. However, the XRD pattern only showed a pure BCC
phase. As the phase fraction is quite low (only 7%), the Bragg peaks of this phase should
have low intensities. Moreover, as the crystallite size of the BCC phase is quite small, the
peaks are quite broad. Consequently, the combination of low peak intensities and their
high width makes the secondary phase practically invisible in XRD spectra.
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Figure 3. X-ray diffraction patterns of Ti16V60Cr24 (with and without Zr addition) in various ini-
tial states.

Table 2. Crystal parameters of Ti16V60Cr24 at various initial states. Numbers in parentheses are the
error son the last significant digit.

Sample Lattice Parameter (Å) Crystallite Size (nm) Microstrain (%)

as-cast 3.0295 (4) 36.1 (2) 1.08 (2)

with 4 wt.% Zr 3.0331 (6) 35.0 (2) 1.36 (2)

CR-1X 3.0325 (4) 26.2 (1) 1.02 (2)

BM-5 min 3.0310 (4) 28.1 (1) 1.05 (2)

3.2. First Hydrogenation

The kinetic curves of the first hydrogenation of all samples are shown in Figure 4. Each
hydrogenation was performed at room temperature and under 3 MPa of hydrogen. The
as-cast Ti16V60Cr24 alloy showed a very slow absorption, reaching full capacity only after
26 h. Alloying with 4 wt.% of zirconium significantly improved the activation time. Full
capacity was achieved after only 20 min. Both alloys attained the same maximum capacity
of 3.8 wt.%. This value agrees with the calculated theoretical full capacity (H/M = 2 or
3.94 wt.%). As seen for similar systems, the enhanced kinetic of the alloy with zirconium is
explained by the presence of a zirconium-rich secondary phase that acts as a gateway for
hydrogen [20,23,24].

Better activation kinetics could also be achieved by mechanical deformation. As seen
in Figure 4, ball milling or cold rolling of Ti16V60Cr24 significantly improved the activation
kinetics. The alloy that has been cold rolled once showed a fast kinetics, but a slightly
reduced capacity compared to the unprocessed alloy. Ball milling for 5 min increased the
kinetics, and the loss of capacity was minimal; however, it should be stressed that even
though ball milling was for a very short duration, the whole process is much lengthier
than cold rolling. Cold rolling was done in air, and, hence, the processing time was very
short (just placing the powder between the steel plates and passing them between the rolls
once). To perform ball milling, the crucible must be loaded in an argon-filled glove box.
The crucible is then taken out of the glove box, installed on the milling machine and when
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the milling is terminated, the crucible has to be reintroduced inside the glove box to unload
it. Another advantage of cold rolling is that it could be performed in a continuous manner
while ball milling is a batch process.
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Figure 4. Activation curves of all samples at room temperature under hydrogen pressure of 30 bars.

The XRD patterns of the alloys after hydrogenation are shown in Figure 5. The
hydrogenation transformed the BCC phase into a BCT structure for all alloys. Other
unidentified peaks appear in all patterns. Since only one peak is unidentified in each XRD
pattern, it is difficult to associate it with a particular crystal structure. Additionally, since
the diffractograms were acquired in the air, the samples could partially desorb hydrogen
and form oxides. The crystallographic parameters of activated samples are given in Table 3.
We see that, for the BCT phase, the lattice parameter a is the same as the lattice parameter
of the cubic phase in the as-received state while the c parameter is close to a

√
2.

Table 3. Crystal parameters of Ti16V60Cr24 alloys after hydrogenation.

Lattice Parameters (Å) Crystallite Size (nm) Microstrain (%)

as-cast a = 3.0220 (3)
c = 4.2408 (9) 12 (2) —

+4 wt.% Zr a = 3.0350 (2)
c = 4.2640 (5) 40 (1) 1.09 (1)

CR-1X a = 3.0258 (2)
c = 4.2586 (4) 39 (5) 1.01 (2)

BM 5 min a = 3.0136 (1)
c = 4.2912 (2) 28 (3) 1.00 (1)
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Figure 5. The XRD patterns of all studied Ti16V60Cr24 alloys after hydrogenation (? is identified as
the unknown phase).

3.3. Air Exposure Effect

For industrial production, it may be beneficial to have alloys that could be exposed
to the air without losing their hydrogen storage properties. As the alloy with 4 wt.% Zr
showed both good kinetics and high hydrogen storage capacity, we decided to study the
effect of air exposure and subsequent cold rolling on it. Figure 6 shows the activation curves
of Ti16V60Cr20 + 4 wt.% Zr crushed in air and after different times of air exposure. The
sample crushed in the air has practically the same incubation time (~1 min) as the sample
crushed in argon, shown in Figure 4. It also has a good hydrogen capacity of 3.8 wt.%. After
1 day of air exposure, the incubation time is longer, the sample starts absorbing hydrogen
after 65 min, but the hydrogen capacity remains 3.8 wt.%. To reduce this incubation time,
one cold rolling pass has been done. That process shortens the incubation time to 3 min,
but the hydrogen capacity slightly decreases to 3.7 wt.%. After 1 week of air exposure, the
sample did not absorb hydrogen even after a few hours. However, cold rolling made the
sample absorb in a few minutes but with a slight loss of capacity. For the sample exposed
to the air for 1 month, one cold rolling pass was not sufficient to reach activation. However,
five cold rolling passes resulted in an incubation time of about 20 min and total absorption
of 3.4 wt.% of hydrogen in about 1 h.

3.4. PCI Curves of Ti16V60Cr20 + 4 wt.% Zr

The thermodynamic properties of the alloy were determined by measuring the des-
orption pressure composition isotherms (PCI) at 298, 308 and 323 K. The corresponding
Van’t Hoff plot is presented in Figure 7. The matching pressures are chosen by considering
the half-desorbed capacity (0.75 wt.%) of each PCI curve. The three PCI curves have the
same shape and exhibit a sloping plateau. This is due to the random solid solution nature
of the alloy which is associated with the distribution of the hydrogen binding energies
in the interstitial sites. The desorbed capacity goes from 1.4 to 1.6 wt.% with increasing
temperature. Knowing that those samples absorbed 3.8 wt.% of hydrogen means that
between 2.2 and 2.4 wt.% of hydrogen is left in this compound. It closely corresponds to



Hydrogen 2022, 3 309

the monohydride. The studied temperature range is small, but the pressure difference is
noticeable. Thus, the thermodynamic parameters can be deducted.
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Figure 6. First hydrogenation at room temperature and 3 MPa of hydrogen of Ti16V60Cr20 + 4 wt.%
Zr alloy crushed in air and after different times of air exposure.
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Figure 7. Desorption PCI curves of Ti16V60Cr24 + 4 wt.%Zr at 298, 308 and 323 K.

The Van’t Hoff plot gives the enthalpy and entropy values of (−41 ± 5) kJ/mol
and (−134 ± 14) J/(mol·K), respectively. The isotherm at 323 K is similar to the one
reported by Tamura et al. [25]. The enthalpy value of −41 kJ/mol is also in agreement
with the one given by Kazumi et al. [2]. Compared to other vanadium-based ternary
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alloys, such as Ti0.1V0.75Mo0.15 (∆H = 31 kJ/mol; ∆S = 130 J/(mol·K) and (Ti0.1V0.9)0.95Cr0.05
(∆H = 49 kJ/mol; ∆S = 138 J/(mol·K) [6], the enthalpy and the entropy tend to be in the
same range. These values are also similar to the ones of the pure vanadium (∆H = 40 kJ/mol;
∆S = 140 J/(mol·K) [26].

4. Conclusions

The following conclusions can be drawn from our study of the hydrogen storage
properties of the vanadium-rich BCC Ti16V60Cr20 alloy:

- The addition of 4 wt.% Zr is effective in improving the kinetics of the first hydro-
genation of the alloy. It results in a fast absorption kinetic and a maximum hydrogen
capacity of 3.8 wt.%.

- Air exposure results in an incubation time which increases with the air exposure time.
Cold rolling helps regenerate the alloy by decreasing the incubation time, but it leads
to a reduction of capacity.

- Enthalpy and entropy of hydride formation are −41 ± 5 kJ/mol −134 ± 14 J/mol/K,
respectively.
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