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Abstract: Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing
the global carbon-based energy matrix. Although studies in this area have often focused on the
fundamental understanding of catalytic processes and the demonstration of their activities towards
different strategies, much effort is still needed to develop high-performance technologies and ad-
vanced materials to accomplish widespread utilization. The main goal of this review is to discuss the
recent contributions in the H2 production field by employing nanomaterials with well-defined and
controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale
are especially interesting, as they allow us to unravel how activity varies as a function of these param-
eters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into
structure–performance relationships in the field of H2 production, allowing not only the optimization
of performances but also enabling the rational design of nanocatalysts with desired activities and
selectivity for H2 production. Herein, we start with a brief description of preparing such materials,
emphasizing the importance of accomplishing the physicochemical control of nanostructures. The
review finally culminates in the leading technologies for H2 production, identifying the promising
applications of controlled nanomaterials.

Keywords: hydrogen; nanomaterials; controlled synthesis; nanoengineering; nanocatalysis; hydro-
gen production technologies

1. Introduction

Hydrogen has been considered one of the most promising and flexible energy powers
that can provide heat, transport energy, and electricity by fuel cells, to name just a few [1,2].
However, it is mainly found in compounds rather than in its free state, which implies using
technologies to prepare it, demanding high amounts of energy [3]. Today, there are four
main sources for the commercial production of H2 with economic benefits, which are as
follows: natural gas, oil, coal, and electrolysis [4]. Among them, electrolysis is considered to
present a lower environmental impact from a life cycle assessment perspective; nevertheless,
this process has not reached the commercial maturity of other technologies yet [5]. Thus, the
high costs, energy consumption, and technical complications prevent the widespread use
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of H2. These are the reasons why H2 consumption is dominated by fertilizer production in
the ammonia industry, oil refining, methanol obtaining, and iron and steel manufacturing
currently [6], i.e., the molecule is just used in sectors where it is indispensable. However,
many efforts have been put into finding alternative hydrogen sources; among various, we
can highlight biomass, microbial electrolytic cells, biophotolysis, and light-driven processes.
In addition, alternative energy sources, such as solar, wind, geothermal, or nuclear, are
currently being used to produce hydrogen [7–10].

Apart from technical challenges for H2 production, other concerns are undeniable,
such as storage, transportation, safety, inclusion of the gas in the energy matrix, and green-
house gases emissions [11,12]. However, regardless of these issues, the future widespread
application of H2 is required, as increasing the molecule content in a particular process
prompts a decrease in the environmental impact and leads to greener energy sources [5,13].
As the hydrogen economy consists of catalytic and non-catalytic approaches, we herein
focus on catalytic-driven methods [13]. In this scenario, a variety of nanomaterials and
hybrid-catalytic components have been employed as nanocatalysts for H2 production
involving many chemical transformations, including water splitting, steam reforming, elec-
trolysis, and water–gas shift [14]. In fact, one can notice that the interest in hydrogen has
often been focused on the fundamental understanding of catalytic processes for hydrogen
production and the demonstration of applicability to different strategies. However, much
effort is still needed to develop high-performance technologies and advanced materials
to accomplish this purpose, in which the catalytic activity depends on the properties of
the material. Recent contributions in the H2 production field, catalyzed by nanostructures
with well-defined and controllable physicochemical features, are moving towards new and
stimulating developments.

The growing interest in nanocatalyst preparation is firstly motivated by their large
surface-to-volume ratio, which dramatically increases the number of actives sites at the
nanoparticles’ (NPs) surface and their interaction with different molecules/organic moi-
eties [15–19]. This has led to many possibilities for creating new materials and facilitating
chemical processes. Therefore, many scientists worldwide are dealing with how to combine
both homogeneous and heterogeneous catalysis to create breakthrough materials to bridge
the gap between them, i.e., connecting the two fields [20]. Thus, the so-called nanoengi-
neering is a branch of nanotechnology that provides nanostructure manipulation at the
sub-nano or atomic scale levels to optimize catalytic performances. In other words, creating
nanomaterials with precise control over size (quantum confinement), shape, composition
(mono-, bi-, and trimetallic materials), and structure remains a major research target [21].
However, these systems are interesting as they allow us to unravel how activity varies
as a function of these parameters and to obtain insights into the structure–performance
relationships of a particular H2 production method. We believe that the establishment of
structure performance relationships, by unraveling key compositions and morphologies,
is essential to optimize performance and enable the rational design of nanocatalysts with
desired activities and selectivity for a transformation of interest. Therefore, this would
allow the transition from a trial-and-error method to a design-driven approach in the
hydrogen production field.

This review comprehensively summarizes the main catalytic processes for H2 produc-
tion, with a brief overview of the techniques, covering steam methane reforming, water–gas
shift, electrolysis, and water-splitting, focusing on their fundamentals and most promising
nanocatalysts. Although steam natural gas reforming (methane, fossil fuel) is the most
industrially established process, alternative H2 production from (electrochemical or pho-
tochemical) water splitting is promising. Furthermore, electrolysis is considered more
environmentally friendly and presents a solid and rapid advance in the field, as well as
some other technologies [13,22]. Thus, we start with a brief description of preparing such
materials by discussing how different nanostructures’ size, shape, and composition affect
their activities in several H2 production approaches, summarizing the recent discoveries
in the field. Then, we turn our attention to the leading technologies for H2 production,
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identifying the promising applications of controlled nanomaterials in the field, highlighting
the current challenges. Therefore, the importance of developing highly efficient and stable
catalysts is discussed here. When possible, the state-of-art mechanisms based on theoretical
and experimental evidence will be highlighted herein.

2. Nanoscale Design Concepts of Nanocatalysts Applied for H2 Production

It is well-known that the origin of several unique properties of NPs arises from
their differences from their bulk counterparts. Physicochemical characteristics of NPs
and engineered nanocatalysts, including size, shape, composition, stability, and structure,
promote intrinsic surface properties, such as increased surface area and energy and surface
roughness/defects, directly affecting their catalytic performances [15]. In this context,
due to the great potential for application in different H2 production approaches, and the
possibility of improving or tailoring performances, nanomaterials in a variety of sizes,
shapes (spheres, cubes, octahedrons, rods, wires, plates, and others), compositions (e.g.,
Au, Ag, Pd, and Pt), and architectures (alloys, core-shell, hollow, etc.) have been pursued
for H2 production by different strategies, as shown in Figure 1 [23–30].
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Figure 1. (A–I) SEM and TEM images for a variety of nanomaterials with controllable sizes, shapes,
compositions, and structures that have been successfully reported for application in different H2

production technologies: (A) nanorods; (B) nanoplates; (C) nanosheets; (D) nanocubes; (E) concaves
cubes; (F) nanotubes; (G) hollow nanocages; and (H,I) core-shell nanospheres. (A) Adapted with
permission from ref. [23], Copyright 2018 American Chemical Society. (B) Adapted with permission
from ref. [24], Copyright 2020 Royal Society of Chemistry. (C) Adapted with permission from
ref. [26], Copyright 2013 American Chemical Society. (D) Adapted with permission from ref. [25],
Copyright 2020 American Chemical Society. (E) Adapted with permission from ref. [28], Copyright
2013 Wiley-VCH. (F) Adapted with permission from ref. [27], Copyright 2017 Elsevier. (G) Adapted
with permission from ref. [29], Copyright 2021 American Chemical Society. (H,I) Adapted with
permission from ref. [30], Copyright 2021 Elsevier.
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In this context, smaller sizes modulate the fraction of atoms on the topmost surface
of the NPs, leading to higher proportions of atoms at corners, terraces, steps, and edges;
also, it gives rise to quantum confinement effects. [31–33] Thus, by specifically controlling
some reaction conditions (e.g., temperature, time, stirring), solvent, reducing agents, and
stabilizers, it is possible to tune the size of a material, as well as other characteristics [34,35].
However, one has to bear in mind that the range of sizes matters depending on their appli-
cation. For instance, the literature has comprehensively discussed gold NPs for oxidation
reactions, in which NPs sizes lower than 10 nm are very efficient [18,36,37]. For H2 produc-
tion, the phenomenon can be similar, e.g., H2 obtained via preferential CO oxidation (PrOX)
showed that NP sizes lower than 10 nm presented higher performances [38]. However,
when studies use gold and exploit its surface plasmon resonance (SPR), the efficiency of
NPs smaller than 10 nm is low, due to the increased electron-surface collisions rate [39,40].
Zhang et al. studied the plasmonic size effect dependency on BiVO4 photoanodes for
solar water splitting, in which the maximum enhancement was found for gold NPs with a
diameter of 30 nm, while the resonant photon scattering effect was only notable for sizes
above 60 nm [41].

Besides size effects, NP properties are strongly dependent on their shape. Thus, the
tailoring of nanostructures’ performance can be achieved using versatile strategies for
precisely controlling their shape [42]. Recently, Gao et al. analyzed the shape effects on
photocatalytic hydrogen production via Pd/C3N4 photocatalysts under visible light. They
prepared Pd nanocubes and Pd nano-octahedrons and demonstrated that nanostructures
bound by {100} facets could significantly promote the formation of H2, HOCH2OH, and
HCOOH, while the obtainment of the CH3OCH2OH product was preferred on exposed
{111} facets; they also attested that photocatalytic activity improved by size reduction [43].
This effect is obtained due to differences in the surface energy of each crystal facet. Ac-
cording to the following Equation, surface energy (γ) can be designated as the free energy
excess per unit area for producing a specific crystallographic face [44]:

γ = (1/2)Nbερ

where Nb is the number of bonds that need to be fragmented to produce the surface, ε
is the bond strength, and ρ is the surface atoms density. Taking a face-centered cubic
cell as an example (metals such as gold, silver, copper, palladium, and platinum present
this cell), if we fix a lattice constant of a, the surface energies of the low-index crystallo-
graphic facets that typically encase metal nanomaterial may be assessed as γ100 = 4(ε/a2),
γ110 = 4.24(ε/a2), and γ111 = 3.36(ε/a2), indicating a surface energy sequence increasing as
following: γ111 < γ100 < γ110, which also could be clearly shown in Figure 2.
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When one deals with bimetallic (or trimetallic) nanostructures, geometric effects also
occur, but now as a function of composition, improving the interaction with the substrate.
In other words, the adsorption can be modulated to be strong enough with the starting
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molecule, so the reaction can occur but present weak strength with the products, so they
are not bounded too intensely and can leave the catalytic site available for other substrate
molecules. However, the spatial arrangement of surface atoms is not the only effect in
the systems with more than one metal; specific atoms on the surface can bear different
functionalities, and the interaction between elements with different electronegativities
alters their electronic structure and activity. In simple terms, we are discussing the synergy
effects among them [46]. Although challenging, catalyst systems’ functionality arises
from different designs, such as dendritic, hollow, and core-shell nanostructures, among
others [47]. Thanks to the joint efforts from scientists worldwide, many protocols are
available to prepare bimetallic nanomaterials, which can be extended to trimetallic systems
or catalysts comprised of more than three metals [48].

Interestingly, exploiting such electronic and geometric effects emerging from the syn-
ergy of such systems, bimetallic examples are more common to find in the literature for
H2 production. For instance, Muthurasu et al. prepared hollow nanoarrays comprised
of ruthenium, cobalt, and iron that presented remarkable activity in oxygen evolution,
hydrogen evolution, and oxygen reduction reactions [49]. In addition, Li et al. electrochem-
ically prepared PtRu bimetallic NPs for a pH-universal hydrogen evolution reaction with a
mass current density of 109.9 mA µg−1 (in 0.5 M H2SO4 at −30 mV) and 198.7 mA µg−1

(in 1.0 M KOH at −100 mV) [50]. Yolk-shells spheres comprised of CoNi2S4 were also
used for H2 production via water splitting with high electrocatalytic activity and robust
stability [51]. The synthetic procedure was a combined hydrothermal sulfidation with
gas-phase phosphorization. Interestingly, the authors showed the elegant method of syn-
thesis, in which they prepared uniform CoNi-glycerate solid spheres, from which CoNi2S4
yolk-shell spheres were obtained via hydrothermal conditions thioacetamide solution.
Then, P-CoNi2S4 yolk-shell spheres were achieved by gas-phase phosphorization of the
previously obtained nanostructures (Figure 3).

To close this topic, it is important to mention that plasmonic catalysis is currently at the
front line in photocatalysis, since it assists the acceleration and control of several molecular
transformations due to the localized surface plasmon resonance excitation [52]. Specifically,
an electromagnetic wave’s oscillating electric field component induces the localized collec-
tive oscillation of conduction electrons in the metal NPs, improving their performance [53].
From an environmental perspective, the possibility of harvesting energy from sunlight
to transform it into chemical energy is one of the most vital points of plasmonic catalysis
and is highly desired in a hydrogen economy [54]. Thus, metals such as Au, Ag, and
Cu, in which the localized surface plasmon resonance excitation occurs at the visible and
near-infrared ranges, have been the subject of extensive research in recent years [55]. In
line with the most prominent processes in the catalysis field, the plasmonic phenomenon
is strongly affected by the size, shape, and composition of the NPs. Although discussing
plasmonic catalysis is not the focus of this review, we cannot disregard its importance
in providing a crucial bridge from fundamental science to applications; also, we cannot
ignore that the NPs’ nanoengineering plays a key role in this matter, overcoming intrinsic
limitations of conventional semiconductor photocatalysts [56]. In this context, recently,
Mo et al., with atomic precision, tailored Au–Ag core-shell NPs for electrochemical water-
splitting plasmonic H2 evolution. Under optimized conditions, they obtained an increase of
112.5% in the efficiency of their system when compared to light-off conditions, presenting
a performance 62.1% higher than the commercial Pt-based catalyst [57]. Thus, it is vital
to associate physical-chemical controlling of NPs with light energy for future improved
performances, which will be further discussed herein in the photochemical water-splitting
reaction section.
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3. Main Catalytic Processes for H2 Generation

The following sections present some of the most promising catalytic methods for H2
production. We start with methane reforming, which is well-understood and established
at an industrial scale for converting natural gas into CO and H2, but we also discuss
ethanol reforming, which is a promising route for the sustainable production of H2; then,
we follow our discussions on the water–gas shift reaction. Finally, we analyze the most
promising scalable alternatives to prepare H2 with high purity, including water electrolysis
and photochemical water splitting [13,58]. All the technologies include a brief introduction
of the processes.

4. Methane Reforming

Natural gas reforming is the leading industrial process for H2 production, due to its
lower costs and high efficiency relative to alternative processes [20]. Although several
hydrocarbons can be used, methane (CH4), sourced from natural gas, is the most common
substrate [59]. Indeed, CH4 reforming contributes to 50% of the H2 obtained globally [60].
Nevertheless, one must bear in mind that, although it is a near-term H2 production and
presents the benefit of producing H2 rich in syngas, the process generates significant
quantities of the greenhouse gas CO2 [59].

Specifically, CH4 reacts with water to yield syngas—CO and H2—in a reaction known
as steam methane reforming (SMR), as represented by Reaction 1. Moreover, syngas can
also be produced by reacting CH4 with CO2, as defined by Reaction 2, known as dry
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methane reforming (DMR). The (reverse) water–gas shift reaction (WGS or RWGS) is also
noteworthy, as it occurs at equilibrium at the high temperatures employed on both SMR
and DMR processes (Reaction 3), leading to similar reactor compositions [61]. In fact, in
some scenarios, the same catalyst can be employed in both SMR and DMR processes, as
demonstrated by Wang et al., who produced a sintering-resistant Ni@SiO2 catalyst for both
reactions [62].

CH4 + H2O↔ CO + 3 H2; ∆H298K = 206 kJ·mol−1 (1)

CH4 + CO2 ↔ 2 CO + 2 H2; ∆H298K = 248 kJ·mol−1 (2)

CO2 + H2 ↔ CO + H2O; ∆H298K = 41 kJ·mol−1 (3)

The main challenges of CH4 reforming processes are catalyst deactivation due to
carbon deposition, sintering processes as high temperatures (up to 1000 ◦C) are usually
required, and heat transfer issues that can lead to a significant temperature gradient. Indeed,
the nanoscale structure of the catalyst is of great importance in avoiding coke formation,
which is accomplished with the control of the particle size of the active metal and/or
the support morphology [63,64]. However, from a process intensification standpoint, the
heat transfer to the reaction site is not easily solved by material synthesis strategies since
catalysts are generally poor thermal conductors, although they can facilitate the process [65].
Recently, Meloni et al. reported a microwave heating system for SMR, employing silicon
carbide monoliths coated with a ceria/alumina slurry and impregnated with Ni, which
were susceptible to microwave heat transfer. Attempts were also made by Mortensen et al.,
who developed CoNi NPs that were effective both as magnetic receptors for induction
heating and active catalytic sites for SMR, reaching temperatures above 800 ◦C and CH4
conversion rates surpassing 90% for over 300 h on stream [66].

In a recent review, Jang et al. found that both noble (Rh, Ru, Pd, Pt, and Ir) and
non-noble metals (Ni and Co mainly) can be used for the DMR, wherein noble metals
stand out for their lower tendency to deactivate through carbon formation, while non-noble
metals are still considered despite their rapid deactivation due to their cost-effectiveness
and high activity [67]. Thus, opportunities to improve their efficiency are unquestionable.
They also concluded that strong metal–support interaction (SMSI) with homogeneous
solid solutions, such as RhMg2O4, NiO-MgO, NiAl2O4, MgAl2O4, LaNiO3, and LaSrCoO3,
leads to better dispersion and smaller sizes of active catalytic sites, which in turn leads
to less deactivation by sintering or carbon deposition [67]. Zeaiter et al. obtained similar
conclusions regarding the benefits of basicity and SMSI and also point out that SMSI
requires regulation, since it may also increase reducing temperatures for catalytic activation
as particle size decreases [68]. In this context, a review by Usman et al. on various
parameters of the DMR found that nickel-based bimetallic and monometallic catalysts
are the most promising alternatives to avoid catalyst deactivation due to coking [69]. In
fact, Guczi et al. have shown that adding gold to a Ni/MgAl2O4 catalyst avoided the
deposition of graphitic carbon during DMR, consequently preventing the deactivation of
the catalyst [70]. Zeng et al. also managed to reduce catalyst deactivation by modifying
Co/Al2O3 catalysts with mixed rare-earth elements, which led to an active catalyst and low
carbon deposition at 800 ◦C during 320 h on stream [71]. Novel approaches to the DMR
are also being considered, such as the plasmonic photocatalyst developed by Halas et al.,
which features Cu NPs acting as antennae to absorb light and reactive sites comprised of
Ru single atoms (SAs) [72]. This plasmonic photocatalysis process attained 50 h of stability
on stream with 99% selectivity at room temperature and atmospheric pressure, which was
possible since Ru SAs do not promote RWGS and carbon deposition as other forms of Ru
would do [72].
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Studies on the catalysis process or catalyst design on the efficiency of methane re-
forming improvement/coking resistance are essential, although evaluating the materials’
structure during the process is challenging, and deep knowledge of how they change
during the reaction is not straightforward. However, attempts to understand the process
are available in the literature. For example, Niu et al. have shown through DFT calculations
and experimental kinetic data that a Pt monolayer on a Ni@Pt core-shell structure avoids
carbon deposition during SMR by modifying surface electron density, leading to reactive
OH* species that activate CH4 rather than a CH4 direct dissociation mechanism, as would
occur on monometallic Ni catalysts [73]. Furthermore, Azancot et al. studied the influence
of the synthesis method on the activity of Ni-Mg-Al catalysts on SMR and the level of
interaction of the metals [74]. The impregnation-coprecipitation method yielded the more
active catalyst by reducing NiO to Ni0 while still maintaining the small size of Ni0 NPs
and their distribution, which were strongly interacting with the spinel-type MgAl2O4
support [74]. Nevertheless, carbon deposition was minimal at the catalyst synthesized
by the coprecipitation method, which is assumed to be due to the presence of NiO-MgO
solid solution on this catalyst, since the alkaline nature of MgO is known to avoid carbon
deposits [74].

In addition, since carbon deposition occurs on the acid sites, basic supports were also
found to avoid coking and promote the activation of weak acid CO2 [67]. Metal oxides
with reducible properties and the capacity to store oxygen (e.g., CeO2) are preferable as
supports and have been extensively studied. Interestingly, the reduction in coke formation
with high oxygen storage capacities materials arises from lattice oxygen interactions with
the adsorbed carbon components [75]. In addition, highly dispersing active sites over
CeO2-based catalysts were found to prevent coking, as shown by Safavinia et al. The
study showed that Ni doping in CeO2-ZrO2 NPs improved the catalytic activity for the
decomposition of methane. In this case, the authors obtained Ni on the structure by a two-
step co-precipitation/molten salt synthesis, increasing oxygen vacancy concentration [76].
Knowledge regarding the effect of the CeO2 preparation method is also available for
understanding carbon deactivation. By thermal decomposition, hydrothermal, sol-gel, and
precipitation techniques, the authors obtained Ni/CeO2 catalysts for DMR; using XRD,
TEM, and TPR, crystalline structural differences raised for the CeO2 support (in which
the precipitation method promoted the lowest amount of carbon formation), but also to
the Ni active species, attesting that the catalyst performances were similar, with coking
resistances rather different [77]. Ni et al. used commercial and homemade (hydrothermal
and precipitation methods) CeO2 as support for Ni and also evaluated the preparation
methods in the system’s performance. The hydrothermal material presented more oxygen
vacancies and five times more initial conversion than the other two CeO2 counterparts [78].

However, the CeO2 support morphology plays a key role in the process, although
it is still hardly exploited for methane reforming compared to other catalytic systems.
Wang et al. prepared CeO2 nanorods ({200} and {220} planes), nanocubes ({100} planes),
nano-octahedrons ({110} planes), and NPs (mainly {100} planes) and used them to support
Ni species for DMR (Figure 4).

Beyond the observation that Ni species were incorporated into the support lattice,
occupying the vacant sites, and induced an increase in oxygen vacancies, they showed
that morphology/crystal-plane affected the catalytic performance. Among them, the
nanorod-based catalyst was the most efficient and stable; they attributed its superior
aspects to the stronger interaction among the nanorods-shaped CeO2 and the Ni species.
They also observed that the oxygen lattice mobility and vacancies were shape-dependent
and aided the carbon deposition elimination [79]. Tu et al. took a different approach to
studying the reaction. They prepared CeO2 porous flowers containing NiO NPs, which
were reduced using hydrogen, and immobilized them on an alumina-silica fiber network.
The nanoflowers were essential for Ni dispersion, no-aggregation at high temperature, and
resistance to coke deposition. Three Ni contents (2.1, 3.4, and 4.6%) were used, and the
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3.4% presented the best performance. Moreover, comparisons with a system without the
flower showed that the proposed system reached enhanced conversion with less metal [80].
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Society of Chemistry.

Although most of the examples presented herein with controlled supports were non-
noble metal-based catalysts, noble metals were also implied for the reaction with great
performances. As expected, different-shaped Ceria support is responsible for different
performances; however, the metallic active phase is also essential and can completely
change the tendencies observed before. In addition, similar features that were essential
before are the main reasons for discussing the improved performances of some catalysts.
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For example, He et al. prepared CeO2 nanorods, bounded to {110} facets, nanocubes,
bounded to {100} facets, and nanopolyhedra, bounded to {111} facets, as support for Ru
NPs. The first two presented higher oxygen vacancies, a feature attributed to the main
property for their increased performance [81], which were also discussed before, showing
the high importance of support preparation.

Generally, all the studies are essential and systematically present the support and active
species action, but it is not easy to propose a generalization. Theoretical calculations bring
important insights regarding the materials/reaction conditions/metal support interactions;
however, the literature does not suggest specific conditions for controlling morphology to
achieve a certain performance, bringing opportunities for more profound studies.

5. Ethanol Steam Reforming (ESR)

Among liquid substrates for H2 production, ethanol is one of the most promising and
sustainable alternatives due to its renewable and biodegradable nature, high availability,
low toxicity, and simple and easy transportation [82]. The ESR reaction consists of the
following Reactions 4–6, under a temperature range of 200 to 650 ◦C at atmospheric
pressure [83]:

C2H5OH + 2 H2O→ 2 CO2 + 6 H2; ∆H298K = 174 kJ·mol−1 (4)

CO + H2O→ CO2 + H2; ∆H298K = −41 kJ·mol−1 (5)

CO + 0.5O2 → CO2; ∆H298K = −283 kJ·mol−1 (6)

The literature comprehensively discusses several noble or non-noble metals over a
myriad of oxides for this application, not focusing on shape-controlling, although size
distribution is always in the spotlight [82]. Thus, following our target, the morphology
effects on ESR will be explored mainly for ceria-based catalysts due to the more profound
knowledge available for their synthesis.

The catalytic role of ceria is mainly related to its redox (Ce4+/Ce3+) properties and the
average number of oxygen vacancies due to surface defects [84]. Such features can be mod-
ulated by doping processes. For example, high dispersion of Ni NPs boosted metal–support
interaction, and abundant oxygen vacancies have been accomplished by doping CeO2 with
praseodymium (Pr) with different concentrations by a sol-gel preparation. The authors
achieved highly active SRE catalysts without sintering, increased coke deposition resistance
following a higher concentration of oxygen vacancies, and complete ethanol conversion for
more than 7200 min without activity loss at 600 ◦C and atmospheric pressure, when Ni was
loaded on 20% Pr-doped ceria. They confirmed the increased oxygen vacancies by EPR,
Raman, XPS, and DFT calculations [85]. Furthermore, lanthanum (La), terbium (Tb), and
zirconium (Zr)-doped CeO2 supported Ni catalysts were prepared by a sol-gel method, in
which the adjustment of catalytic performance, metal-supported interaction, Ni dispersion,
size, and surface oxygen vacancies were achieved. However, the authors described the
La-doped ceria-supported Ni catalyst as pursuing the most improved properties, which
were explained by DFT calculations, showing that this doping promoted more vacancy
generation and facilitated the dissociation of water during the reaction [86].

Hydrogen spillover on the CeO2 support also depends on the morphology, size,
stability of Ce 4f levels, and active-phase dispersion [87]. Cobalt and nickel are considered
the most promising catalysts for industrial ESR, and CeO2 contributed significantly to their
catalytic activity and stability, due to high oxygen mobility and storage capacity [88,89].
However, fundamental knowledge of catalyst deactivation, carbon deposition, reaction
mechanism, sintering, metal oxidation, and metal−support interactions is lacking [90].
Shape-control procedures for preparing ceria associated with these metals are also a strategy
to tune catalytic properties, stability, and long-term utilization; however, we feel that oxygen
vacancies are not always discussed [91]. For example, Araiza et al. recently studied how
precipitation or hydrothermal-prepared CeO2 nanostructures (particles, rods, and cubes),
when used to obtain 10 wt.% Ni/CeO2, would affect carbon deposition during ESR. Apart
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from the metal particle size and dispersion, its interaction with different-shaped ceria was
essential. They discovered that Ni supported on CeO2 rods showed improved activity and
H2 yield at 550 ◦C for 24 h under stream and lower amount of carbon deposits, which
were attributed to the catalysts’ enhanced oxygen storage capacity and Ni dispersion [92].
Moraes et al. also studied the ceria morphology (nanocube, nanorods, and flower-like)
effect in Ni-based catalysts, but for low-temperature ESR and found out that the carbon
formation was higher over the CeO2 nanocubes catalyst, due to more Ni carbide phase
development [93]. It is worth mentioning that similar studies were performed with metals
other than Co and Ni, such as Cu over CeO2, to attest to its performance [94].

Moreover, scientists have focused on controlling their physicochemical features by
controlling their sizes, shape, composition, and structure to enhance the redox process
and increase the oxygen vacancies at ceria-based catalysts. For example, it has been
demonstrated that manipulating the NPs’ size and shape (e.g., nanocubes, nanorods and
nanowires) strongly affects their properties, making it an efficient strategy for maximizing
performance [95,96]. In this case, ceria nanostructures displaying sizes below 20 nm present
substantial enlargement in their cell parameters and an increased quantum confinement
effect, which facilitates the reduction of Ce4+ to Ce3+ ions and leads to an increased amount
of oxygen vacancies. In the past few years, significant advances have been achieved
by linking the shape of CeO2 supports with catalytic performance. In this context, one-
dimensional CeO2 nanostructured materials have received tremendous attention due to
their unique properties derived from low dimensionality and high surface area. Our group
demonstrated high-yield synthesis (>97%) of Ce0.9Sm0.1O2-δ nanowires as an outstanding
nanocatalyst support, showing superior activity, selectivity, and stability toward ethanol
steam reforming. [97] The Ce0.9Sm0.1O2-δ nanowires were employed as physical templates
for the deposition of Ni by a wet impregnation method without utilizing any stabilizing
agent, as shown in Figure 5A–G. [97] The Ni/Ce0.9Sm0.1O2-δ nanowires displayed a high
specific surface area, increased oxygen vacancies, and finely dispersed Ni particles with
significantly higher metallic surface area than the catalysts prepared from commercial ma-
terials with similar characteristics compositions. Such singular properties were evidenced
in the outstanding performances of the Ni/Ce0.9Sm0.1O2-δ nanowires towards ethanol
steam reforming (Figure 5H). The nanowires exhibited high yields for hydrogen production
(∼60% of selectivity) and exceptional stability, with no loss of activity after 192 h of reaction
at 550 ◦C [97].

Noble metal-based catalysts supported on ceria are also studied, and as expected,
the activate phase has a high effect, and CeO2 shape-controlled synthesis can present a
different trend than that observed for Co and Ni metals. Wang et al. prepared Ir/CeO2 over
polyhedral and nanorods ceria shapes and studied their stability and efficiency over ESR.
According to the authors, they presented different performances due to water activation
abilities. After stability tests at 923 K, the CeO2 NPs kept their original shape, while the
CeO2 nanorods changed to polyhedrons. Higher ethanol conversion and hydrogen yield
were obtained over the polyhedral Ir/CeO2 catalyst, probably due to the higher migration
of C2 intermediates [98]. CeO2 nanocubes, nanorods, and flower-like structures were
used to obtain Pt/CeO2 catalysts for ESR. The Pt/CeO2 nanorod catalyst was the most
stable, and XPS revealed that the Pt reduction is preferred on these nanostructures, due
to the increased reduction of Ce4+ into Ce3+, which can promote a different deactivation
mechanism compared to the other morphologies [99].
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6. Water–Gas Shift Reaction

The water–gas shift (WGS) reaction, represented in Reaction 7, is an essential reaction
in the industry for large-scale H2 production [14,100–102],

CO + H2O↔ CO2 + H2; ∆H = −41.1 kJ mol−1 (7)

Commercially, this reaction is conducted in a two-step process, which is as fol-
lows: high-temperature shift (573–723 K) over Fe–Cr based catalysts and subsequent
low-temperature shift (473–523 K) over Cu–Zn catalysts [103]. Yet, these catalysts suf-
fer from low activity and stability and require pretreatment and regeneration [14]. One
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has to bear in mind that the activity of the catalysts for the WGS reaction can be further
improved by microwave-assisted heating [104], high-gravity environment [105], light-
assisted approach [106,107], electrochemical processes [108,109], or heat recirculation en-
vironment [110]; however, the catalyst design is essential for the success of the chosen
enhancement process. Thus, different metal catalysts have been investigated, opening pos-
sibilities for future alternative industrial catalysts depending on the operating conditions;
also, MSI and synergetic effects between different metals can aid the reaction. For example,
under light irradiation, a CuOx/Al2O3 (Figure 6A) catalyst containing 19 wt.% displayed
outstanding catalytic activity (122 µmol gcat

−1 s−1 of H2 evolution and >95 % of CO con-
version) [107]. The activity was found to be even superior to noble metal-based catalysts
(Figure 6B). Significantly, this light-driven WGS process costs no electric/thermal power
but attains 1.1 % of light-to-energy storage. The enhanced performance of the solar-driven
WGS reaction over CuOx/Al2O3 can be ascribed to the combined photothermocatalysis
and photocatalysis (Figure 6C); nevertheless, the catalyst choice was crucial; although this
material showed CO conversion similar to its Fe-based counterparts, a reduction over
200 ◦C working temperature was possible.
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Figure 6. (A) HAADF-TEM of the CuOx/Al2O3 catalyst. (B) H2 evolution rates and CO conversion of
CuOx/Al2O3-19, CuOx/Al2O3-2, Pt/Al2O3-2, and Au/Al2O3-2 catalysts. (C) Schematic illustration
of photothermocatalysis and photocatalysis of WGS reaction over CuOx (Cu/Cu2O). Reproduced
with permission from [107]. Copyright 2019 Wiley.

Non-noble metals, such as Fe [111,112], Cu [113,114], Ni [115–117], and Zn, have
been studied as either catalysts or dopants for noble metal catalysts [118–122]. Since
Cu-based catalysts are industrially important for the WGS reaction, studies using this
metal are common, in which fundamental insights into the mechanisms and pathways
underlying the observed performances were not completely understood. Nevertheless,
developing design strategies to obtain specific facets with improved performance is not easy
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due to structural complexity. In this case, Cu2O nanocubes, nanoctahedra, and rhombic
dodecahedra, bounded mainly with {100}, {111} and {110} facets, were synthesized to
obtain information on the nanocrystals’ activity for low-temperature WGS reactions [123].
The authors observed that the nanocubes were the most active, while nanoctahedra were
inactive. DFT calculations demonstrated that the Cu–Cu suboxide (CuxO, x ≥ 10) interface
of the {100} surface is the active site. Following another course usually observed in the
literature, such a study mainly attributed the performance to a facet-dependent surface
poisoning of the active site, due to surface formate and hydroxyl intermediates stability
(consequently blocking active sites of the nanoctahedra), rather than an inherent facet-
dependent activity. Formerly, the authors immobilized the nanocubes onto ZnO and
obtained a high-active catalyst for the reaction [123]. One can notice that this is an incredible
example of how previous knowledge of the active species structure/action mechanism
allows for the obtaining of highly active catalysts. Interestingly, Li et al. also performed
investigations on the mechanism of low-temperature WGS reactions [124]; however, they
used cooper oxide nanocrystals bounded with {100}, {111} and {211} facets. They showed
that nanocrystals bounded by {211} were found to be the most stable surface for Cu sites;
once d-band center values, which lead to the augmented adsorption strength of CO and
H2O adsorbates when these values increase, shows the tendency {211} > {100} > {111} facets.
Although DFT studies showed that the carboxyl path is the most favorable mechanism over
the three copper oxide surfaces, with H2O dissociation as the rate-determining step, the
decrease in the coordination number causes a gradual surface energy decrease, illustrating
the {211} facet as the most stable surface; consequently, it is the best catalyst. Once again,
such a type of study puts forward the rational design of active Cu-based catalysts for
the reaction.

We have shown that associating active metal species with CeO2 support is interesting
for methane and ethanol reforming; for the WGS reaction, the same can be said. For exam-
ple, Lykaki et al. prepared CuOx/CeO2 binary oxides to study nanopolyhedra, nanocubes,
and nanorods’ effects on the reaction. According to their findings, the nanorods showed
higher reducibility, oxygen vacancies, and mobility of oxygen species, affecting the interac-
tion among copper and ceria metals and their redox cycles. Following these conclusions,
the nanorods presented the best activity, reaching the thermodynamic equilibrium con-
version at 350 ◦C [125]. When hydrothermally prepared CeO2 nanoctahedra, nanocubes,
and nanorods were used as support for Cu, the trend was different from the one observed
for the binary oxides [113]. In this case, the CeO2 nanoctahedra was the best support for
the catalyst preparation, leading to the highest Cu dispersion, SMSI, and a higher amount
of copper oxide relative to their CeO2 counterparts; they also reached the highest CO
conversion (91.3% at 300 ◦C). The authors also discussed that mono and poly coordinated
carbonates were probably the reaction intermediates at low temperatures, supported by
DRIFTS spectra.

Interestingly, alloying Cu with Pt can also be an excellent strategy to achieve H2
production with high purity [111]. The combination of PtCu in a bimetallic catalyst allowed
the electrochemical water–gas shift process at room temperature, with a faradaic efficiency
of approximately 100%. The water was reduced to H2 at the cathode, and the CO was
oxidized at the anode. The material has achieved a twelve-fold enhancement in the current
density (70.0 mA·cm−2) at 0.6 V compared to a commercial Pt/C catalyst and remained
stable for more than 475 h. The superior activity of the alloy catalysts was rationalized
as an effect of the lower probability of electron transition from the core level to the 5d
bands of Pt. The phenomena may be caused due to the partial filling of the 5d bands
of Pt by the electrons transferred from Cu, reducing the amount of empty 5d states and
lowering the d-band center of Pt atoms. As a result, a weakening of the CO adsorption
on the Pt atoms occurs. Furthermore, the literature gives more examples of alloying Cu
with Pt to lead to an improved WGS catalyst. Temperature-programmed desorption and
DFT revealed that the Cu/Pt catalyst binds CO more weakly than a counterpart Pt catalyst,
resulting in a considerable reduction in CO poisoning of the Cu/Pt surface compared to
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Pt. Additionally, DFT calculations have demonstrated that water can be easily activated
by the alloyed catalyst and, at the same time, interact with the products of that reaction
and formate intermediates relatively weakly, thus, preventing poisoning of the catalyst
surface [126].

Although the commercial catalysts are non-noble, the last example presented a suc-
cessful catalyst using a noble metal. Thus, due to their endurance against corrosion and
oxidation, noble metals have also been extensively explored for WGS applications and
proved to be promising [127]. The catalyst activity of metals, including Pt [128–131],
Rh [132,133], Ir [101], Au [134–137], Pd [119], and Ag, has demonstrated to be strongly de-
pendent on many variables, such as the method for catalyst preparation, physical-chemical
parameters (such as shape, size, composition), metal loading, nature of the support and,
presence of promoters. [138–141]. In this context, the support can play a crucial role in the
WGS reaction catalyzed by Pt NPs. At 240 ◦C, a 4% Pt/Mo2C catalyst (Figure 7A) exhib-
ited a reaction rate of 227 µmol/gcat·s. Interestingly, under the same conditions, a rate of
54 µmol/gcat·s was measured for a commercial Cu−Zn−Al WGS catalyst, suggesting that
high rates for the Pt supported on molybdenum carbide (Mo2C) were disclosed to be related
to a high density of active sites at the perimeter of the Pt particles (Figure 7B,C) [142]. Here,
it is possible to conclude that not just the metal choice was essential, but also the support.
The geometric effects were also significant regarding the importance of particle perimeter.
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Figure 7. (A) Arrhenius plots of the WGS reaction rates for 2.7% Pt/Al2O3, 5% Pt/CeO2, 2% Pt/TiO2,
and 4% Pt/Mo2C catalysts. (B) High-resolution HAADF-STEM electron image of Pt NPs supported
on Mo2C. (C) Illustrative representation of the active sites for the WGS reaction. Reprinted with
permission from [142], Copyright 2011 American Chemical Society.

Flytzani-Stephanopoulos et al.’s pioneering work disclosed the support shape’s effect
on the WGS reaction (Figure 8) [143]. The activity of Au NPs supported on CeO2 nanorods
(with {110} and {100} planes), nanocubes (with {100} planes), and polyhedra (with {111} and
{100} planes) was shown to be strongly dependent on the shape of inorganic support. The
Au/CeO2 nanorod catalyst was the most active catalyst, followed by Au/CeO2 polyhedra
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and Au/CeO2 nanocubes. This effect is related to a higher fraction of strongly bound gold
species on the CeO2 nanorods and polyhedral [144]. There are also studies that compare the
effect of the catalyst preparation approach and CeO2 nanostructure morphology on the cat-
alytic activity of Pt/CeO2 catalysts for the WGS reaction. By preparing CeO2 nanorods and
nanocubes and impregnating Pt NPs using the incipient wetness impregnation technique or
strong electrostatic adsorption, the authors observed that nanocube-based catalysts, regard-
less of the preparation method, were more active than their nanorods counterparts. They
attributed such findings to the best Pt0 dispersion and higher oxygen vacancies over the
nanocubes; they also found out that the incipient wetness impregnation method promoted
SMSI on both the support shapes [145]. A recent work by Li et al. showed the complexity
of the structural evolution of the Pt/CeO2 with multiple Pt states, its heterogeneity, and
the dynamic behavior of atoms at the surface [146]. They discussed the importance of
the perimeter Pt0-O vacancy-Ce3+ site for the CO oxidation in the WGS reaction and the
changing in the bonding environment at the interface in which H atoms are stored with
intraparticle distortion. The authors did not associate the findings with any particular CeO2
shape in this study, showing how a deep understanding of the morphology-controlled
systems is still needed.
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It is important to note that the WGS reaction is classically employed to adjust the
hydrogen/carbon monoxide ratio in the stream rich in H2 from reforming, in which CO
concentration can be reduced to less than 5% (v/v) at the end of the WGS process. Reducing
the amount of CO in H2 currents is crucial to several chemical processes (such as ammonia
synthesis), as CO is poisonous to several noble metal-based catalysts, leading to deactivation
processes [147]. The reason is Pt anode poisoning, which requires a hydrogen stream
containing less than 100 ppm of CO, and, typically, this level is reached by PrOX [148].
Although discussing the PrOX reaction is far beyond our aim in this review, it is important
to reference it. Thus, several catalysts have been revealed to perform the PrOX reaction, such
as gold-based catalysts [149]. However, although Au-based catalysts have had remarkable
improvements up to the present day, as recent reviews have shown [150,151], deactivation
is a significant issue. Hernández et al. tried to address the reason for this phenomenon
for an Au/CeO2 catalyst by in-situ UV-Vis diffuse reflectance spectroscopy. They found
out that the performance loss is related to the fast reduction of Au species and changes
in the redox properties of ceria [152]. Non-noble metals have also been in the spotlight
lately. For instance, Liu et al. prepared a CuO-CeO2 catalyst (calcined at 650 ◦C, ∼5 at.%
Cu content) by urea gelation/co-precipitation to study PrOX of CO in an H2 stream. They
obtained 99% CO conversion and 65% selectivity at 165 ◦C, which is a good result [153].
Thus, as discussed before for other systems, much work has to be done to state all the
related parameters necessary to improve catalytic and selectivity in the reaction.
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7. Water Electrolysis

Water electrolysis or electrochemical water-splitting reaction is the process whereby
chemical-grade H2 (and O2) is obtained through the application of electrical energy [3].
Although the technique has been known for around 200 years, it only contributes to a
minor segment of the total H2 production worldwide, which opens up developments [154].
The method requires 1.23 V (vs. normal hydrogen electrode, NHE, at 25 ◦C and 1 atm) of
thermodynamic potential, both in alkaline and acidic media, and comprises the hydrogen
evolution reaction (HER) and the oxygen evolution reaction (OER) [155]. Herein, the
process is mainly designed as HER, since that is the process we are interested in, but
water electrolysis, in general, is also used. The most accepted mechanisms of HER for
acidic, alkaline, and neutral media differ in the desorption step (other differences are also
discussed in the literature in detail [156–158]) and are as follows:

Volmer–Tafel mechanism

H+ + 1e− + M↔MHad (8)

2MHad ↔ 2M + H2(g) (9)

Volmer–Heyrovsky mechanism

H+ + 1e− + M↔MHad (10)

H+ + 1e− + MHad ↔M + H2(g) (11)

where Had means a surface ad-atom, and M is a surface metal site.
Electrolyzers are crucial apparatus to produce H2 through electrolysis. However, their

power supply (electricity) must come from renewable sources to be efficient and green
when we consider the whole process towards a hydrogen economy [159,160]. In addition,
catalysts are an essential part of the process in an energetic context, since they play a
significant role in overcoming the kinetic energy barriers for electrochemical reactions in
electrolysis [161]. Indeed, in a similar way to many other electrochemical processes, an
overpotential (potential difference between the required and thermodynamic values) is
required for H2 production; thus, catalysts are needed to reduce such overpotential [162].
From a physical chemistry perspective, a suitable catalyst for HER needs to present low
activation energy for H desorption and optimum Gibbs free energy of metal-hydrogen
binding (∆GH*) and H2 desorption. Platinum-group metals have been considered the most
efficient catalysts for HER since they present these features and are capable of providing
high exchange current density (j0) [163]. However, their high cost restricts their broad
and industrial applications; thus, reducing their loading or replacing them with low-cost
non-noble metals is essential in a hydrogen economy. Furthermore, nanotechnology tools
have been used to develop advanced nanomaterials.

Volcano-type plots, which associate j0 values with ∆GH*, conventionalized by Pearson
in 1958 for HER, have been used so far [164]. However, Sabatier’s principle dictated volcano
curves for catalytic hydrogenation and dehydrogenation long before, in 1911, with plots
of the reaction rate versus the free energy of adsorption of the intermediate [165]. When
positive (endergonic) energy of adsorption is considered, the adsorption is not strong
enough, which leads to an exponential increase in j0; the opposite is true. When negative
(exergonic) energy of adsorption is studied, an exponential decrease in j0 is observed.
Near ∆Gad ≈ 0, the rate reaches a maximum [164]. Figure 9A shows the volcano-type
trend between ∆GH* values and the measured j0. [166]. Although some differences are
observed in the literature when the correlation considers DFT-derived ∆GH* [167], due to
the different heat adsorption energy that the Pt facet can hold (Figure 9B), it is noteworthy
that Pt is close to the apex, showing its remarkable catalytic performance toward HER.
According to the plot, we have chosen some metals to discuss, emphasizing nanoscience
tools for the improvement of their catalytic properties, since their general utilization is
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exhaustively addressed in the recent literature [168,169]. Thus, here we discussed Pt, Pd,
and Ni metals, according to controlled synthesis approaches.
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Selected Metal-Based HER Electrocatalysts

Platinum: According to the volcano-type plot, platinum-group metals are expected
to present remarkable performances toward HER. It is also worth mentioning that it is
valid over a broad pH range [170,171]. As discussed, Pt has demonstrated the most de-
sired capabilities required to be applied as efficient electrocatalysts for HER; thus, recent
reviews have dealt with the properties of this metal [158,172]. Accordingly, its proper-
ties are now being improved by rationally designing and engineering active crystalline
facets of the metal NPs [173]. Although such a strategy is not new since Markovic et al.
have indicated the different activities toward HER due to Pt facets, following the order
Pt{110} > Pt{100} > Pt{111} [174], obtaining well-defined facets of noble metals is not always
easy, but the use of sacrificial templates can aid such methodology [173,175]. However, we
believe that more efforts in engineering facets are still missing in the literature to achieve
improved HER performances.

Zhao et al. successfully obtained PtNi-O/C octahedra nanostructures with Ni(OH)2-
Pt(111)-like interfaces on its surface by annealing PtNi/C structures (Figure 10). The
PtNi-O/C material presented a mass activity of 7.23 mA/µg at an overpotential of 70 mV,
which is almost 8 times higher than the performance of the commercial Pt/C catalyst [176].
Zhang et al. also showed how a controlled synthesis could influence the electrocatalytic ac-
tivity and stability of a catalyst toward the HER under alkaline conditions. By synthesizing
well-crystalline lotus-thalamus-shaped Pt-Ni anisotropic superstructures via a solvother-
mal approach, they obtained an overpotential of 27.7 mV at a current density of 10 mA
cm−2 and a turnover frequency of 18.63 H2 s−1 at an overpotential of 50 mV [177]. Interest-
ingly, Koo et al. prepared Pt nanocubes of different sizes using alkyltrimethyl-ammonium
bromide, K2PtCl4, and NaBH4 by changing the chain lengths of the surfactant and their
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concentration. The Pt nanocubes (8, 20, and 25 nm) were coated on fluorine-doped tin
oxide (FTO)/glass substrate by drop-casting and evaluated. The authors, under optimized
conditions, obtained 1.77 A mg−1 at an overpotential of 50 mV and 0.54 A mg−1 at 100 mV
with the intermediate size nanocubes, which were bounded by {100} facets, with some
corners cut exposing {110} facets. However, they found that not only nanocubes were
formed (cuboctahedra were also observed in the images) [178]. Thus, it is clear that the
shape effect plays a critical role in catalytic performance. However, the size is also essential
and has been thoroughly discussed in the catalysis field [179,180]. What if SAs are obtained?
Would they be active for HER? The literature suggests a resounding yes.
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Figure 10. (A) Annealing process scheme of PtNi/C being converted to PtNi-O/C. (B) PtNi/C
and (C) PtNi-O/C HAADF STEM images showing their octahedral structure. EDX maps of the
(D) PtNi/C (E) PtNi-O/C octahedral NPs. (F) EDX maps of Ni and Pt in D. (G) EDX maps of Ni and
Pt in (E). Reprinted with permission from [176], Copyright 2018 American Chemical Society.

Interestingly, Zhang et al. proposed an electrochemical deposition approach to immobi-
lize Pt SAs over nanosheets of a two-dimensional inorganic compound (MXene-Mo2TiC2Tx),
in which Mo vacancies were essential for the immobilization of Pt atoms. The authors
attributed the strong covalent interactions between the Pt SAs and the support to the high
catalytic ability for HER of the catalyst, with low overpotentials of 30 and 77 mV to achieve
10 and 100 mA cm−2, respectively. Such a process maintained individual atoms, avoiding
the formation of aggregated particles. Moreover, the material showed almost 40 times more
mass activity than a regular Pt/C catalyst [181]. Following another efficient strategy for
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preparation and preservation of Pt SAs, Yu and collaborators promoted a chemical bind of
2,6:2′,2”-terpyridine onto a 3D carbon support in a single step and, later, submerged the
material in a vial containing an aqueous K2[PtCl4] solution with an available concentration
of 0.5 ppm Pt2+, for 2 h at room temperature for the Pt SAs obtaining. This process allowed
them to reach a very low metal loading (0.26 ± 0.02 µg·cm−2 of Pt) with a mass activity of
77.1 A·mgPt

−1 at 50 mV, which is a very high accomplishment [182]. In addition, using a
metal-selective ligands method, Elmas et al. synthesized an electropolymerizable monomer
(4-(terthiophenyl)-terpyridin) with a pendant terpyridine unit, which was found to be
selective for platinum-group metal complexation. The resulting metallopolymer exhibited
Pt SAs that were able to catalyze HER under different conditions and configurations with
remarkable activity [183].

Other exciting examples are available in the literature. For example, Cheng et al.
prepared Pt SAs and clusters over nitrogen-doped graphene nanosheets by an atomic layer
deposition technique for HER and proposed that almost all the Pt atoms in the system were
in use, which is engaging from an economic perspective. The catalyst exhibited 37 times
more activity than the commercial Pt/C catalyst [184]. Sun et al. also used the atomic layer
deposition technique for Pt SA immobilization on graphene nanosheets without doping of
the support; however, in this case, their catalytic process was 10 times more active than
the commercial Pt/C catalyst [185]. Thus, in the SAs’ case (and usually in many other
nanostructures systems), the support is crucial once the atoms are impregnated onto its
surface. Consequently, the support choice is essential, and the metal–support interaction
(MSI) is also important to tune the electronic structure and reactivity. For example, Shi et al.
obtained Pt SAs by a site-specific electrodeposition technique over two-dimensional transi-
tion metal dichalcogenides supports (MoS2, WS2, MoSe2, and WSe2). Their studies provide
further understanding of the MSI importance. They found that the anchoring chalcogen (S,
Se) and the transition metal (Mo, W) can synergistically modulate the electronic structure of
Pt SAs by tunning the d-orbital state of the metal. This regulation achieved by MSI prompts
the alkaline and acidic HER due to the optimization of hydrogen adsorption, which speeds
up reaction kinetics for water dissociation. Among the samples, the best mass activity was
achieved for Pt SAs over MoSe2, 34.4 A mg−1 under an overpotential of 100 mV [186]. One
can notice that, although incredible achievements are discussed, wet-chemical syntheses
tend to be chosen due to their more straightforward process [187,188].

Therefore, the way the SAs’ catalysts act is still a challenge, and as the support
influences it, no generalizations are possible. However, Fang et al. provided operando
synchrotron X-ray absorption spectroscopy/theoretical simulations that evidenced that Pt
SAs over an N-C framework present a structure less coordinated to the support at quasi
zero-valence during the reaction conditions, with 5d density as the real active centers [189].
Indeed, it is just an isolated example, and more theoretical simulations are needed to
understand the catalytic systems better. Recent literature is available for more information
on Pt SA systems [168,169,172]. It is important to mention that the SA syntheses methods
cited here are applicable for catalyst syntheses that match the other technologies described;
also, similar conditions are used to obtain SAs of different metals.

Palladium: The Pd’s atomic size has shown to be comparable to Pt’s, making it suitable
as an alternative catalyst for HER [164]. Moreover, Pd is cheaper, and several efficient
synthetic strategies have been reported, allowing both size- and shape-controlled synthesis
of Pd nanocrystals [190–192]. For example, Pd nanoctahedra bounded by (111) facets (with
an average tip-to-tip size of 7.8 nm and narrow size distribution) presented a very high
H loading of 0.90, which can be interesting for HER applications [193]. In this context,
Li et al. designed a core@shell PdCu@Pd nanocube catalyst for highly efficient HER. First,
they prepared PdCu nanocubes by co-reduction of Cu(acac)2 (acac = acetylacetonate) and
Na2PdCl4 in the presence of oleylamine and trioctylphosphine, then covered the cubes with
Pd using anodization at a constant potential of 0.51 V vs. Ag/AgCl at room temperature in
0.5 M H2SO4 solution for 10 s. HAADF-STEM and EDX elemental mapping images showed
that the synthesis was efficient (Figure 11). The system required an overpotential of 10 mV
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to reach a current density of 68 mA cm−2 [194]. Wang et al. prepared Pd icosahedral NPs
with a lattice spacing of 0.22 nm, ascribed to the (111) plane, using a polyol method that
counts polyvinylpyrrolidone as a stabilizer. The optimum catalytic activity, which is better
than the obtained for the commercial Pt/C, was achieved after 130,000 cyclic voltammetric
cycles, with an overpotential of 32 mV at 10 mA cm−2, indicating its high durability and
activity [195]. The same here was felt for Pt NPs; not much literature with controlled Pd
NPs is available for HER applications.
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Figure 11. (a) HAADF-STEM image of the PdCu@Pd nanocubes. HAADFSTEM-EDX elemental
mapping images of (b) Cu–K, (c) Cu–L, (d) Pd–K, and (e) Pd–L. Reprinted with permission from [194],
Copyright 2017 American Chemical Society.

Nickel: Ni has been considered a good alternative non-noble metal candidate for HER,
since it holds similar chemical properties and has the same group number of Pt. In addition,
it is cheaper and more abundant relative to both Pt and Pd. In alkaline conditions, a previous
report claimed that the rate-determining step is the adsorption of hydrogen (Volmer step)
and that HER can be improved in the presence of the low-valence-state oxide of Ni [196]. A
recent review discussed that Ni–Pt and Ni–Mo alloys are interesting for the reaction, also
highlighting that Ni-nitride, -oxide, -phosphide, and -sulfide-based catalysts (among other
examples) may work as bifunctional catalysts for both hydrogen and oxygen evolution
reactions [197]. An interesting study was published by Li et al. using a Cu–Ni alloy. They
obtained edge-notched Cu@Ni nanocubes, edge-cut Cu@Ni nanocubes, and mesoporous
Cu–Ni nanocages by a selective wet chemical etching method (Figure 12). Interestingly,
the two last materials were etched to produce the highly catalytically active (111) facets.
However, the Cu–Ni nanocages were the nanostructures that showed higher activity for
HER under alkaline conditions (current density of 10 mA cm−2 in an overpotential of
140 mV). Moreover, the authors revealed by density functional theory that the Ni–Cu
alloys are more active than pure Ni, since it presents too strong adsorption energy of the
intermediate state (adsorbed H*), hampering the reaction [198]. Nanocubes of Ni(OH)2
and Ni–Fe modified with Pt atoms were also proposed in the literature for the reaction,
promoting the reduction of the noble metal loading [199,200]. Following such a process of
alloying with Pt, Kavian et al. synthesized Pt–Ni octahedral nanocrystals of 9 nm in size
that showed 15-fold enhancement in specific activity and almost 5 times more mass activity
in an alkaline media, when compared to the Pt/C commercial catalyst [201]. Seo et al.
showed that spherical nickel phosphide nanocrystals bounded by (001) facets surface
showed higher HER activity than rod-shaped nickel phosphide nanocrystals bounded by
(210) facets considering overpotential, Tafel slope, and turnover frequency [202]. Nickel
phosphide nanowires were also prepared by Xiang et al. via a one-step hydrothermal
approach with an overpotential of 320 mV and a Tafel slope of 73 mV dec−1 for HER [203].
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8. Photochemical Water-Splitting Reaction

Developing low-cost, efficient, and stable technologies for converting light into chemi-
cal energy can be a promising approach to circumventing both energy and environmental
problems. One of these clean strategies for H2 production is photocatalytic water splitting,
a thermodynamically uphill transformation associated with positive Gibbs free energy
(237 kJ·mol−1 or 1.23 eV) [204]. Generally, the process has three main steps, which are
as follows: (1) light-harvesting with charge carriers generation (negative electrons in the
conduction band (CB) and positive holes in the valence band (VB)); (2) charge immigration,
transfer, and separation; and (3) initiation of the redox reaction on the photocatalyst surface.
In the last step, electrons act as reducing agents to transform water into hydrogen, and
holes act as oxidizing agents to produce oxygen from water [205]. Therefore, the bandgap
energy (Eg) should be in an energy range of 3.0 eV > Eg > 1.23 eV to efficiently use solar
energy [206]. The photocatalyst’s band position (VB and CB) should be located appropri-
ately to accomplish the water-splitting reaction. Thus, the CB lowest energy level must be
more negative than the hydrogen evolution potential (EH2/H2O, 0 V vs. NHE), and the VB
highest energy level must be more positive than the oxygen evolution potential (EO2/H2O,
1.23 V vs. NHE) [207]. Other factors, such as pH, charge transfer and separation, charge
recombination, and light intensity, greatly influence the efficiency of H2 production via
water splitting [208].

Since the pioneer paper reported by Fujishima and Honda on the photodecomposition
of water in the presence of Pt and TiO2 electrodes under UV light [209], tremendous efforts
have been directed to the development of efficient semiconductors, such as metal oxides,
carbon-nitrides, polymers, and heterostructures, to produce H2 under light irradiation [210].
Usually, an n-type/p-type semiconductor can act as a photoanode/photocathode, respec-
tively. N-type and p-type semiconductors are created by doping intrinsic semiconductors
with an electron donor or electron acceptor element, respectively; p,n-type semiconductors
are made when n- and p-type dopants are merged to create a semiconductor [204,211]. Thus,
strategies have been made to increase the charge separation efficiency of photocatalysts
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using semiconductor engineering. However, oxide photocatalysts show inferior perfor-
mance without a cocatalyst, which is a noble metal or another transition metal oxide that
decorates the support surface [212] and prompts advanced strategies for catalyst syntheses.

Currently, H2 production by photocatalytic water splitting has some critical unsolved
problems, such as low catalyst stability and efficiency and high cost [213]. In this view,
heterostructure formation has been widely adopted as an efficient strategy to overcome
such drawbacks, since hybridization between two or more transition metal-based mate-
rials synergistically enhances their performance. Thus, it is possible to choose an active
material for HER that can be combined with another active material for OER [214–217].
By preparing this review, we believe that heterojunctions are one of the most motivating
fields for photochemical water-splitting issues, due to their synergetic multi-component
characteristics [218]. The enhancement is evidenced by a recent study published by
Sitara et al. They prepared heterostructures comprised of MoS2 and CoTe by a hydrother-
mal method/ultrasound with different wt.% ratios. The material MoS2/CoTe (1:1) reached
a maximum photocurrent density of 2.791 mA/cm2, which was found to be about 11 times
higher than the pristine MoS2 under a light intensity of 100 mW/cm2 [219]. Shit et al.
also showed the enhancement of electrocatalytic activity by heterostructures of cobalt
sulfide/nickel sulfide heterostructures supported by nickel foam, which facilitated charge
transport for a synergistic effect toward HER and OER in an alkaline medium [216].

Continuing our analysis of heterojunctions, the conductivity can be remarkably im-
proved by coupling active species with conductive supports. For example, by a hydrother-
mal route, Lucas et al. prepared photoanodes comprising TiO2 nanotubes and lanthanum-
doped SrTiO3. They used this catalyst for the photoelectrochemical split of water under
simulated solar irradiation. The process led to a photocurrent density of 109.4 µA cm−2

(at 1.23 V vs. RHE). Doping the SrTiO3 overlayer with 10 mol% of La3+ enhanced the
photoelectrochemical response to 144.2 µA cm−2 (1.23 V vs. RHE) [220]. Similarly, Ni3N
was used as an active cocatalyst onto g-C3N4 by Ge et al. They obtained H2 production
under visible-light irradiation with a hydrogen evolution rate of ~305.4 µmol h−1 g−1,
which is about three times higher than that of pristine g-C3N4 [221]. Ni3C NPs were
used as cocatalysts to modify CdS nanosheets (OD vs. 2D materials). Under visible light
irradiation, the authors obtained H2 production rates of 357 µmol h−1 in 0.25 M Na2S-
Na2SO3 and 450.5 µmol h−1 in lactic acid, which were almost 8 and 5 times higher than
that observed for the CdS nanosheets [222]. In this context, Ni-based photocatalytic H2
production cocatalysts are part of the strategies to enhance further the activity and stability
of photocatalysts [223]. For instance, Ag NPs were impregnated on the surface of g-C3N4
by an in-situ calcination method, before loading NiS onto the structures by a hydrothermal
method. Under solar-light irradiation, an H2 production rate of 9.728 mmol·g−1·h−1 was
obtained, which is almost 11 times higher than that achieved by pure g-C3N4 [224].

Although the H2 production with the n-type TiO2 semiconductor electrode has been
known for a long time [225], efforts in the literature to improve this material are notori-
ous. Based on this, Chandra et al. recently prepared hierarchical urchin-like TiO2 with
1D nanorods as subunits via a surfactant-free solvothermal route, which showed higher
photocatalytic performance when compared to NPs (H2 evolution of 5753 mmol g−1). In
the study, they were able to tune anatase–rutile mixed-phases by controlling the ratio of
water and HCl used, in which acid was influential in the formation of the nanorods; the
performance was attributed to an efficient mechanism of charge separation in the interface
of the TiO2 phases [226]. Even though that is a great example, up to date, no material has
achieved an industrial level for producing H2 through this reaction, since the performances
are still insufficient. Therefore, noble metal-based materials, such as Pt, Ir, and Ru, and
non-noble metals, such as Cu, Bi, Al, Ni, Co, and Fe (among others), are considered efficient
electrocatalysts for the water-splitting reaction [227–230]. In addition, alloys are essential
for the field. Li et al. used an alloying approach for photochemical water splitting. In
this case, they prepared Ti-Ni-Si-O nanostructures on Ti–1Ni–5Si alloy foils via electro-
chemical anodization, obtaining under optimized conditions a photocurrent density of
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0.45 mA/cm2 at 0 V (vs. Ag/AgCl) in 1 M KOH solution [231]. Studies on the preparation
of Pt alloys supported under low noble metal loadings at the semiconductors’ surface are
also considered.

Hence, developing new or improving photocatalytic systems is highly required in
a hydrogen economy context. From this perspective, it is expected that the use of nan-
otechnology tools will allow the design of efficient nanophotocatalysts and significantly
improve the production of clean hydrogen energy [232]. The direct advantage of controlling
nanomaterial synthesis (size, morphology, and composition) includes relevant improve-
ments in catalytic performances, allowing cost reductions and singular opportunities for
the maximization of activities via controlled synthesis [233–235]. Among these approaches,
morphology modulation is highly discussed, as it can tune the number of active sites due to
exposing specific different crystal planes, acting on the charge transfer efficiency [236–238].

Da Silva et al. recently reported the development of efficient nanocatalysts for pho-
tocatalytic water splitting, employing bimetallic PdPt NPs supported on TiO2 nanowires
with a low loading of noble metals and controlled sizes, shapes, and compositions. TiO2
nanowires obtained by a hydrothermal method displayed well-defined shapes and uniform
sizes (Figure 13A) [239]. In addition, they could be directly employed as physical templates
for the nucleation and growth of Pd, Pt, and PdPt NPs over their surface without any modifi-
cation/functionalization. Figure 13B–D shows typical TEM images of bimetallic PdPt-TiO2
nanowires obtained by this approach (the inset shows EDX elemental mapping). In this
case, the PdPt NP composition was controlled by manipulating the PdCl42−/PtCl62− molar
ratios to give Pd0.22Pt0.78, Pd0.46Pt0.54, and Pd0.73Pt0.27-TiO2 nanowires. While no significant
conversion was detected for the pure TiO2 nanowires, all the Pd, Pt, and PdPt nanowires
displayed suitable catalytic activities at room temperature. Interestingly, they found that
the highest H2 production activity was observed over the Pd0.22Pt0.78-TiO2 nanowires. The
amount of H2 produced in the third cycle was found to be 11.0 mmol/gcatalyst, which is
virtually the same as what was produced in the first cycle (11.6 mmol/gcatalyst), indicating
that the catalytic activities remained almost unaffected and that the successive reaction
cycles did not lead to detrimental structural modifications. Their results showed that
the activities correlate with the composition of the PdPt-TiO2 nanowires, the electronic
effects, and the concentration of oxygen vacancy sites at the catalyst surface, which were
investigated by XPS. Figure 13E–G displays volcano plots of the H2 yield, current density,
oxygen vacancies (Os), and adsorbed water (OL) ratio (Os/OL) as a function of the PdPt
composition at the surface of the TiO2 nanowires (Pd0.2Pt0.78-TiO2).

Zheng et al. elegantly prepared a high-advanced catalyst for the water-splitting
reaction [240] using noble and non-noble metals in one pot. They designed a Janus photo-
catalyst by preparing SiO2 spheres functionalized with APTES, which displayed terminal
amino groups. Then, after Pt NP immobilization onto the spheres (Pt/SiO2), the prepared
material underwent a reaction with a mixture of TEOS and n-octadecyltrimethoxysilane
(mSiO2/Pt/SiO2). The mSiO2/Pt/SiO2 material was used as the template for carbon
nitride covering, promoted by sonication of cyanamide, with further stirring at 60 ◦C
overnight; NH4HF2 was used to remove the silica template, leaving hollow carbon ni-
tride spheres containing Pt NPs in its interior (designed as hollow carbon nitride spheres,
HCNS/Pt). As a final step, they immobilized Co3O4 onto the previously prepared material—
Co3O4/HCNS/Pt (Figure 14). Such precise modification allowed a catalyst with spatially
separated oxidation and reduction centers to be obtained, decreasing charge recombination.
Comparing the photocatalyst with the Pt and Co3O4 loaded on the inner and outer surfaces
with a counterpart pursuing random distribution of Pt and Co3O4 only on the external
surface with the same metal loading showed about 10 times faster gas evolution. More
examples of this perspective are available in recent reviews [241,242].
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covering the entire surface of the nanowires. The inset image represents STEM-EDX elemental
mapping of individual Pd (green) and Pt (red) at the surface of TiO2 nanowires. (E) plots of H2

yield (F) current density and (G) Os/OL ratio as a function of PdPt composition. The volcano-
type relationships were observed for Pd0.2Pt0.78-TiO2 composition. Reproduced with permission
from [239]. Copyright 2019 American Chemical Society.
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from [240]. Copyright 2016 Wiley.

9. Conclusions and Perspectives

The recognition of nations to avoid a climate catastrophe is undeniable. Public con-
cerns over climate change have grown, and governments, organizations, and institutions
worldwide are adopting pollution-slashing initiatives based on the Paris Agreement (2015)
in an attempt to achieve net-zero emissions by 2050 (net-zero is reached when the amount
of carbon added to the atmosphere is lower than the amount removed). Furthermore,
global energy transition actions were discussed to be put into practice at COP26 (2021). The
aim is to reduce greenhouse gases emissions without delay and keep the increase in global
temperature this century at a maximum of 2 ◦C, or 1.5 ◦C ideally. Thus, the H2 production
for future widespread applications is a latent necessity, bearing in mind that the primary
sources of renewable energy (solar and wind) are intermittent, and H2 technologies can
solve inconstancy issues, such as storing surplus renewables power when the grid cannot
absorb it.

It is well-known that advances in synthetic and characterization approaches have
facilitated a fundamental understanding of how catalysts work. This, in turn, guides
their rational design and synthesis, resulting in enhanced performances to achieve the
level of industrial relevance, qualified for scale-up pilot studies, and eventual commer-
cialization [243]. Based on this, a potential cost reduction for H2 production depends on
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more efficient materials, and breakthroughs in alternative technological developments
are required. In this review, we focused on nanocatalysts for different H2 production
technologies that overview how catalysts can be nanoengineered at the sub-nano or atomic
scale, including shape, composition, and structure to achieve high activity, selectivity, and
stability. Thus, we presented a brief overview of the main production techniques for H2 pro-
duction, focusing on nanoengineering approaches for catalysts’ parameter control (shape,
size, composition, structure, electronic, and support interaction) and their performance.
Despite the remarkable progress in the area, we believe that material design is still in the
early stages, and little is known yet regarding their application for H2 production, which
hampers widespread applications.

Herein, we presented several examples showing that metal NPs pursue a range of
tunable properties that can be associated with controlled supports for improved catalysis.
In this context, the following issues must be addressed: (1) fundamental understanding
of the mechanisms regarding the catalyst processes is lacking, which hampers new cata-
lyst development; (2) the interface of metal/support is complex and, up to now, poorly
understood, holding back more efficient syntheses; (3) theoretical models consisting of
electronic structures are required; (4) controlled synthesis regarding shape and exposition of
specific facets were presented herein for some applications and were proved to be efficient;
however, much efforts are needed in this field to understand such singularities and future
applications; (5) supports are crucial for catalytic issues as shown, and their structural
development must be mandatory. Although it is not an easy task, it would be good to
understand such systems better to draw some generalizations, i.e., we have shown that
some studies used similar morphologies using the same materials, but different tendencies
were observed. What is behind such findings? This question shows that understanding
the interactions between particular surface facets/morphologies of supports and the active
species is crucial for clarifying the observed performances’ mechanisms. Apart from a
synthetic perspective, we need to rationalize the modifications that the materials undergo
during the reaction. Thus, in-situ studies are critical to an advanced comprehension of
catalytic processes and can increase the catalysts’ design, aiming performance.

Water electrolysis has shown excellent possibilities for green energy savings as an
energy conversion technology, and future plants are expected to contribute to the large-
scale storage of renewable energy, since it is already applied at an industrial scale. In
industry, alkaline electrolysis has been used for more than a century, and the main chal-
lenge for obtaining H2 by this process is the cost, which does not match market and tax
necessities [244]. Moreover, it is well-known that the electrochemical hydrogen and oxygen
evolution reactions are slow in nature. Therefore, the use of electrocatalysts based on
noble metals is highly needed, and, due to stability issues, the cost-performance ratio of
water electrolysis is again a significant issue. This situation opens up fair advances in the
technology itself and catalysts used. In addition, efforts to lower the metal loading on
the process are not straightforward due to stability or performance issues and are under
continuous improvement. However, all these drawbacks are being analyzed and will
be overcome soon, as this process is the strongest candidate in a carbon-neutral context,
prompting researchers worldwide to study it.

The generation of H2 employing water splitting has become a key route for replacing
the energy obtained by fossil fuels with solar energy. In this scenario, H2 production by
photocatalysis and photoelectrochemical cells in the presence of sunlight are potential future
methods in development. Although it is still in its initial development, the photoelectrolysis
process is considered a viable method, presenting low conversion efficiency up to now [204].
Thus, there is massive potential for sustainable H2 generation developments; however,
the challenges and limitations, including low H2 yields and side reactions that convert H2
into by-products before it is harvested, still need to be solved as they face the challenge
of high production costs and increased storage requirements. Hence, much is needed to
be developed and studied for photocatalytic processes concerning catalysts for the overall
water-splitting reaction, including studies related to interface engineering, morphology,
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and elemental doping. Furthermore, reproducible efficiencies from photocatalysis are
around 1%, and at least 10% are necessary for industrial application [245].

The technologies presented herein are among the most developed/in development for
H2 production. In addition, indeed, there is room for their improvement in the next few
years, specifically regarding the catalytic systems’ cost, efficiency, and durability, which
is the focus of the present review. Currently, non-noble catalysts are being studied for
technological improvements. Furthermore, it is essential given that it is estimated that 7%
of the world’s platinum supply will be required for fuel cell use in Europe in 2030 [246].
Thus, to briefly summarize, all these proposals tend to improve the processes to a new
level, enabling studies to move towards a design-driven approach that allows catalytic
systems to be planned earlier in the process, paving the way for cleaner energy generation
and sustainable progressions.
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