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Abstract: This paper presents the Dominant Species-Physiognomy-Ecological (DSPE) classification
system developed for large-scale differentiation of plant ecological communities from high-spatial
resolution remote sensing images. In this system, the plant ecological communities are defined with
the inference of dominant species, physiognomy, and shared ecological settings by incorporating
multiple strata. The DSPE system was implemented in a cool-temperate climate zone at a regional
scale. The deep recurrent neural networks with bootstrap resampling method were employed for eval-
uating performance of the DSPE classification using Sentinel-2 images at 10 m spatial resolution. The
performance of differentiating DSPE communities was compared with the differentiation of higher,
Dominant Genus-Physiognomy-Ecological (DGPE) communities. Overall, there was a small differ-
ence in the classification between 58 DSPE communities (F1-score = 85.5%, Kappa coefficient = 84.7%)
and 45 DGPE communities (F1-score = 86.5%, Kappa coefficient = 85.7%). However, the class wise
accuracy analysis showed that all 58 DSPE communities were differentiated with more than 60%
accuracy, whereas more than 70% accuracy was obtained for the classification of all 45 DGPE com-
munities. Since all 58 DSPE communities were classified with more than 60% accuracy, the DSPE
classification system was still effective for the differentiation of plant ecological communities from
satellite images at a regional scale, indicating its applications in other regions in the world.

Keywords: dominant plant species; plant communities; ecological communities; remote sensing
images; classification; recurrent learning; bootstrap resampling; DSPE

1. Introduction

Vegetation mapping is the procedure of organization and delineation of geographical
distribution of plant ecological communities in a given area of interest [1,2]. Vegetation
mapping is important for gaining the quantitative information required for conservation
and management of ecosystems and biodiversity [3,4].

Contrary to the individualistic concept of vegetation continuum theory, which de-
scribes continuous formation and replacement of communities as the mixture of plant
individuals coexisting on the same site as the result of migration and environmental se-
lection [5–7], vegetation mapping mostly relies on community-unit hypothesis, which
states that ecological communities are homogeneous, discrete, and recognizable entities of
plant species with clear boundaries coevolved through the interaction of biotic and abiotic
factors [8–11]. The community-unit hypothesis offers an opportunity for defining and
mapping of plant communities with the concept of homogeneity into discrete units, and
thus it is useful to the conservation and management applications [12–15].

Some extant criteria for the organization and differentiation of vegetation include
bioclimatic, physiognomic, phytosociological association, and dominant species. The
bioclimatic variables mainly describe ecosystems, with the effects of temperature and
precipitation arising from latitude and altitudinal variations [16–18]. For example, Tropical
rain forests, Temperate marshlands, Boreal forests, Arctic meadows, Alpine herbaceous,
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Wetland vegetation. Due to coarse-scale climate data, it is applicable to estimate distribu-
tion of vegetation types only at coarse scales. The physiognomic approach is based on
the dominant growth forms that creates the physical appearance and structure (needle-
leaved or broad-leaved), phenology (deciduous or evergreen), and life form (tree, shrub,
or herb) [19,20]. For example, Evergreen broadleaf forest (Ebf), Deciduous broadleaf for-
est (Dbf), Deciduous conifer forest (Dcf), Evergreen conifer forest (Ecf), Shrub (Sb), and
Herbaceous (Hb), etc. This approach is unable to inform the floristic composition of the
communities. The phytosociological association approach is based on certain diagnostic
species which are better indicators of ecological relationships [21,22], for example, Saso
kurilensis-Fagetum crenatae. This approach is difficult to apply with high-spatial resolution
remote sensing images, since remote sensing signals are sensitive to the dominant species-
coverage rather than to the characteristic species. The dominant species-based approach
depends on community dominance in terms of coverage and biomass [23]. For example,
Abies mariesii, Fagus crenata, Quercus crispula, Quercus serrata, Sasa kurilensis, etc. However, it
is difficult to identify all dominant species in species-rich areas such as Laurel forests.

Sharma [24] developed the dominant Genus-Physiognomy-Ecosystem (GPE) classifica-
tion system for community-level vegetation classification at a large scale from high-spatial
resolution remote sensing images. In this system, plant communities were defined for
the first time with the inference of Dominant Genus, Physiognomy, and shared Ecological
settings (Ecosystem). For example, Quercus Ebf, Quercus Dbf, Quercus Sb, Larix Dcf, Fa-
gus Dbf, Alpine Hb, Wetland Hb, etc. More recently, this classification system has been
redefined as Dominant Genus-Physiognomy-Ecological (DGPE) classification system [25].
In the current research, the DGPE classification system has been improved by including
plant communities at a dominant species level, to the extent that they can be distinguished
satisfactorily from remote sensing images, for example Abies firma Ecf, Betula ermanii Dbf,
Pinus densiflora Ecf, Pinus pumila Esb. Furthermore, incorporating the understory stratum
into the system as far as they have separable physiognomy-spectral variations, for instance,
Fagus spp. Dbf-Sasa spp. Esb community composed of Evergreen shrub (Sasa spp. Esb) under
the Deciduous broadleaf forest (Fagus spp. Dbf). This classification system is hereafter
called Dominant Species-Physiognomy-Ecological (DSPE) classification system with the
incorporation of multiple strata, and the resulting plant (ecological) community-units are
referred to as the DSPE communities.

The major objective of the research is to introduce the Dominant Species-Physiognomy-
Ecological (DSPE) classification system developed for the differentiation of plant ecological
communities at a large scale from high-spatial resolution remote sensing images. This
research compares the performance of differentiating DSPE communities using multi-
temporal and multi-spectral satellite images and deep recurrent learning with the differen-
tiation of higher DGPE communities.

2. Materials and Methods
2.1. Study Area

This research was implemented in the Tohoku region of Japan. The Ōu Mountains
run through north to south in the middle of the region separating eastern (Pacific Ocean)
and the western (Sea of Japan) sides of the region. Under the Köppen climate classification
system, this region falls in a humid continental climate (Dfa) characterized by warm, short
summers and long, cold winters; and a humid subtropical climate (Cfa) characterized by
warm, wet summers, and cool, dry winters. The location map of the study area is shown in
Figure 1.

It is a suitable area for the implementation of community-level vegetation classification
systems because of the diversity of plant communities occurring in the region characterized
by wider variations of both altitudinal and latitudinal ranges. The altitudinal variations
differ from seashore to alpine regions, constituting three typical forest zones correspond-
ing to temperature gradients, evergreen broad-leaved forests (Camellia japonica, Quercus
glauca, etc.) distributed in the lower belt of warm temperate zone, deciduous broad-leaved
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forests (Fagus crenata, Quercus serrata, etc.) distributed in the cool temperate zone, and
evergreen coniferous forests (Tsuga diversifolia, Thujopsis dolabrata, etc.) distributed in the
subalpine zone.
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2.2. DSPE Classification System

In the Dominant Species-Physiognomy-Ecological (DSPE) classification system, plant
ecological communities are defined with the inference of Dominant Species, Physiognomy
and shared Ecological conditions. The criteria of patch size have been used to standardize
the selection of DSPE communities in the current research. The plant ecological communi-
ties usually forming larger than 100 × 100 m patch size for matrix patches (e.g., Abies firma
Ecf, Fagus crenata Dbf, Betula ermanii Dbf) or larger than 30 × 100 m patch size for linear
patches (e.g., Salix spp. Dbf, Pterocarya rhoifolia Dbf, Juglans mandshurica Dbf) were extracted
as the dominant communities. In contrast to the minimum patch size of 30 × 30 m used in
the previous analysis [24], the communities with smaller than 100 × 100 m or 30 × 100 m
patch sizes were excluded in the current research. The criteria of minimum patch size
determine the number of dominant plant communities enumerated and analyzed in the
given area of interest. The list of DSPE communities enumerated and standardized for the
current research has been shown in Table 1. The inferences used for defining the DSPE
communities along with higher DGPE communities have also been described in Table 1.

Table 1. List of DSPE communities of the study area and the inferences used for defining them.

DSPE Inference DGPE

1. Abies firma Ecf Species-Physiognomy Abies Ecf

2. Abies homolepis Ecf Species-Physiognomy Abies Ecf

3. Abies mariesii Ecf Species-Physiognomy Abies Ecf

4. Acer spp. Dbf Species-Physiognomy Acer Dbf

5. Acer spp. Dsb Species-Physiognomy Acer Sb

6. Alnus spp. Dbf Species-Physiognomy Alnus Dbf

7. Alnus maximowiczii Dsb Species-Physiognomy Alnus Dsb

8. Alpine Hb Physiognomy-Ecological Alpine Hb

9. Alpine Sb Physiognomy-Ecological Alpine Sb

10. Bamboo Ebf Physiognomy-Ecological Bamboo Ebf

11. Betula ermanii Dbf Species-Physiognomy Betula Dbf

12. Betula maximowicziana Dbf Species-Physiognomy Betula Dbf

13. Betula platyphylla Dbf Species-Physiognomy Betula Dbf
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Table 1. Cont.

DSPE Inference DGPE

14. Betula spp. Dbf–Sasa spp. Esb Species-Physiognomy (Multi strata) Betula Dbf

15. Camellia japonica Ebf Species-Physiognomy Camellia Ebf

16. Carpinus spp. Dbf Species-Physiognomy Carpinus Dbf

17. Castanopsis sieboldii Ebf Species-Physiognomy Castanopsis Ebf

18. Coastal Hb Physiognomy-Ecological Coastal Hb

19. Coastal Sb Physiognomy-Ecological Coastal Sb

20. Cryptomeria japonica Ecf Species-Physiognomy Cryptomeria Ecf
21. Fagus spp. Dbf–Sasa spp. Esb Species-Physiognomy (Multi strata) Fagus Dbf

22. Euptelea polyandra Dbf Species-Physiognomy Euptelea Dbf

23. Fagus crenata Dbf Species-Physiognomy Fagus Dbf

24. Fagus japonica Dbf Species-Physiognomy Fagus Dbf

25. Fraxinus spp. Dbf Species-Physiognomy Fraxinus Dbf

26. Hydrangea spp. Dsb Species-Physiognomy Hydrangea Sb

27. Juglans mandshurica Dbf Species-Physiognomy Juglans Dbf

28. Larix kaempferi Dcf Species-Physiognomy Larix Dcf

29. Machilus thunbergii Ebf Species-Physiognomy Machilus Ebf

30. Mallotus japonicus Dbf Species-Physiognomy Mallotus Dbf

31. Miscanthus sinensis Dhb Species-Physiognomy Miscanthus Hb

32. Open-space Hb Physiognomy-Ecological Open-space Hb

33. Quercus spp. Dbf–Sasa spp. Esb Species-Physiognomy (Multi strata) Quercus Dbf

34. Picea spp. Ecf Species-Physiognomy Picea Ecf

35. Pinus densiflora Ecf Species-Physiognomy Pinus Ecf

36. Pinus parviflora Ecf Species-Physiognomy Pinus Ecf

37. Pinus pumila Esb Species-Physiognomy Pinus Sb

38. Pinus thunbergiana Ecf Species-Physiognomy Pinus Ecf

39. Populus spp. Dbf Species-Physiognomy Populus Dbf

40. Pterocarya rhoifolia Dbf Species-Physiognomy Pterocarya Dbf

41. Quercus crispula Dbf Species-Physiognomy Quercus Dbf

42. Quercus dentata Dbf Species-Physiognomy Quercus Dbf

43. Quercus spp. Ebf Species-Physiognomy Quercus Ebf

44. Quercus serrata Dbf Species-Physiognomy Quercus Dbf

45. Quercus crispula Dsb Species-Physiognomy Quercus Sb

46. Rhododendron spp. Esb Species-Physiognomy Rhododendron Sb

47. Robinia pseudoacacia Dbf Species-Physiognomy Robinia Dbf

48. Salix spp. Dbf Species-Physiognomy Salix Dbf

49. Salix spp. Dsb Species-Physiognomy Salix Sb

50. Sasa spp. Esb Species-Physiognomy Sasa Sb

51. Thuja standishii Ecf Species-Physiognomy Thuja Ecf

52. Thujopsis dolabrata Ecf Species-Physiognomy Thujopsis Ecf

53. Tilia japonica Dbf Species-Physiognomy Tilia Dbf

54. Tsuga diversifolia Ecf Species-Physiognomy Tsuga Ecf

55. Ulmus spp. Dbf Species-Physiognomy Ulmus Dbf
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Table 1. Cont.

DSPE Inference DGPE

56. Weigela hortensis Dsb Species-Physiognomy Weigela Sb

57. Wetland Hb Physiognomy-Ecological Wetland Hb

58. Zelkova serrata Dbf Species-Physiognomy Zelkova Dbf

Ebf: Evergreen broadleaf forest; Dbf: Deciduous broadleaf forest; Dcf: Deciduous conifer forest. Ecf: Evergreen
conifer forest; Esb: Evergreen shrub; Dsb: Deciduous shrub; Dhb: Deciduous herb; Hb: Herb; Sb: Shrub; spp.:
Several species.

As shown in Table 1, in the DSPE system, all forest communities have been classified
into dominant species-physiognomy level. However, most of the herbaceous commu-
nities have been classified into physiognomy-ecological level. It is difficult to identify
well-formed patches of the herbaceous communities at dominant species level. Rather,
they can be identified effortlessly at physiognomy-ecological levels such as Coastal Hb,
Open-space Hb, and Alpine Hb. Therefore, almost all herbaceous communities were clas-
sified into physiognomy-ecological level except the Miscanthus sinensis Dhb community
forming distinct patches. Similarly, some shrub communities have been aggregated into
dominant physiognomy-ecological level, such as Alpine Sb and Coastal Sb. However, most
of the shrub communities have been classified into species-physiognomy level, such as
Rhododendron spp. Esb, Salix spp. Dsb, and Sasa spp. Esb.

In the DSPE system, several species (spp.) of the same genus have been combined
together for some forest communities. The combination of several species together depends
on two criteria. First, whether the community forms a large enough patch (100 × 100 m for
matrix patches or 30 × 100 for linear patches) at dominant species level or when several
species (spp.) within the same genus are mixed together. For example, Salix spp. Dbf
community, consisting of several Salix species in cool temperate ecosystems, or Quercus spp.
Ebf community, consisting of several Quercus species in warm temperate ecosystems.
Second, whether all species-level patches formed at distant places can be differentiated from
satellite images satisfactorily or not. In the current research, several species were combined
together if all species-level communities could not be classified with more than 50% kappa
coefficient. For example, some Acer Dbf species could not be classified with more than 50%
kappa coefficient due to similar phenology-spectral signatures. Therefore, several Acer
species were combined together as Acer spp. Dbf community. Similarly, the same criteria
were used to define shrub communities, for example Sasa spp. Esb and Rhododendron spp.
Esb communities. In the DSPE system, mixed communities in ecotones with more than
one dominant species can be combined together, such as the Abies sachalinensis Ecf–Quercus
crispula Dbf community. In addition, different communities with similar phenology-spectral
signatures can be combined together, such as Cryptomeria japonica Ecf–Chamaecyparis obtusa
Ecf to minimize misclassification across similar dominant species. In the current research,
multiple strata are incorporated for the communities, having distinct phenology-spectral
signatures due to physiognomic variations between upper deciduous broadleaf trees and
lower evergreen species. For example, Fagus spp. Dbf–Sasa spp. Esb. In the DGPE system,
although plant communities with a single dominant species were also designated into
genus-level only, these communities can be identified obviously into the species-level. For
example, Pinus Sb (in the DGPE system) means Pinus pumila Esb because of the lack of
other shrubby Pinus species in the given study area. The usage of physiognomy symbol
(e.g., Dbf, Dsb, Ebf) aids to distinguish same species with a different physiognomy, such as
distinguishing Quercus crispula Dbf from Quercus crispula Dsb and Quercus spp. Ebf.

It should be noted that the DSPE system is a flexible classification system in which
expansion of the physiognomic-ecological communities into species level, combination of
several species (spp.) of the same genus together, or inclusion of lower-stratum species can
be adjusted within the framework of the DSPE system developed in the current research
based on prior knowledge of the plant ecological communities of the study area and types
and characteristics of the available remote sensing images for the classification.
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2.3. Preparation of Ground Truth Data

The phytosociological units of the study area available from the extant vegetation
survey maps (http://gis.biodic.go.jp/webgis, accessed on 25 May 2017) and associated
database were initially utilized for enumerating dominant plant species of the study area.
With reference to extant vegetation survey maps and Google Earth images, ground truth
data (geo-location points) belonging to dominant plant species were collected by local
flora experts in the previous study [24]. Based on this ground truth data, more than
125 dominant plant species of the study area were classified from multi-temporal and multi-
spectral satellite images [24]. Another study [26] further increased the ground truth data
for community-level mapping of plant communities in the study area. The current research
utilized the ground truth data collected in the previous studies [24,26] after standardizing
the working definition of the DSPE communities, and some additions with reference to
extant vegetation survey maps and Google Earth images. The ground truth data size varied
from 600–2400 for each DSPE community, depending on its proportional aerial coverage.

2.4. Processing of Satellite Data

All Level-2A product images collected by Sentinel-2 mission satellites (Sentinel-2A and
2B) for the whole study area between 2019–2021 were acquired and processed. The Sentinel-
2 mission satellites acquire optical imagery at high-spatial resolution (10–60 m) in visible,
near infrared, and short-wave wavelengths [27]. The Level-2A product provides Bottom
of Atmosphere reflectance images after atmospheric and topographic correction [28,29].
The Sentinel-2 images were processed for cloud masking and ten spectral bands (blue,
green, red, red edge 1–3, near infrared, mid infrared, and shortwave infrared 1–2) were
extracted. The satellite-based spectral data were composited by computing half-monthly
median values, and 240 features were generated in total for the recurrent deep learning.

2.5. Deep Recurrent Learning

Deep recurrent learning based on the Long Short-Term Memory (LSTM) networks [30]
was employed for the classification of plant (ecological) communities using multi-temporal
Sentinel-2 images. The LSTM can learn tasks that require memories of a time series of events
that happened earlier, and it has proven to be effective for modeling complex non-linear
relationships [31]. The model architecture was composed of four LSTM layers with tanh
activations followed by two fully connected (dense) layers, one with relu activation and
another final layer with softmax activation to collect classifications. The bootstrap resam-
pling method was implemented to report the confidence interval of the classification [32].
The bootstrap resampling was done 1000 times with 75% training and 25% testing data.
The parameters and hyper-parameters of the model including number of layers, number of
neurons, learning rate, number of epochs, and batch size were fine-tuned with reference
to the accuracy metrics (F1-score and Kappa coefficient) calculated with test data. The
accuracy obtained with 25% test data was collected for each bootstrap resampling, and the
frequency of model runs yielding the test accuracies was reported.

3. Results
3.1. Performance of DSPE Classification

The DSPE classification accuracy in terms of F1-score and Kappa coefficient, obtained
with 25% test data, was collected from 1000-run of bootstrap resampling, and the frequency
of model runs resulting in test accuracies has been plotted in Figure 2. The test F1-score
varied between 85.3–85.7% per 95% confidence interval, with an overall mean F1-score of
85.5%. The test Kappa coefficient varied between 84.5–85.0% per 95% confidence interval,
with overall mean Kappa coefficient of 84.7%.

The class wise accuracies (F1-scores and Kappa coefficients) calculated with the test
data for the classification of DSPE communities across 1000-run of bootstrap resampling
were averaged, and the resulting averaged F1-score and Kappa coefficient values are shown
in Figure 3.

http://gis.biodic.go.jp/webgis
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3.2. Performance of DGPE Classification

The DGPE classification accuracy in terms of F1-score and Kappa coefficient, obtained
with the test data, was collected from 1000-run of bootstrap resampling, and the frequency
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of model runs resulting in test accuracies was plotted in Figure 4. The test F1-score varied
between 86.3–86.7% per 95% confidence interval, with overall mean of 86.5%. The Kappa
coefficient varied between 85.5–86.0% per 95% confidence interval, with an overall mean
Kappa coefficient of 85.7%.
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The classification accuracy with deep recurrent neural networks across 1000-run of
bootstrap resampling showed an overall 85.5% F1-score for the classification of 58 DSPE
communities. Overall, there was a small difference in the classification between 58 DSPE
communities (F1-score = 85.5%, Kappa coefficient = 84.7%) and 45 DGPE communities
(F1-score = 86.5%, Kappa coefficient = 85.7%). The class wise accuracy analysis showed that
all 58 DSPE were classified with more than 60% accuracy (F1-score and Kappa coefficient).
However, more than 70% accuracy (F1-score and Kappa coefficient) was obtained for the
classification of all 45 DGPE communities.

4. Discussion

The variations in vegetation zones and floristic composition under the influence of land
use and climate change have brought enormous implications on landscape structure and
ecological functioning in many regions of the world [33–37]. Survey and mapping of plant
communities, as distinguishable patches of plant species formed within a geographical area,
are not only relevant to quantitative analysis of vegetation-climate interactions, but also
important for promoting environmental protection and management measures, particularly
in an altering socio-economic context [38–41]. Contrary to a laborious field survey-based
organization and delineation of plant communities, usage of remote sensing images has
classified plant communities efficiently in many studies [42–45]. However, for large-scale
applications and operational mapping, a right and suitable system is required for the
organization of plant communities. In line with this, developing the DSPE classification
system and evaluation of its potential for regional-scale differentiation of plant ecological
communities is a timely and important contribution.

The floristic composition of a plant community in a geographical region occurs through
the processes of adaptation, competition, and natural selection [46,47]. The pattern of a
few abundant species, often referred to as a dominant species, and many rarer species are
defining characteristics of communities worldwide [48]. Extinction of dominant species
threatens much larger impacts on community and ecosystem processes compared with
the extinction of rarer species [49,50]. Thus, the dominant species-based classification
system presented in the research is vital to the study of ecological systems. The biodiversity
conservation and management efforts require biological and ecological information at
different levels from genes and species to communities, ecosystems, and landscapes [51].
In contrast to potential vegetation prediction approaches based on bio-climatic parameters
at coarse spatial resolutions [52,53], the actual vegetation classification approaches carried
out in the research can inform about the spatio-temporal ecological processes at fine spatial
resolutions. The DSPE and DGPE classification systems are able to inform the floristic com-
position of the communities in contrast to the physiognomy-based systems [54]. Compared
with a phytosociological system which usually deals with minimum mapping unit of 1 ha,
e.g., [55], the DSPE and DGPE classification systems are also capable of individual crown
level mapping with modern day ultra-resolution remote sensing images [56].

In recent years, the usage of artificial intelligence, particularly deep neural-networks,
has gained momentum in ecological applications as a versatile technology specialized for
big datasets [57–60]. Deep neural-networks learning has been reported as a powerful state-
of-the-art technique for classification of multi-temporal satellite imagery [61] and utilized
by many previous studies for the classification and mapping of vegetation using remote
sensing images [62–66]. This research employed deep recurrent learning as an efficient
classifier for dealing with time-series of the satellite data involved with the differentiation of
regional-scale plant (ecological) communities. Previous research has described the robust-
ness of the deep recurrent learning based on Long Short-Term Memory (LSTM) networks
for the classification of time-series of the satellite data [67–70]. Since the phenology-spectral
information is vital to the differentiation of plant ecological communities, the LSTM net-
works designed for dealing with the time-series of the data were effective. Nevertheless,
some DSPE communities were misclassified pertaining to similar phenology-spectral signa-
tures, especially among the evergreen broadleaf communities such as Camellia japonica Ebf,



Ecologies 2022, 3 332

Quercus spp. Ebf, and Castanopsis sieboldii Ebf. Another large misclassification in deciduous
broadleaf forests was found among the classification of Salix spp. Dbf, Euptelea polyandra
Dbf, and Zelkova serrata Dbf. However, communities across the physiognomic differences
were usually classified satisfactorily. When species-level information is not required, the
DGPE system is still capable of distinguishing a wide variety of plant ecological commu-
nities, such as Quercus Ebf (warm temperate), Quercus Dbf (cool temperate), and Quercus
Sb (alpine). It is expected that the classification of DSPE communities can be improved
through the advancement of remote sensing technologies in the future. Previous research
has also reported complexities associated with the classification of tree species from satellite
imagery, particularly in heterogeneous landscapes [71,72]. Accuracy obtained in the current
research is consistent with recent studies on the classification of ecological communities
from satellite images. For example, Kluczek et al. [73] obtained an F1-score in the range
of 76–90% for the classification of 13 mountain forest and non-forest plant communities.
Similarly, another study by Martínez Prentice et al. [74] obtained 80% Kappa coefficient
using Random Forests classifier in the classification of coastal wetlands. However, in
contrast to these local-scale classifications, achieving 85.5% F1-score and 84.7% Kappa in
the classification of 58 DSPE communities in the current research at a regional-scale is a
significant contribution.

5. Conclusions

In this research, the DSPE classification system was developed for large-scale differen-
tiation of plant ecological communities from remote sensing images. The performance of
DSPE classification of plant ecological communities was compared to higher-level classifi-
cation of DGPE communities by employing deep recurrent learning of multi-temporal and
multi-spectral satellite images at 10 m spatial resolution at a regional scale. Although the
differentiation of higher-level DGPE communities showed a slightly higher performance
(F1-score = 86.5%, Kappa coefficient = 85.7%) than the differentiation of DSPE communities
overall (F1-score = 85.5%, Kappa coefficient = 84.7%), the DSPE classification system has
the capacity to differentiate most of the ecological communities into a dominant species
level in contrast to the dominant genus-level differentiation of most of the communities
by the DGPE system. Since all 58 DSPE communities were classified with more than 60%
accuracy (in terms of F1-score and Kappa coefficient), the DSPE classification system was
still found to be effective for the differentiation of plant ecological communities efficiently
from satellite images. The DSPE and DGPE classification systems are expected to be useful
for community-level vegetation mapping in other regions as well.
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