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Abstract: Under standard guidance for conducting Ecological Risk Assessments (ERAs), the risks
of chemical exposure to diverse organisms are most often based on deterministic point estimates
evaluated against safety-factor-based levels of concern (LOCs). While the science and guidance for
mechanistic effect models (e.g., demographic, population, and agent-based) have long been demon-
strated to provide more ecologically relevant effect endpoints upon which risk can be evaluated, their
application in ERAs has been limited, particularly in the US. This special issue highlights the state of
the science in effect modeling for ERAs through demonstrated application of the recently published
Population modeling Guidance, Use, Interpretation, and Development for ERA (Pop-GUIDE). We
introduce this issue with a perspective on why it is critical to move past the current application of
deterministic endpoints and LOCs. We demonstrate how the current, widely used approaches contain
extensive uncertainty that could be reduced considerably by applying models that account for species
life histories and other important endogenous and exogenous factors critical to species sustainability.
We emphasize that it is long past time to incorporate better, more robust, and ecologically relevant
effect models into ERAs, particularly for chronic risk determination. The papers in this special issue
demonstrate how mechanistic models that follow Pop-GUIDE better inform ERAs compared to the
current standard practice.
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1. Introduction

Conducting an Ecological Risk Assessment (ERA) is a process by which measured or
estimated environmental concentrations (EECs) of toxic chemicals are compared with the
concentrations expected to cause adverse effects. The procedures used to conduct these
assessments are governed by various regulatory bodies, and details may differ somewhat
depending on regulatory jurisdiction [1]. Nevertheless, the objective of all assessments
is to integrate chemical exposure and effects in a way that can inform environmental
management and policy. The two overarching ways that the ERA process is used are
to determine the safety of chemicals before they are put on the market (or periodically
reviewed to allow them to remain in use) and to determine whether chemicals already in
the environment may be causing harm to ecological systems. These are sometimes referred
to as prospective and retrospective risk assessments, respectively.

In general, conducting an ERA is a tiered, iterative process that includes problem
formulation (i.e., what chemicals and ecological receptors are considered), exposure analysis
(i.e., use, fate, and distribution of chemical in the environment), effects analysis (i.e., adverse
impacts), and risk characterization. The risk characterization of the assessment is the
process in which risks are estimated and uncertainties are discussed. In practice, ERAs
are associated with extensive uncertainties due to limited data on the concentrations of
chemicals in the environment, the chemical effects measured on limited surrogate species,
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the translation of laboratory test conditions to the field, and the translation of effects
on individuals to the impacts on populations [2,3]. The evaluation of most chemicals
is initiated with a screening-level assessment that begins with conservative, worst-case
assumptions about exposure and effects. If the initial assessment concludes a level of risk
that is deemed unacceptable, the assumptions are refined for higher tiered assessments
(which generally involve more time and effort) to make them more realistic. This tiered
approach is designed to minimize effort involved in assessing clearly low-risk chemicals so
that resources can be prioritized to provide robust assessments of chemicals likely to be
higher risk [3,4] based on proposed or current uses.

The simplest, mostly widely applied method used to characterize chemical risks is per-
formed by dividing a point estimate of exposure with a point estimate of effect to calculate
a risk quotient (RQ), which is sometimes termed a deterministic hazard quotient [3,4]. The
RQ is a dimensionless number that is then compared to a threshold value or level of concern
(LOC) to determine a level of risk. Whether or not a level of risk is acceptable is based on the
requirements of the regulatory statute under which the ERA is being conducted. As the next
section will discuss in detail, there are inherent weaknesses in both RQs and LOCs, and the
science has advanced sufficiently over the last 30 years such that other options are now available
with which to gauge risk. Despite this, there has been a resistance by regulatory agencies to
move beyond these measures of risk, even as the science continues to steadily advance [3]. For
example, the USEPA’s general guidelines for conducting ERAs have not been updated since
1998 [4]. Although updated guidelines for specific applications (e.g., pollinators and endangered
species) have been published more recently [5–7], even these updated guidelines continue to
rely on RQs and LOCs to assess risk.

The purpose of this special issue of Ecologies on Population Modeling for Ecological Risk
Assessment and Management of Species is to demonstrate recently published guidance for
developing fit-for-purpose models that improve the characterization of chemical risks
by integrating chemical exposure and effects in an ecologically meaningful way while
incorporating appropriate levels of conservatism, realism, and precision to provide a robust
basis for risk management and policy decisions. These models can replace RQs and LOCs
with ecologically relevant probabilistic risk characterizations derived from integrating
exposure model output with effects translated into impacts throughout species life cycles
and resulting in population-level effects.

A main concern of decision makers in using population models as a basis for decision
support has historically been a lack of guidance on model development, documentation, and
evaluation. Without standardized approaches in these areas of model building and application,
there can be multiple competing models that vary depending on how they are structured and
the kinds of features that are included. Much progress has been made on these fronts over the
years, starting with common standards for model documentation [8,9], followed by guidance on
model evaluation [10]. More recent efforts have focused on developing guidance for explicitly
linking population model complexity with the specific objectives of different types of regulatory
risk assessments [11] and guidance to make the process of population model development
more transparent and consistent [12]. Accolla et al. [13] provided a critical review of population
models for use in the ERA process, with consideration of different model structures and the
types of key features to include depending on the ERA context. The recently published Pop-
GUIDE (Population modeling Guidance, Use, Interpretation, and Development for ERA) has
taken these developments one step further in a continuing effort to demystify the process of
population model development towards increasing the acceptance of such models as tools for
risk characterization and decision support [14]. In what follows, we provide a comprehensive
discussion of the shortcomings of current approaches used in the ERA process, with a focus on
the US regulatory framework (Section 2). This section is emphasized in depth to demonstrate
that deficiencies in the discrete components of exposure assessment, effects assessment, and
risk characterization result in substantially flawed estimates of risk. We then provide a brief
introduction to the kinds of population models useful for assessing the risks of chemicals on
ecological receptors and the benefits of such models compared to current approaches (Section 3).
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This section is expanded on through the manuscripts included in this special issue of Ecologies.
Finally, we provide some general take-home messages and guidelines for possible next steps that
set the stage for advancing ERAs to reflect better, more robust and relevant methods (Section 4).

2. Background and Current Practices

Current US ecological risk characterization for pesticides relies heavily on RQs to
estimate risks associated with both short- (acute) and long-term (chronic) exposures [3]. For
acute risk, the EEC may be determined by an upper limit of daily averages predicted from
an exposure model and divided by an acute LC/EC50 value to obtain an RQ. In chronic
risk estimation, the EEC is based on a threshold of longer exposure duration (e.g., 60-days
for fish; 21-days for aquatic invertebrates) and compared to an estimated chronic effect
threshold, typically a no-observed adverse effect concentration (NOAEC). The RQs are
compared to the LOCs to evaluate risk. For the sake of screening-level assessments, acute
RQs may be helpful to inform which chemicals and exposure scenarios require further
characterization, and we do not dispute their use in this context. However, for higher-tier
(more refined) assessments conducted on chemical applications that have the potential to
cause significant ecological impacts over longer durations, more sophisticated approaches
than RQs are available to characterize risk. In this section, we discuss the current process of
applying RQs to characterize risk of long-term exposures in higher tiered assessments and
demonstrate how this one-size-fits all approach (1) can be confounded by oversimplification
of both exposure and effects, (2) can lead to the mistaken perception that the magnitude of
the RQ reflects the magnitude of risk, and (3) relies on safety factors, which have long been
criticized for their arbitrary and unquantifiable uncertainty [15].

2.1. Estimating Exposure Concentrations

While the methods used to calculate EEC point estimates are intended to be conserva-
tive, they do not utilize all available data to characterize exposure. For example, the USEPA
pesticide risk assessment uses the 90th percentile of maximum annual 21-day average pes-
ticide EEC as the numerator of the RQ for aquatic receptors [16]. However, the probability
and magnitude of an adverse effect are driven by dynamic exposure profiles that cannot
be readily represented by a deterministic EEC point estimate. Figure 1 demonstrates two
chiral exposure distributions that differ in the directionality of their skew. In this hypo-
thetical example, the 90th percentile of both distributions is 2.65, which we can imagine as
some unit of concentration representing a 21-day average. If we assume a chronic effect
threshold of two, both distributions will yield an RQ = 1.33. However, the frequency of
EEC > 2 is greater for the left-skewed distribution (i.e., it is 0.33 and 0.57 for the right- and
left-skewed distributions, respectively), whereas the right-skewed distribution contains
concentrations that are two orders of magnitude greater than the highest concentrations
realized by the left-skewed distribution. While these higher concentrations do not occur at
a high frequency, the magnitude of toxic effect is concentration-dependent and ignoring
the full scope of exposure profiles may have profound impacts on the risk assessor’s ability
to adequately characterize risk. This example demonstrates how underlying variability in
EEC data are not employed when using a scalar RQ given a constant effects threshold, and
that point estimates of EECs may provide a false sense of conservativeness. While some
risk assessors may employ variations of this approach on a case-by-case basis, the standard
guidance continues to apply point estimates as described here.

Other critical elements of an exposure profile that are not captured by the deter-
ministic EEC are the temporal and spatial distribution of concentrations. If the highest
concentrations depicted by the right-skewed distribution in Figure 1 are present in the
environment during a critical point in a species life cycle, an infrequent yet high spike
in concentrations could have significant impacts on ecological receptors. Similarly, if the
upper 10th percentile of EECs occurs in a location that is critical to species reproduction
(e.g., nurseries), then risk will be missed using the 90th percentile value. Deterministic EECs
are incapable of describing how the spatial and temporal heterogeneity of chemical and
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species distributions interact to inform the co-occurrence of chemical and receptor. Using
the entire distribution of model-generated EECs to inform the likelihood and magnitude of
an adverse effect does not require a significant increase in resources (i.e., time and data)
or an overhaul of exposure modeling protocols, it just requires approaching the question
with a larger, more comprehensive picture in mind and applying basic fundamentals of
probability and statistics.
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Figure 1. Hypothetical exposure profiles showing the frequency of chemical concentrations under
different scenarios. Both distributions share the same 90th percentile noted by the solid line. A
hypothetical chronic effect level is denoted by the dashed line for relative comparison of variable
exposure profiles against a deterministic effect concentration.

2.2. Estimating Effect Concentrations

As with EECs, effect thresholds strive to be conservative while omitting available
information and relationships that inform actual risk. In general, the most sensitive api-
cal (e.g., survival, growth, and reproduction) or subapical endpoint (i.e., can be directly
and quantitatively linked to an apical endpoint) for the most sensitive species is used to
derive a chronic effect threshold. The effect data are simplified as the hypothesis-based
No Observed Adverse Effect Concentration (NOAEC), the Lowest Observed Adverse
Effect Concentration (LOAEC), or the regression-based concentration at which x% effect
is observed (e.g., EC10 and EC20). Such effects are measured at the individual level for
surrogate species and these effects are neither linearly related to impacts on populations
nor consistently translatable to populations of other species. While interspecies variation
in sensitivity can span several orders of magnitude [17], if a chemical inhibits growth
through some mechanism in one species of fish, it is assumed likely to inhibit growth in
other species of fish via a similar pathway. While some variability in species sensitivity is
expected based on morphological distinctions (e.g., body size) [18], the chemical mode of
action can provide great insight into the potential effects that guide the utility of surrogate
species with confidence. However, no effect measured on individuals of any species (apical
or subapical) can truly inform risk without putting those effects in the context of life history,
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which varies considerably across closely related species and drives the actual outcome of
chemical exposure on ecological receptors.

The ERA community has been distracted with discord over the use of the ECx over
NOAECs and LOAECs, e.g., [19,20]; however, when applied as the denominator of an
RQ this debate is moot as the RQ method is inherently more flawed than any one of its
components. Using chemical effects represented as NOAEC or ECx values is rooted in the
best available science of the 1980–1990s. The development of standard toxicity test protocols
boomed in the 1980s, with the Organisation for Economic Co-operation and Development,
the American Society for Testing and Materials, and the USEPA developing methods and
protocols for reproducible, quality-controlled evaluations of toxic effects on organisms.
Leading-edge research during this era focused on optimizing culture conditions, dosing
systems, and identifying test species and measurement endpoints that could be applied
and interpreted consistently by academic, private, and government laboratories globally
and used to support regulatory decisions. Statistical considerations were incorporated into
standard methods and initially relied on hypothesis testing to identify concentrations
(e.g., NOAEC and LOAEC) at or above which statistically significant adverse effects
were expected to occur. As early as the mid-1990s, researchers began expressing concern
over the limitations and inappropriate interpretation of hypothesis testing used in the
ERA process [21,22]. The 2000s saw increased advocacy for using the EC20 in place of
NOAECs/LOAECs [23–25] without considering how either number was actually applied
to characterize ecological- and not individual- risk. This critical flaw in effects assessment is
consistent with that of using a point estimate for EECs where a single number is not capable
of informing risk in a dynamic and diverse environment. Like exposure profiles, using the
full set of available data quantitatively provides significantly more information about the
likelihood and magnitude of toxic effects. In our view, the ecotoxicological community
needs to embrace the variability and uncertainty of the data that are available, rather than
continuing to debate which approach produces the superior point estimate.

For effects assessments to best reflect the available data they must be put in the context
of life history [26–33]. Raimondo et al. [33] used simulations to demonstrate how pop-
ulations of species with different life histories deterministically respond to proportional
reductions in survival and reproduction caused by chemical stressors (Figure 2). In this
example, such reductions would be informed by the whole dose-response measured during
toxicity tests on a surrogate species. Proportional reductions are applied to a hypothetical
“K-strategist”, for which reproduction by mature individuals is limited and the survival
of the young is critical for population sustainability (Figure 2A), and a hypothetical “r-
strategist”, for which females produce abundant offspring with a high natural mortality
rate (Figure 2B). Figure 2 shows a stark contrast in the pattern of proportional reductions
in population growth rate, r, (z-axis) with the same proportional reductions in survival
(x-axis) and reproduction (y-axis). This is one simple example that shows how life history
is the actual driver of how populations respond to stressors, a point that has been echoed
extensively by population ecologists for decades [26,30,34], yet still not typically charac-
terized in ERAs. In addition to the relative importance of survival and reproduction for
any given species, risk is also influenced by a population’s potential to grow, which can be
characterized by the magnitude of r or the finite growth rate, λ (r = ln(λ). A high popula-
tion potential would be indicated by a high growth rate and is distinct from the relative
contributions of survival, growth, and reproduction. In Figure 3, Raimondo et al. [33] used
two species with the same patterns of λ decline with proportional reductions in survival
and reproduction, but show that the two species differ in the magnitude of λ, as noted
by the values of the z-axes. The red horizontal surface cuts through the 3-dimensional
response curves at the point where the populations will decline (λ < 1), demonstrating that
the species represented by Figure 3A is inherently less tolerant of chemical effects than
the species represented by Figure 3B. The line denoted as the LC50 can be interpreted as
an example point estimate measured on a surrogate species in the laboratory, which cuts
across varying rates of population decline for the two species. While these deterministic
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simulations do not include environmental or demographic variability, they are useful to
demonstrate that laboratory-based point estimates alone cannot fully inform risk. These
examples are supported by numerous studies emphasizing that a percent effect (e.g., ECx)
is not meaningful in and of itself [30,31,35].
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Figure 3. Demonstration of risk (i.e., λ < 1) as a function of life history and variability of risk
tolerance around a point estimate (LC50) for (A) mysid shrimp and (B) gypsy moth with low and
high population potential, respectively, as defined by the value of population growth rate (from
Raimondo et al. [33], reprinted with permission).

2.3. Levels of Concern

Levels of concern essentially represent safety factors applied to RQs; however, it would
be incorrect to assume that the magnitude of the RQ contains any real association with
the magnitude of risk (Table 1). The USEPA guidance for developing ERAs acknowledges
that RQs are not correlated with, or indicative of, magnitude or probability of risk [4],
which is contrary to the application of LOCs to RQs. As demonstrated in Figure 1, two
scenarios with the same RQ may differ in peak concentrations by orders of magnitude,
and those concentrations can have a wide range of effects for species of different life
histories (Figures 2 and 3). There is no ecological or biological logic to comparing RQs
to LOCs to understand ecological risk and doing so implies a greater certainty in the
relationship between RQ and risk than exists in reality. The National Research Council
strongly recommended replacing safety factors with more robust, data-driven approaches
to increase the relevance of ERAs, citing several alternative methods while echoing concerns
voiced across the research community for decades [2,27,28].

At the heart of the RQ-LOC allure is a bright line amenable to decision making for
a complex and dynamic environment. Indeed, a common criticism by risk managers
of probabilistic methods, such as many population models, is that they lack a clear line
with which to gauge whether a risk estimate exceeds a particular threshold. While bright
lines may help facilitate the difficult role of risk managers, using bright lines to justify a
scientific claim or conclusion can lead to erroneous interpretations [36]. As data used in,
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and interpreted for, ERAs are based on statistical testing (NOEC and LOEC) or model fitting
(ECx), risk assessors and managers should adopt the best statistical practices. Recently,
the American Statistical Association (ASA) published a statement discouraging the use
of bright lines in decision making, highlighting the misuse and misinterpretation of p-
values [37]. The ASA’s motivation to move the research community away from black or
white “significance” and their reasoning is justly applicable to bright lines applied in risk
management decisions. Wasserstein et al. [36] summarized the ASA statement into a cheat
sheet of “don’t”s, which we extend to ERA-relevant language to advocate for the end of
bright lines in the ERA process (Box 1). While it may seem as though “don’t”s encompass
the entirety of the current effects characterization process, we discuss how the best available
science to inform risk characterization already adheres to these recommendations in the
next section, and offer recommendations for how risk assessors, managers, and researchers
can move forward to implement such changes in closing.

Table 1. Levels of Concern (LOC) used in USEPA pesticide risk assessments [5].

Exposure Duration Taxa LOC (RQ > Limit) Interpretation

Acute Aquatics 0.5 High acute risk
0.1 Risks may be mitigated through restricted use
0.05 Eendangered species may be affected acutely

Mammals and birds 0.5 High acute risk
0.2 Risks may be mitigated through restricted use
0.1 Endangered species may be affected acutely

Bees 0.4 Acute risk
Chronic All taxa 1 Presumption of chronic risk

Endangered species 1 May be affected chronically

Box 1. Guidance from the ASA [36]:

1. ASA: Do not base your conclusions solely on whether an association or effect was found to be
“statistically significant” (i.e., the p-value passed some arbitrary threshold such as p < 0.05).

ERA: Do not base your conclusions solely on whether a single threshold is exceeded.

2. ASA: Do not believe that an association or effect exists just because it was statistically signifi-
cant.

ERA: Statistical significance does not consistently translate into biological or ecological significance.

3. ASA: Do not believe that an association or effect is absent just because it was not statistically
significant.

ERA: Do not ignore variability that is around summary values.

4. ASA: Do not believe that your p-value gives the probability that chance alone produced the
observed association or effect or the probability that your test hypothesis is true.

ERA: Do not believe that RQs and LOCs reflect the probability of adverse outcomes

5. ASA: Do not conclude anything about scientific or practical importance based on statistical
significance (or lack thereof).

ERA: Same

3. The Need for Better, More Robust and Relevant Methods
3.1. Mismatch between What ERA Measures and What It Endeavors to Protect

In contrast to human health risk assessment, the ERA process is generally intended
to protect populations and ecosystems and not individuals [3]. Even for threatened and
endangered species, for which it might be argued that the loss of any individuals is to
be avoided, risk assessments are intended to determine conditions under which species
populations are likely to decline (i.e., to be in jeopardy). This implies that any measure of
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chemical effects used in ERAs need to either be a direct measure of population-level impact
or linked quantitatively to such impacts. For some small and rapidly growing species (e.g.,
phytoplankton and rotifers), standard toxicity tests directly measure population growth
rate. For most species of interest, however, it is impractical to experimentally measure
chemical impacts on population growth directly, and most toxicity tests measure effects on
individual survival, growth, or reproduction. As was demonstrated above, the relationship
between individual-level effects of chemicals and their population-level impacts varies as
a function of species life history as well as spatial and temporal aspects of the chemical
exposure scenario. In addition, interactions among individuals in populations (e.g., density
dependence), the presence of other environmental drivers, and stochasticity in all of the
above mean that most toxicity test measurement endpoints are not likely to be useful
proxies for population-level effects of chemicals.

Different levels of complexity are required for different ERAs depending on the
nature of the risk being characterized [38]. Although population models can accommodate
different levels of complexity, this flexibility has been a historical hindrance in developing
and applying population models in ERAs [11]. The pushback from regulatory agencies
has focused on the challenges and limitations of population models [4] without properly
comparing model limitations with those of RQs. In these cases, arguments against using
models are typically presented without comparison to existing approaches (i.e., RQs) and
thus the weaknesses of current practices are not explicitly acknowledged or held up against
alternative approaches.

With the continued advancement of technologies that facilitate the rapid and inex-
pensive detection of chemical effects at the biochemical and molecular levels, the need for
approaches to link such measures to apical endpoints of regulatory interest that matter for
ERAs (i.e., impacts on populations) are essential. The adverse outcome pathway (AOP)
framework was introduced to conceptually link the effects of chemicals across levels of
biological organization, incorporating mechanistic understanding, and in some cases a
quantitative understanding, of how responses at lower levels could lead to effects at higher
levels [39]. Current efforts are moving towards further enhancing AOPs from a conceptual,
descriptive framework to a more quantitative, mathematical approach, e.g., [40]. Mov-
ing forwards with the use of AOPs as decision support tools for ERAs will require that
they are incorporated into quantitative models that produce outputs of relevance for the
process [41].

3.2. A Brief History of Population Modeling in the Context of ERA

Population modeling has a long history, usually traced back to Thomas Malthus’ 18th
century study of human demography and his Malthusian growth model [42]. The earliest
applications of population models for decision support are in fisheries, dating back to
the Danish biologist, Carl Georg Johannes Petersen [43]. Although early models were
relatively simple, and limited by both ecological theory and computational power, today’s
models are substantially more sophisticated and remain as essential management tools in
fisheries and wildlife management [44]. Today, population dynamics theory and models are
essential components of every introductory ecology textbook as well as textbooks focused
on describing the ERA process, e.g., [29]. Entire textbooks covering the details of specific
types of models, such as matrix population models [45], metapopulation models [46], and
agent-based models (ABMs) [47] are widely available and have been for some time. The
argument that the science underlying the use of population models is not robust, verified, or
otherwise appropriate for regulatory decision making is false. The foundation of ecological
models is considerably older and better understood and accepted by the general science
audience than the exposure models regularly used and applied as the basis of exposure
characterization in ERAs.

The discussion of population models as tools for conducting ERA dates at least as far
back as the 1980s, e.g., [48,49]. Since that time, several books, e.g., [29,50], and numerous
scientific review articles [51] have been published on this topic. A number of international
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workshops sponsored by the Society of Environmental Toxicology and Chemistry have
been held, including in Roskilde, Denmark, in 2004 [50], Leipzig, Germany, in 2007 [32], Le
Croisic, France, in 2012, and Monschau, Germany, in 2013 [52]. A USEPA Risk Assessment
Forum Technical Workshop on Population-Level Ecological Risk Assessment was held in
Washington (DC, USA) in 2008 to develop guidance for the USEPA programs [53]. The
guidance on good modeling practice for ERAs received a major boost in 2009 with the
EU-funded Marie Curie Training Network “CREAM”, (Chemical Risk Effects Assessment
Models) in which both specific models and general guidance for good modeling practice
were developed [54]. Case studies were developed by a tripartite group of academic,
industry, and regulatory scientists during the MODELINK series of workshops to demon-
strate how population models could be applied to specific regulatory questions related to
pesticide ERAs [52].

Efforts by the USEPA, the US Fish and Wildlife Service (USFWS), and the National
Marine Fisheries Service (NMFS) to reach a consensus on approaches for assessing risks to
federally threatened and endangered (i.e., listed) species from pesticides led to the publica-
tion in 2013 of an influential report by the US National Academy of Sciences [28]. This report
defined a specific three-tier assessment process in which the USEPA performs the screening
level and intermediate ERAs while the USFWS or the NMFS conducts the third-tier ERA.
Under this framework, population models can be used to translate laboratory data collected
on surrogate species to ecologically relevant endpoints for listed species and could be used
to answer different questions in the second and third tiered assessments. Ultimately, the
USFWS and the NMFS could apply such models to evaluate whether the chemical exposure
could result in jeopardy to the listed species. This renewed interest in population modeling
for ERAs led to further attention in the form of industry sponsored (CropLife America)
workshops and focused sessions at major conferences (SETAC, American Chemical Society).
However, to date, limited progress has been made in applying population models to these
assessments, as the methods used for model parameterization remain contentious. Recent
biological evaluations (BEs) that have been published thus far under the new process rely
entirely on individual-level effect endpoints [55–57], perpetuating the use of the NOAEC
and the ECx. Meanwhile, Europe continues to move forwards alongside the science, slowly
but surely, providing guidance for good modeling practice for mechanistic effect models
used for pesticide ERAs [58] and working constructively with modelers and industry to
refine specific models (e.g., BEEHAVE) [59], such that they could be incorporated in the
ERA toolbox.

3.3. Current State of the Science to Support ERA

The science available for conducting ERAs has advanced considerably since the late
1990s when the USEPA’s general ERA guidance was last updated. While the USEPA’s ERA
process under some regulatory statutes continues to evolve (e.g., >700 guidance documents
for ERA conducted under FIFRA), these updates and additional guidance are not fully
captured in agency-wide guidance, and the RQ-LOC continues to be the predominate
endpoint for chronic risk characterization. Meanwhile, a variety of mechanistic effect
models are available to allow the quantitative and mechanistic extrapolation of organismal
or suborganismal responses to chemicals measured in most toxicity tests to endpoints that
matter for ERAs (i.e., population-level responses). Likewise, toxicokinetic–toxicodynamic
(TK–TD) models allow chemical uptake and effects to be estimated from the kind of tem-
porally varying chemical exposures that often characterize field conditions. Models such
as MCnest [60] make simple use of life-history information for a diversity of bird species
to translate toxicity test endpoints into metrics relevant to ecological considerations, and
similar so-called translator models are in various stages of development for fish [61], am-
phibians [62], and invertebrates [63]. When put into a landscape context, spatial variability
in chemical exposure can also be integrated with such models to assess how exposing
different proportions of a population to a chemical may influence risk.
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Accolla et al. [13] reviewed the key features of population models of relevance for
use in the ERA process. They categorized models into three main types: unstructured,
structured (e.g., matrix models), and agent-based. Unstructured models are simple, scalar
models that can be as simple as r = births/deaths. Structured models represent populations
broken down by relevant life stages, sizes, ages, or other distinctions that are relevant to the
species. For example, structured models for amphibians could distinguish between aquatic
larval stages and terrestrial adult stages, as the different life stages are exposed to chemicals
differently based on their habitat. Agent-based models (ABMs) consider distinctions among
autonomous units, such as individuals or cohorts that are more refined than age groups
or life stages. Any of these types of models can incorporate density dependence, spatial
heterogeneity, external drivers, stochasticity, life-history traits, behavior, energetics, and
the integration of exposure and effects. Whether or not to include these components in the
model structure depends on the ERA context, how each feature could be incorporated into
the different model types, and the available data to inform how they function within the
model. In their simplest form, population models can integrate multiple individual-level
toxicity test endpoints into a measure of population growth rate, e.g., [26,31,64], while
excluding many environmental features that are either unknown or not applicable at a
large-scale, such as national levels. Etterson and Ankley [65] use a very simple demo-
graphic model to reiterate the importance of incorporating life history with toxicological
effects in a manner similar to that demonstrated here in Figures 2 and 3. When used in
even their simplest form, population models can compare the relative vulnerability of
different species to impacts on their life-history traits as well as their inherent potential
for recovery, all else equal. In their most complex form, population models can project
landscape-level changes in populations or species through space and time by overlaying
exposure profiles, landscape attributes, and population dynamics, e.g., [9]. These models
easily lend themselves to incorporating uncertainty or variability of all influential parame-
ters to derive probabilities of various impacts and how mitigation efforts may alter such
outcomes. However, limitations of resources and data may constrain the complexity with
which population models can be developed for a particular ERA. But as demonstrated by
Raimondo et al. [11], not all ERA objectives require complicated models, and models are
still valuable in estimating the likelihood of adverse effects when developed using limited
data scenarios and incorporating the best available quantitation of variability.

With more features included for increased complexity, population models can be very
effective at distinguishing adverse changes due to chemical exposure from those within
the normal pattern of ecological variability or associated with other stressors (e.g., climate
change and habitat loss). Natural fluctuations in environmental conditions, intra- and
interannual variability in population size and structure, and cyclic events of various periods
(e.g., bird migration and tides) are very important in natural systems, may mask or delay
stressor-related effects, and are important considerations in ERAs [4]. The RQ-LOC bright
line approach is incapable of accounting for these factors. Another important advantage of
population models over RQs for assessing chronic chemical risk is that they can use all of
the available data on exposure and effects (i.e., the entire dose–response curve, rather than
a point estimate such as ECx). Unlike RQs, population models are designed for quantitative
uncertainty and sensitivity analyses, which will help decision makers gauge the confidence
with which their assessments are associated. Moreover, population models are especially
good at evaluating the adverse changes in assessment endpoints, the nature and intensity
of effects, the spatial and temporal scale, and the potential for recovery and mitigation.

Population models allow risk assessors and managers to consider “what if” scenarios
and to forecast beyond the limits of observed data and techniques that are based solely
on empirical data [4], which is exactly how risk assessors have used exposure models
for decades. Not only are population models well suited to quantifying the likelihood
of impacts of chemicals on populations, they are also ideal for modeling a population’s
recovery following an adverse event such as chemical exposure or in response to different
management actions. For example, Vaugeois et al. [66] developed an ABM to quantify the
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effects of chemicals impairing different energetic pathways related to feeding, reproduction,
growth, or maintenance in lake sturgeon (Acipenser fulvescens). They explored how such
impairments of energetic pathways, through their effects on sturgeon life-history traits, im-
pacted population abundance and recovery in the absence of exposure. Furthermore, they
simulated different management strategies to aid sturgeon population recovery. Because
these fish live for around 150 years and do not start reproducing until they are approxi-
mately 20 years old, it can take a very long time to determine whether management efforts
are having the desired effect. Comparing different management strategies in computer
simulations of 100 years or more can greatly improve the cost-effectiveness of population
recovery initiatives and the protection of long-lived species [67].

In addition to the scientific advances in population modeling over the last several
decades, there have been vast improvements in the development of guidance related to
issues such as appropriate level and type of complexity that needs to be incorporated, how
specific or general the models need to be, and the extent to which interactions through
competition and trophic relationships need to be incorporated [14,15]. As described in the
Introduction, much effort by the scientific community has focused on developing guidance
for both model developers as well as those in a position to use models for decision support.
Thus, a lack of guidance can no longer be justified as a reason for not using these types of
models in ERAs [11].

While population models have extensive flexibility and power to inform responses
beyond a single point estimate such as a NOEC or ECx, they contain limitations and uncer-
tainties inherent in all models. More complex models require more information, and such
data may not be available or may need to be simulated using the qualitative understanding
of relationships. For example, density dependence may be an important component of a
population to self-regulate, but it may be very difficult to obtain quantitative functions for
how population density influences growth rate. Models can range in their spatial resolution
from simple life-history models that do not consider landscape features, to spatially explicit
representations of a particular landscape. However, as Pop-GUIDE demonstrates through
the papers of this special issue, not all assessments require complex models or complex
features. Simple density-independent life-history models (e.g., Pop-GUIDE’s “general”
model) may not be precise in their predictions of population density but are able to inform
changes in a population’s potential or “fitness” (Figures 2 and 3) [65]. Model developers
and risk assessors should be clear on what models are capable of informing and communi-
cate that transparently. Additionally, the variability and uncertainty of models can also be
difficult to evaluate, and users may only be able to validate functions within the model (i.e.,
concentration–response functions). Transparency of the confidence or uncertainty of data
and functions used in the models should be included in all model documentation [8–14].

4. Take Home Messages

The research supporting the use of population models (or mechanistic, demographic
models) as the best available science for ERAs is extensive, comprehensive, and exhaus-
tive [8–15,26–35,41–47,50–54,60–66]. Meanwhile, the continued use of deterministic RQs-
LOCs is side-tracked by discourse over the interpretation and relevance of NOAECs and
ECxs. We contend that it is long past time to further advance chronic risk characterization
by making greater use of population models to refine assessments and inform regulatory
decisions. Perhaps the biggest reason for pushback from risk assessors and risk managers
on using such models in ERAs is that the models do not tell them which impacts are
acceptable and which are not. This is not a flaw of the models but does highlight that
decisions about acceptability do have to be made. At some time in the past, such decisions
were made with respect to LOCs and RQs, and so no additional effort is needed for risk
managers today to “decide” whether an acute RQ > 0.5 for an aquatic species indicates
high risk. Now that the science has advanced to provide more ecologically relevant and
nuanced measures of risk based on population (and other mechanistic effect) models, what
is needed now is to identify a standard suite of models to use for different types of ERAs
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as well as transparent and consistent criteria for deciding which risks are acceptable and
under what conditions.

The papers featured in this Special Issue of Ecologies demonstrate how population
models developed according to the latest guidance (i.e., Pop-GUIDE), provide a more
scientifically robust basis for conducting ERAs that incorporates key aspects of species life
history and ecology, make efficient use of the available data, and produce outputs that are
better aligned with things people care about. Etterson [68] used four bird models with dif-
ferent degrees of realism to demonstrate the important role that population models can play
at different tiers of the ERA process. Garber et al. [69] developed and applied a simulation
model of honeybee (Apis mellifera) colonies. A. mellifera is a common test species used in pes-
ticide ERAs, and is therefore relatively data-rich, which facilitates model parameterization
and evaluation. For many species, however, data may be difficult or impossible to collect.
In such cases, population models can make effective use of the data that are available and,
while perhaps not providing precise measures of risk, can produce robust estimates of
relative risk under various scenarios. Three of the papers focus on how population models
can improve ERAs for threatened and endangered species. Accolla et al. [70] used an
ABM to demonstrate how differences in life history among four species of Cyprinid fish,
together with species–specific differences in density dependence, influence their responses
to realistic fungicide exposure. Awkerman and Greenberg [71] used a matrix population
model to show the importance of altered hydroregime, in combination with pesticide
exposure, on the population dynamics of the threatened southern toad, Anaxyrus terrestris.
Miller et al. [63] showed the value of combining a population model with a field assess-
ment and laboratory-based chemical analysis to assess the risks of an organophosphorus
pesticide to the threatened vernal pool fairy shrimp, Branchinecta lynchi. Examining a very
different management challenge, Hudina et al. [72] developed a conceptual population
model to identify possible management scenarios for the invasive signal crayfish, Paci-
fastacus leniusculus and expanded Pop-GUIDE to increase its applicability to other fields
beyond ERA.

We summarize key take home messages from this perspective that are demonstrated
throughout this special issue:

1. The environment is not deterministic, so we cannot rely solely on deterministic
methods to understand its future;

2. Higher-tier risk assessments should utilize the entire domain of data to transparently
explain decisions based on variability and uncertainty within all available information;

3. Incorporating species life histories as well as spatial and temporal considerations is
critical to understanding risk;

4. Holding on to “bright lines” (e.g., RQ-LOCs) for their ease of use is not an acceptable
justification for putting the environment at risk by using outdated methods;

5. Stakeholders will need to come to a consensus on how to interpret different ways of
expressing risk that does not require risk managers to have to re-evaluate acceptability
for every new ERA;

6. The general USEPA ERA guidance [4] does not accommodate advances in the state of
the science, therefore an update of this guidance is warranted.

Although the role of RQs-LOCs may remain useful for simple, screening-level assess-
ments based on simple metrics at the lowest tiers, ecological risk assessors and managers
should start envisioning ERAs in a post–bright line world for higher tiered assessments
evaluating chronic risk. In doing so, it will be important to design an approach that can
be applied transparently, consistently, and equitably across different types of ERAs. There
may be cases where ecological risks cannot be mitigated but are deemed “acceptable”
and “reasonable” if the benefits (e.g., economic, health, social, and political) outweigh the
risks. However, when risk is properly characterized, the assessment is easier to explain,
justify, and defend [38]. Comprehensive model guidance, such as Pop-GUIDE, provides
a means for making greater use of the available data towards characterizing potential
risks. As the papers in this special issue show, the application of Pop-GUIDE as a tool for
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model development and documentation is ready for application in ERAs under various
regulatory statutes.
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