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Abstract: Climate change is having a significant impact on the global ecosystem and is likely to
become increasingly important as this phenomenon intensifies. Numerous studies in climate change
impacts on biodiversity, ecosystems, and ecosystem services in China have been published in
recent decades. However, a comprehensive review of the topic is needed to provide an improved
understanding of the history and driving mechanisms of environmental changes within the region.
Here we review the evidence for changes in climate and the peer-reviewed literature that assesses
climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our
main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing
extreme events) is affecting the change of productivity, species interactions, and biological invasions,
especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The
individuals and populations respond to climate change through changes in behavior, functions,
and geographic scope. (3) The impact of climate change on most types of services (provisioning,
regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to
human well-being and natural resource management, therefore, requiring costly societal adjustments.
In general, although great progress has been made, the management strategies still need to be further
improved. Integrating climate change into ecosystem services assessment and natural resource
management is still a major challenge. Moving forward, it is necessary to evaluate and research the
effectiveness of typical demonstration cases, which will contribute to better scientific management of
natural resources in China and the world.
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1. Introduction

Biodiversity and ecosystems as natural capital provide services such as provisioning,
regulating, supporting, and cultural for human society, and assets play fundamental roles
in supporting human well-being [1]. However, climate change poses widespread and
increasingly serious global threats to biodiversity and ecosystems [2]. The sixth assessment
report of the United Nations Panel on Climate Change (IPCC) clearly pointed out that from
the prediction of average temperature change in the next 20 years, the global temperature
rise is expected to reach or exceed 1.5 °C; at least until the middle of this century, the global
surface temperature will continue to rise [3]. In addition, the increasing frequency and
intensity of extreme weather events (such as droughts, heatwaves, and heavy rainfall) will
affect 25–40% of the global ecosystem structure and function [4,5], and further affect the
supply level of ecosystem services and the human well-being [6].

China is one of the most sensitive and vulnerable regions to climate change [7].
The National Assessment Report on Climate Change (III) pointed out that the average
temperature of China’s land has increased by 0.9–1.5 ◦C in the past 100 years (1909–2011)
(China’s National Assessment Report on Climate Change (III), 2014). It will continue to
increase in the next 20 to 100 years, with a temperature increase of 0.5 to 0.8 ◦C, which is
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slightly higher than the average global temperature rise (0.6 ± 0.2 ◦C) during the same
period [7]. Therefore, the precipitation patterns and other bioclimatic factors will change
significantly as the global average temperature continues to rise [8], which will have a
profound impact on China’s natural ecosystems and ecosystem services, and will create
huge challenges for natural resource management. Thus, policymakers need to adopt
active and flexible response strategies, considering historical and future prospects, in order
to achieve sustainable development of ecosystem services.

Based on this, in the context of the National Assessment Report on Climate Change
(III) and the Blue Book on Climate Change in China, we have conducted an analysis of the
research themes of many scientists and tried to summarize the research on biodiversity,
ecosystems, and ecosystem services in China from spatial and temporal scales, (the review
includes three components: (i) Biodiversity individuals, populations and species that
constitute the ecosystem. (ii) The characteristics and processes of the ecosystem. (iii) the
services that the ecosystem provides to support human development). Finally, we cite
examples of relevant adaptive actions to reveal the challenges that climate change brings to
natural resource management and to propose possible future management strategies, with
a view to providing examples for the implementation of natural resource management and
sustainable development on a global scale.

2. Data Sources and Analytical Methods

Meteorological data: From the China Meteorological Administration Meteorological
Data Service Center (https://data.cma.cn/ (accessed on 6 August 2020)), the monthly me-
teorological data set was obtained from 1960 to 2019, which covers 613 ground observation
stations from 1951 to the present.

Land Use and Land Cover data: Sourced from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/ (accessed
on 4 May 2020)). Land use types include six types of cultivated land, forest land, grassland,
water area, residential land, and unused land.

China’s state poverty counties data: From the official website of the Leading Group
Office of Poverty Alleviation and Development (of the State Council), the published
list of 665 key counties for national poverty alleviation and development in 2012 (http:
//www.cpad.gov.cn/ (accessed on 4 May 2020)).

Invasive Alien Species data: Sourced from the Database of Invasive Alien Species in
China (http://www.chinaias.cn/ (accessed on 20 March 2020)) and the Ministry of Ecology
and Environment of China (http://www.mee.gov.cn/ (accessed on 20 March 2020)).

Literature Retrieval Data: We researched articles published between 1990–2019, which
were collected using selective keywords under ‘TOPIC’ in the database of ISI Web of Science
Core Collection. We searched the keywords: (ecosystem, ecosystem service, climate change
etc.), and searched a total of 18,323 studies on ecosystems in China (including 5434 studies
on the impact of climate change on ecosystems, accounting for about 30%); 4258 studies on
ecosystem services in China (including 1042 studies on the impact of climate change on
ecosystem services, accounting for about 24%). As needed, we further searched articles
related to climate change, and selected 330 articles for detailed review.

3. Results
3.1. Overall Research Trends

We searched a total of 18,323 studies on ecosystems in China (including 5434 studies
on the impact of climate change on ecosystems, accounting for about 30%); 4258 studies on
ecosystem services in China (including 1042 studies on the impact of climate change on
ecosystem services, accounting for about 24%). From 1990 to 2019, the volume of literature
on ecosystems and ecosystem services shows an increasing trend (Figure 1A,C), which
indicates that people are paying more and more attention to the impact of climate change
on ecosystem and ecosystem services (Figure 1B,D). Based on the analysis of 330 literature
after filtering and screening, we found that the spatial scale diversity was considered in a

https://data.cma.cn/
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number of studies (Figure 1D), but the terrestrial ecosystem (230 Studies) was significantly
more than the freshwater (44 Studies) and the marine (56 Studies) (Figure 1D). The forest
and grassland ecosystems in the terrestrial ecosystem were the hot research areas. Although
the research covers a large area of China, more attention has been paid to the Qinghai Tibet
Plateau (32 studies in Tibet and 20 studies in Qinghai), and the Inner Mongolia Plateau
accounts for about 11% (36 studies in Inner Mongolia) (Figure 1E).
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3.2. Increasing Threat to Biodiversity

The degradation of ecosystems, especially habitat loss, is one of the important reasons
for the decline of biodiversity [9]. The relationship between global warming and species
diversity has become the focus of research in recent decades [10]. Under the scenario
of global warming in the future, climate-sensitive species show a trend of migration to
high altitude, high latitude, and westward [11]. Recently, species distribution shifted to
a higher altitude at a rate of 11 m per decade, and to a high latitude at a rate of 16.9 km
per decade [12]. The extinction risk of high altitude and high latitude species will be
further intensified [12]. Therefore, climate change has become the biggest threat to global
biodiversity, and research is urgently needed to reveal how species’ habitats respond to
future climate change.

3.2.1. Phenological Changes

There is a significant correlation between phenology and climate change, and the
change of phenology has become the main indicator of species’ response to climate
change [13]. Under the background of global warming, plant phenology has changed
significantly. Such abrupt warming can affect many aspects of vegetation, such as plant
composition and diversity, phenology, productivity, biomass, and vegetation fraction [14],
and then affect the energy flow, carbon cycle and water cycle of the whole terrestrial
ecosystem.

In recent decades, the phenology of plants in China has been strengthened by climate
change, and the growing season has been prolonged. The phenological changes of peach
showed a more intense trend. The flowering date was advanced by 11.1 days, while the
defoliation date was delayed by 8.7 days [15]. According to the Blue Book on Climate
in China, from 1963 to 2019, the spring phenophase of representative plants in different
regions showed a significant advance trend. For example, Beijing Station (Magnolia denudata
Desr.), Shenyang Station (Robinia pseudoacacia L.), Hefei Station (Salix babylonica), Guilin
Station (Liquidambar formosana Hance), and Xi’an Station (Acer mono Maxim.) advanced
3.3 days, 1.4 days, 2.2 days, 2.9 days and 2.5 days, respectively (Blue Book on Climate in
China, 2020) (Figure 2).

From different parts of the country, the timings of leaf-out and fruit-set significantly
advanced in Qinghai Tibet Plateau in recent years [16,17]. In recent decades, warming
in Inner Mongolia Plateau has been much faster than the global warming rate [18], and
the increase of temperature impacts grassland phenology significantly [19]. In Northwest
China, climate change also impacts crop phenology.

Climate warming leads to the earliness of pseudostem elongation, booting, anthesis,
and ripening stages of winter wheat during the 24 years [20]. Compared with terrestrial
systems, phenological changes of marine and aquatic habitats in China are less recorded,
mainly due to the difficulty in detecting and tracking aquatic organisms.

Under the background of global warming, if the climate continues to warm, the
phenological changes and the resulting ecological, agricultural, socioeconomic, and health
problems deserve attention. The response of phenology to global warming is becoming
a hot spot in the current international global change research, and NDVI is increasingly
becoming an important means of vegetation response to climate. At present, many domestic
researchers have carried out some work on the response of phenology to climate warming,
and the research on the response of vegetation to climate change using NDVI has also been
carried out. However, compared with the international research progress, there is still a lot
of research work to be further carried out.

3.2.2. Geographical Expansion of Species

Climate change is driving species distribution and abundance changes in terrestrial
and aquatic ecosystems [21]. At the same time, future climate change will also have
significant changes in the geographical range of species. For example, climate change is
threatening the habitat of flagship species and has posed a serious threat to the habitat
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of the giant panda (Ailuropoda melanoleuca) in recent decades [22]. For plants, warming
will threaten the survival of Alpine coniferous forests in Northeast China [23]. The rising
trend of Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Juniperus przewalskii
Kom.) tree-limit in Qilian Mountains of China is also obvious, with the warming and
humidification of the climate [24], the growth of Qinghai spruce in the Qilian Mountains
showed an overall upward trend after 2000 [25,26]. It is also found that the rise of Qilian
Mountain forests has been relatively obvious in the past 100 years, and the rising rate
has decreased from east to west. With the improvement of temperature and moisture
conditions, the lower line of forests in some areas has moved down significantly [26,27].
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to 2019 (Magnolia denudata Desr.: The famous flower in China has a flowering period of about 10 days. Robinia pseudoacacia L.:
Temperate tree species, native to the United States, now widely planted throughout China. Salix babylonica: belongs to
light-loving and wet-loving plants, producing the Yangtze River Basin and the Yellow River Basin. Liquidambar formosana
Hance: likes warm and humid trees, which are produced in Qinling Mountains and south of Huaihe River in China. Acer
mono Maxim.: a deciduous tree with a height of 15–20 m, distributed in Northeast and North China). The data sourced from
Chinese Phenological Observation Network (CPON) (http://www.cpon.ac.cn/ (accessed on 6 August 2020)).

Many studies have found that climate warming is changing the habitat range of species
all over the world. Driven by climate change, there are three different modes of habitat
transfer, includes decrease, increase, and disappearance [28]. For example, the prediction of
habitat range of Polygala tenuifolia in China shows that the highly suitable habitat area was
slowly reduced over time in the context of climate change [29]. For Haloxylon (Haloxylon
ammodendron (C. A. Mey.) Bunge) vegetation in arid areas, warming will lead to the gradual
disappearance of habitat in the Balkhash Lake area in the east of Xinjiang [30]. However,
for some plants in the Himalaya–Hengduan Mountains, climate warming has increased
the habitat range to some extent. The predictions indicate that, under a wide range of
climate change scenarios, the distributions of Cyananthus and Primula will shift upward
in elevation and northward in latitude, furthermore, under these scenarios, species will
expand the size of their range [31]. In addition, for some crops (Zingiber, Brassica napus L.,
Triticum aestivum L., Glycine max (Linn.) Merr), future climate change may lead to increased
habitat area [32].

http://www.cpon.ac.cn/
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For some species, climate change has resulted in reductions in population size and,
for range-restricted or isolated species and populations, in extinction or extirpation [33,34].
In particular, it may increase the risk of extinction of a plant species with extremely small
populations [35]. Metasequoia glyptostroboides in southern China, a plant species with
extremely small populations that are categorized as critically endangered, facing ongoing
habitat fragmentation and degradation, and resultant serious population decline [35,36].
The temperature is an important environmental factor that affects the growth, development,
and function of plants. It directly affects the physiological functions of plants, such as
photosynthesis, respiration, material transportation, and energy conversion. In the case
of global warming, therefore, six wetland plants (Bruguiera gymnorrhiza, Carex doniana,
Glyptostrobuspensilis, Leersiahexandra, Metasequoiaglyptostroboides, Pedicularis longiflora) in
China are also facing the risk of extinction [35].

3.3. Ecosystems

In previous studies, we found that the ever-changing climate drivers profoundly
affect the numbers, compositions, and activities of individuals, populations, and species,
which will lead to changes at the ecosystem level. Therefore, we focus on several key
ecosystem-level characteristics affected by climate change.

3.3.1. Biological Invasion Accelerates Expansion

The IUCN (International Union for Conservation of Nature) definition is: “An alien
species is a species introduced outside its natural past or present distribution, if this species
becomes problematic, it is termed an invasive alien species (IAS)” (https://www.iucn.org/
theme/species/our-work/invasive-species (accessed on 6 August 2020)). The harm caused
by biological invasion is alien invasion, which ultimately affects biodiversity, ecosystem
services, and human well-being [37]. It is generally believed that many biological invasions
are responsible for the extensive changes and even extinction of protozoa [38]. It is known
that biological invasion can be attributed to both human activities and climate change,
but here we focus on how climate change affects the spread of alien species. The IPCC
predicts that extreme temperature and abnormal precipitation patterns in many regions
will affect the distribution of local and invasive species [3], and the general warming trend
will further expand the geographical range of some species [39].

At present, China has become one of the most serious alien species invasion countries.
According to the Bulletin of the State of the Ecological Environment in China 2019, issued
by the Ministry of Ecology and Environment, more than 660 alien invasive species have
been found in China, an increase of about 30% compared with 10 years ago. Among them,
71 species have caused or are a potential threat to the natural ecosystem and have been
listed in the list of alien invasive species in China. Two hundred fifteen alien invasive
species have invaded the National Nature Reserve, and 48 of them have been listed in
the list of alien invasive species in China (Bulletin on the State of China’s Ecological
Environment in 2019, 2020, issued by the Ministry of Ecology and Environment) (Figure 3).

At present, the geographical distribution and density of alien species in China tend to
decrease from the south and the east to the north and the west [40,41]. How will climate
change affect China’s future invasion of alien species? A simulation of the range change of
invasive species in different climate scenarios found that invasive alien plants may further
expand into Northern China [42], for example, future climate change was predicted to
result in a shift in the alien invasive weeds in Qinghai and Tibet (regions of higher altitude)
as well as Heilongjiang, Jilin, Liaoning, Inner Mongolia, and Gansu (regions of higher
latitude) [43]. In China, farmland and forests are mainly distributed in the South and East,
while grasslands are mainly distributed in the North and West. Therefore, it will pose a
great threat to climate-sensitive terrestrial ecosystems (Agro-pastoral Ecotone in Northern
China) [44] (Figure 3). According to this trend, future research should pay more attention
to the impact of climate change on species invasion in ecologically vulnerable areas and
agro-pastoral ecotone [44] (Figure 3). To prevent and manage biological invasion in China,

https://www.iucn.org/theme/species/our-work/invasive-species
https://www.iucn.org/theme/species/our-work/invasive-species
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we still need to learn from the international biological invasion database and strengthen
international cooperation, build and improve China’s biological invasion database, and at
the same time, speed up the legislation of bio-safety laws.
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invasive alien plant species (G,H). Data: Sourced from the China Meteorological Administration
Meteorological Data Center (https://data.cma.cn/ (accessed on 4 June 2020)) and the Database of
Invasive Alien Species in Chia (http://www.chinaias.cn/ (accessed on 4 June 2020)). The yellow line
in the figure roughly represents the dividing line between temperature and precipitation rate.

3.3.2. Increasing Threat of Extreme Events

According to the Intergovernmental Panel on Climate Change (IPCC), climate change
leads to the frequency, intensity, spatial scope, and duration of extreme climate events
and may cause unprecedented impacts on terrestrial ecosystems [3]. Global warming is
expected to further increase the frequency and intensity of extreme climate events (drought,
rainstorms, heat waves, etc.) in the middle and late 21st century [45,46], which makes the
impact of future climate change on terrestrial ecosystems more uncertain [47].

According to the Ministry of Emergency Management of the People’s Republic of
China in 2019, affected by the El-Niño phenomenon, some parts of China suffered the
worst drought in 50 years. Extreme weather such as high temperatures, strong winds,
thunderstorms, and other extreme weather increased significantly. The negative impact
of extreme climate on natural ecosystem and agriculture has been widely reported. For
example, the extreme drought in 2000 [48] led to a sharp decline in crop yield in North
China and Northeast China [49,50]. In Southwest and Southern China, the heatwave and
drought in the past 50 years has reduced annual total primary productivity by 4% [51,52]. In
Central and Southern China, a large number of vegetation deaths were caused by freezing
disasters in 2008 [53]. In Southwest China, extreme drought events between 2009 and 2013
significantly reduced lake diatom diversity [54]. In 2018, temperature and precipitation
anomalies led to changes in NDVI (Normalized Difference Vegetation Index) in the Yangtze
River Basin [55].

In general, the frequency and intensity of extreme climate events (drought, rainstorm,
freezing, heatwave, etc.) are increasing in China. North China, Northeast China, and
Southwest China will become a hot area of the drought threat, while Southern China will
be the main threat area for rainstorms and floods. In addition, the extreme drought events
will also aggravate the frequency of forest fires in most areas of Southwest China [56].
Therefore, for government decision-makers, it is necessary to understand which areas are
most vulnerable to extreme events and why, which will improve the effectiveness and
scientific of formulating response strategies.

3.3.3. The Prediction of Potential Impact

Combined with the previous studies, we further found that the warming rate in the
vast areas of China was accelerated according to the meteorological data analysis in recent
decades (1970–2019). The temperature in Northwest, Northeast, and Qinghai–Tibet Plateau
increased significantly, and the warming rate was accelerated. The precipitation changes
had regional differences, and the average annual precipitation shows an increasing trend.
Among them, the precipitation in Northwest, Northeast, and Qinghai–Tibet Plateau areas
have significantly increased, and the precipitation change rate has accelerated (Figure 4).
We found that the sensitive regions of climate change in China are similar to the forest
ecosystem, grassland ecosystem, farmland ecosystem, glacier wetland ecosystem, sandy
bare land ecosystem, and urban ecosystem in geographic spatial distribution (Figure 4).
According to the previous studies, climate change will have a “double-sided effect” on
China’s ecosystem, especially in fragile ecological environment areas. For example, climate
warming will aggravate the humidification of western China to a certain extent, but it will
also accelerate the invasion of alien species.

Warming and humidification in Northwest China are conducive to the development
of forest and grassland ecosystems [57], and will effectively slow down the development of
sand and bare land ecosystems. However, for Southwest China, warming will increase the
frequency of forest fires [58,59]. For Northeast China, warming will threaten the survival of
Alpine coniferous forests [23]. At the same time, climate change will increase the instability

https://data.cma.cn/
http://www.chinaias.cn/
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of the agricultural ecosystem, leading to changes in the layout and structure of production.
It will also further threaten the glacier and wetland ecosystems in the Qinghai Tibet Plateau
and Northwest China [59]. Therefore, according to this trend, future research and natural
resource conservation and management should pay more attention to the ecosystem in
such areas so as to minimize the negative effects of climate change on human well-being.
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the distribution of grassland ecosystems in China (c); the distribution of farmland ecosystems in China (d); the distribution
of glacial and lake ecosystems in China (e); the distribution of sand and bare land ecosystems in China (f). Land use and
land cover data: Sourced from the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/ (accessed on 6 June 2020)); China’s state poverty counties data: From the official website of the
Leading Group Office of Poverty Alleviation and Development (of the State Council) (http://www.cpad.gov.cn/ (accessed
on 6 June 2020)).

3.4. Ecosystem Services

Ecosystems provide a wide range of direct and indirect services, including provision,
regulation, support, and cultural services, which are vital to human well-being [2,60].
Therefore, the impacts of climate change on species, populations, and ecosystems will
profoundly affect ecosystem services. We found that the geographical distribution of
climate change-sensitive areas is similar to the distribution of state poverty counties in
China (Figure 4), which indicates that climate change will affect China’s ecosystem services
to a large extent, thereby threatening human well-being.

http://www.resdc.cn/
http://www.cpad.gov.cn/
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3.4.1. Provisioning Service

Provisioning services refer to the material products that people get from the ecosystem,
such as food, freshwater, biofuels, and so on. Climate-induced changes in the provision
of services may have a profound impact on the human economy and well-being [61]. For
example, from 1980 to 2008, climate change has reduced China’s wheat and corn yields
by 1.27% and 1.73%, respectively. Meanwhile, the cost of drought resistance in China is
expected to reach 500 billion yuan from 2010 to 2030.

The reduction of supply will have a negative impact on regional economic devel-
opment. In terrestrial ecosystems, plantation construction has brought huge ecological
benefits to regional development [62], but climate change is changing the water supply
of the basin [63,64], such as the Loess Plateau [65]. In the Shiyang River Basin in the arid
region of Northwest China, the decrease of precipitation in the past 50 years has reduced
the average annual flow by 64%, aggravating the shortage of surface water resources [66],
further affecting agricultural production and reducing the yield and quality of crops [67].
In addition, in Yunnan–Guizhou Plateau, frequent rainstorms caused by climate change
bring more soil and fertilizer into rivers and lakes, which aggravated the accumulation of
pollutants, caused agricultural non-point source water pollution [68], and increased the
cost of sewage treatment.

In the marine ecosystem, the global marine capture fisheries supply the world with ap-
proximately 80 million tons of protein and micronutrient-rich food for human consumption
per year [69,70]. In addition, these fisheries support global economies with an estimated
annual gross revenue of $80–85 billion [70]. However, the observations, experiments, and
simulation models show that climate change would result in changes in primary produc-
tivity, shifts in distribution, and changes in the potential yield of exploited marine species,
resulting in impacts on the economics of fisheries worldwide [70]. China’s ocean is one of
the marine ecosystems with the fastest warming rate in the world. Between 2003 and 2018,
the surface temperature in the East China Sea increased by 0.04–1.2 °C [71], threatening the
marine habitat of fish and affecting the stability of the marine ecosystem, This is closely
related to global warming [72].

3.4.2. Regulating Services

Biodiversity and ecosystems provide important regulating services, such as climate
regulation, carbon storage, natural disaster control, and disease transmission control.
Regulation services can maintain the smooth operation of various biological processes
in nature. For example, forests provide a wide range of ecosystem services, including
carbon storage, local climate regulation, etc. [73]. However, climate change is profoundly
impacting the regulation services of ecosystems, because of the increase of temperature,
water stress and disturbance, and the increase of fire frequency, carbon storage may be
reduced in forests [56], and the ability to regulate services will be weakened. For China,
forestry carbon sequestration is an important way to increase carbon sink at present and in
the future. It is estimated that by 2030, the carbon dioxide emission reduction potential
of the energy supply sector will reach about 4.5 billion tons, and that of afforestation and
forest management will be about 492–811 million tons.

Ecosystems also regulate the distribution, abundance, and life cycle services of disease-
carrying organisms [74]. For example, affected by climate change, the invasive Aedes
mosquitoes, which spread diseases such as dengue fever, increases the risk of disease
transmission. In China, climate factors and the East Asian summer monsoon have positive
impacts on dengue fever outbreaks, while Guangdong, Guangxi, Fujian, and Yunnan are
more susceptible to dengue fever [75].

The regulating services of China’s marine ecosystem are also strongly affected by
climate change. In the last 30 years, the sea level in China’s coastal areas has generally
fluctuated and risen. From 1980 to 2019, the rising rate was 3.4 mm/year, which was higher
than the global average in the same period. In 2019, the sea level was 72 mm higher than
that of the normal year [76]. In a word, seawater intrusion, soil salinization and coastal
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erosion will damage coastal wetland, mangrove and coral reef ecosystems, and reduce
the service function and biodiversity of coastal ecosystem [77]. Therefore, the public and
government must pay attention to the impact of climate change on coastal ecosystem and
actively put forward relevant adaptive strategies.

3.4.3. Supporting Services

Supporting ecosystem services refers to the basic process of maintaining ecosystem
structure and function, includes ecosystem primary production, biogeochemical cycle, etc.
For terrestrial ecosystems, the temperature sensitivity of decomposition of the enormous
global stocks of soil organic matter (SOM) has recently received considerable interest [78].
Research shows climate warming is expected to increase soil carbon loss and change carbon
and nitrogen balance in permafrost and most peatlands in high latitude areas [78]. It has
been shown that large amounts of soil organic carbon (SOC) are stored in the permafrost
regions of Qinghai Tibet Plateau (QTP), and the carbon pools there might play an important
role in regional or global climate changes [79]. But in global climate change scenarios,
SOC in permafrost regions becomes accessible to microbial degradation as permafrost
degradation progresses [80]. Global warming has also had a serious impact on water
ecosystems. Taking Taihu Lake of China as an example, when the temperature increased
by 1.0 °C, the algae biomass increased by 0.145 times [81]. The higher the degree of
eutrophication, the greater the impact of temperature on algal growth, which has negative
effects on aquaculture, recreation and other activities [81]. The capacity of forests in
sequestering carbon dioxide and releasing oxygen is closely related to photosynthetic and
respiration rate [82]. In recent years, climate change has posed a great threat to China’s
forest supporting services because the continued rise in temperature will destroy this
relationship [83]. This will make more big cities in China face the test of high temperature.
In short, climate change is continuously affecting the supporting services of China’s frozen
soil, lakes, forests and other ecosystems, so scientists need to pay continuous attention.

3.4.4. Cultural Services

Cultural ecosystem services can be defined as the intangible benefits of human beings,
biodiversity and ecosystems, includes spiritual, aesthetic, educational and recreational
values [84]. Although cultural services are important for human well-being, it is still
underestimated compared with other ecosystem services [85].

More and more studies have shown that ecosystem diversity and species richness are
positively correlated with physical and mental health [86,87]. On the contrary, indirect
economic losses caused by extreme events can have adverse social and psychological
effects [88]. For example, in order to reduce the disaster risk caused by climate change,
restore important ecosystem services and improve human well-being, China has imple-
mented an ecosystem services protection and human development policy (the relocation
and resettlement plan of Southern Shaanxi Province) [89]. For a household participat-
ing in the resettlement program, the upfront cost of relocation is much higher than the
one-time subsidy payment from the government. Therefore, moving might not bring any
net benefit to the households in the short term, on the contrary, it may cause adverse
social psychological effects [89]. But in the long run, easy access to roads, transportation,
education, communications, and markets would make households economically better
off [89]. Therefore, it will bring positive social psychological impact.

In addition, natural landscape tourism, such as glacier viewing, has been carried out
in many parts of China. However, with the continuous rise of temperature, the melting of
glaciers in Western China has accelerated [24,57]. This change has not only brought losses
to the ecosystem, but also brought huge losses to the cultural value of natural landscape.
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4. Discussion
4.1. Improve Ecosystem Resilience and Reduce the Loss of Ecosystem Services

To create effective adaptation strategies, managers need to understand which regions
and ecosystems are most at risk and why. We will discuss it from the following aspects.

To maintain biodiversity in ecologically vulnerable areas and minimize the loss of
ecosystem services. For China, the impact of climate change on ecologically fragile areas
(arid and semi-arid areas in the North, Hilly areas in the South, mountainous areas in the
Southwest, Qinghai Tibet Plateau and land-water interface zones in the Eastern coastal
areas) is particularly obvious. Since 1978, a number of major ecological restoration policies
have been implemented in northern China, including the Three Norths Shelter Forest
Program (TNSFP), Combating of Desertification Program (CDP), Natural Forest Protection
Project (NFPP) [90]. However, the study found that the deep-rooted trees consume a large
amount of soil moisture during growth, which may reduce groundwater level, causing a
low survival rate for the planted trees and degradation of the original grassland vegetation,
with negative consequences for biodiversity and ecosystem services. Thereby we need to
strength the emphasis on natural restoration, pay attention to the tree structure configura-
tion and improve the resistance to pests and diseases [91], to minimize losses in valuable
ecosystem services [92].

Limiting invasive species spread can help maintain biodiversity, ecosystem function,
and resilience [93]. The geographical distribution and density of alien species in China
tended to decrease from the south and the east to the north and the west [40]. The simulation
of the range change of invasive species in different climate scenarios and found that
invasive alien plants may further expand into Northern China [42], Therefore, it will pose
a great threat to climate sensitive terrestrial ecosystem (Agro-pastoral Ecotone in Northern
China) [44]. We believe that understanding the geographic distribution and development
trends of various invasive alien species is very important for Chinese decision makers,
which can effectively improve the initiative to formulate relevant policies to minimize
potential negative impacts. In addition, dialogue between scientists and policymakers
also can help ensure that climate change mitigation does not exacerbate invasive species
spread [94].

Expand and protect climate change shelters, retain valuable natural resources and
improve ecosystem resilience. China has stepped up efforts to promote the construction
of national parks. By 2020, China has approved the construction of 10 pilot national
parks (Northeast Tiger and Leopard National Park, Giant Panda National Park, Qilian
Mountain National Park, Three-River-Source National Park, Hainan Tropical Rainforest
National Park, Wuyishan National Park, Shennongjia National Park, Pudacuo National
Park, Qianjiangyuan National Park and Nanshan National Park), which covering more
than 220,000 square kilometers. Integrate nature reserves into the scope of national parks,
and unified management, overall protection and systematic restoration are implemented
to promote the integration of habitat patches and enhance the integrity and authenticity
protection of natural ecosystems, and enhance the ability to addressing climate change [95].

4.2. Update Technology and Artificial Intervention to Improve Adaptability

Human beings may need to adapt to climate change by updating technology and
artificial intervention, and improve the adaptability to minimize the negative impact of
climate change. In glacial ecosystems, in order to reduce the melting of the Muz Taw
Glacier, the artificial snowfall experiment was conducted and found that artificial snow
reduced the mass loss of the glacier by 40% [96].

In order to alleviate the drought and water shortage in the Qilian Mountains, in 2017,
the Northwest Regional Weather Modification Project-Qilian Mountain Topographic Cloud
Artificial Precipitation (Snow) Technology Research Project was launched and achieved
positive benefits. The vegetation coverage of Qilian Mountain was the highest since 2000.
In recent ten years, the water storage of major lakes has increased, and the total snow area
has increased compared with the same period in previous years [97].
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In coastal ecosystems, natural infrastructure is used more to increase the resilience of
coastal communities. For example, the implementation of the Shenzhen Bay Land Reclama-
tion Project (SZBLRP) resulted in significant deposition in the SZIB, which accelerated the
spread of mangroves and counterbalanced the negative effect of sea level rise [98], therefore,
it is beneficial to enhance the barrier function of mangroves to protect the coastline from
erosion [99,100]. In comparison to traditional grey (e.g., seawall) approaches, SZBLRP can
be cheaper and survive extreme events better than traditional infrastructure.

In the farmland ecosystem, Chinese farmers have been adapting to climate change
in the past few decades. With future climate warming, the farmers have a wider sowing
window in spring and can select cultivars with long growing season duration and frost-
tolerance to mitigate detrimental effects of a future warmer climate [101].

4.3. Strengthen Government Intervention and Management

National agencies that manage natural resources are increasingly considering climate
change impacts in their management plans (Table 1). In 2008, the Ministry of Ecology and
Environment of China incorporated climate change into the national sustainable devel-
opment strategy and strengthened international cooperation in the fields of agriculture
and animal husbandry, forestry, natural ecosystem, water resources, etc. In 2014, in order
to protect important ecological function areas, sensitive and vulnerable areas of land and
marine ecological environments in China, the Red Line of Ecological Protection was written
into the environmental protection law of the people’s Republic of China for the first time.
In 2015, in response to the impact of climate change on the habitat of species, Qinghai
Three River Source Ecological Protection Project was launched [102]. In 2020, the Ministry
of Natural Resources of China proposed to carry out the protection and restoration of
mangroves on the “World Ocean Day and National Ocean Day” to tackling the impact
of climate change on China’s coastal ecosystems [103]. Despite progress, institutional
barriers such as a focus on near-term planning, fixed policies and protocols, jurisdictional
restrictions, and an established practice of management based on historical conditions
remain a challenge [104].

Table 1. Examples of China’s response to climate change.

Government Department Government Documents Time

Office of the National Climate Change
Coordination Group

National Communication on Climate Change of
the People’s Republic of China (I) 2004

Ministry of Science and Technology, China Meteorological
Administration, Chinese Academy of Sciences, etc.

China’s National Assessment Report on Climate
Change (I) 2007

Ministry of Science and Technology, National
Development and Reform Commission, etc.

China’s Special Science and Technology Action on
Climate Change 2007

National Development and Reform Commission, Ministry
of Science and Technology, etc. China’s National Climate Change Program 2008

Office of the National Climate Change
Coordination Group

National Communication on Climate Change of
the People’s Republic of China (II) 2012

Ministry of Science and Technology, China Meteorological
Administration, Chinese Academy of Sciences, etc.

China’s National Assessment Report on Climate
Change (II) 2011

Ministry of Science and Technology, Chinese Academy of
Sciences, Chinese Academy of Engineering, etc.

China’s National Assessment Report on Climate
Change (III) 2014

Ministry of Science and Technology, Chinese Academy of
Sciences, Chinese Academy of Engineering, etc.

China’s National Assessment Report on Climate
Change (IV) 2020

Office of the National Climate Change
Coordination Group

National Communication on Climate Change of
the People’s Republic of China (III) 2018

China Meteorological Administration Blue Book on Climate Change in China 2020

Based on this, China put forward the idea that mountains, rivers, forests, fields, lakes,
and grasses constitute a community of life. With the help of advanced technologies such
as spatial information, artificial intelligence, and big data, we need to build an efficient
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natural resources supervision system. On the basis of national main function areas and
ecological function division, strengthen natural resources system evaluation and early
warning, and build a bridge from nature to society, from science to decision-making. The
scientific management of natural resources will effectively improve the country’s ability to
respond to the threat of future climate change while minimizing the long-term negative
impact of climate change.

5. Conclusions and Future Prospects

In general, climate change has a profound impact on China’s ecosystem in many
aspects, and also has an impact on China’s biodiversity, ecosystem services, and human
well-being. Therefore, it will bring severe challenges to the management of China’s natural
resources. Our main conclusions and future prospects are as follows:

(1) Ecosystem: We found that the temperature has risen significantly in the vast area
of China, and the average annual precipitation also showed an increasing trend,
which would have an impact on the ecosystem. In recent years, the frequency of
extreme events (droughts, rainstorms, fires, etc.) has increased in China. We found
that extreme events may bring more significant impacts on the ecosystem in the short
term, especially in natural ecosystems and agricultural ecosystems. Therefore, we
need to pay more attention to the impact of extreme events on China’s sensitive and
fragile terrestrial ecosystems in the future. At the same time, we predict that climate
change may aggravate biological invasion to the North and Northwest. Therefore, we
still need to learn from the international biological invasion database and strengthen
international cooperation, build and improve China’s biological invasion database,
and speed up the legislation of biosafety laws.

(2) Biodiversity: A large number of studies have proven that plant phenology has shown
an obvious advance trend in recent decades in most of China’s land, and the growing
season is continuously extending, which has brought great challenges to the manage-
ment of agricultural resources. Therefore, the farmers have a wider sowing window in
spring and can select cultivars with long growing season duration and frost tolerance
to mitigate the detrimental effects of a future warmer climate.

(3) Ecosystem services: Our analysis suggests that the impact of climate change on most
types of services in China is mainly negative. The favorable aspects involve the
expansion of some crops, which can provide more products for human beings, while
the unfavorable aspects may affect the yield and quality of food, water resources,
human settlements, and other aspects. Therefore, it is necessary to vigorously improve
the ecosystem service functions of remote areas to ensure the livelihood and well-
being of local people in the future.

(4) Natural resource management: Climate change challenges and opportunities co-
exist, and it is yet to be realized to integrate climate change into natural resource
management. Climate change can have a significant impact on the effectiveness
of management decisions targeted at sustaining ecosystem service provision, but
implementing actions on the ground can be difficult due to lack of funding and time,
negative public perceptions, and difficulty transferring science between researchers
and policymakers. Meanwhile, pose challenges to natural resource management in
government departments. Moving forward, it is necessary to evaluate and research
the effectiveness of typical demonstration cases and guide climate-smart management.

(5) Positive impacts and actions of climate change: We are facing due to climate change
about ecosystems challenges (negative impacts). Meanwhile, there are following
positive impacts on the ecosystem due to climate change: For example, the regional
“warming and wetting” caused by climate change in recent years has accelerated the
restoration of ecosystems such as forests, grasslands and deserts; Climate change is
a global issue that requires joint governance by multiple jurisdictions and countries.
Therefore, climate change can promote international cooperation and strengthen links
among countries and build a community of common destiny for all mankind; It can
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improve human resistance to climate change and promote the progress of science and
technology. At the same time, it will also accelerate the rise of scientific research such
as ecosystem services and ecosystem management.

(6) What specific topics should scientists particularly put more efforts into? We believe
that in the context of climate change, scientists from various countries need to further
strengthen communication and exchange, and constantly expand new research fields,
research methods, and ideas. According to our research summary, future scientists
should pay special attention to topics such as climate change and food security, climate
change and biodiversity, climate change and global diseases, ecosystem change and
human well-being, ecosystem services and management, and pay attention to the
combination of multiple disciplines.
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