
Citation: Reguera, D.; de Pablo, P.J.;

Abrescia, N.G.A.; Mateu, M.G.;

Hernández-Rojas, J.; Castón, J.R.; San

Martín, C. Physical Virology in Spain.

Biophysica 2023, 3, 598–619. https://

doi.org/10.3390/biophysica3040041

Academic Editor: Ricardo L.

Mancera

Received: 19 September 2023

Revised: 26 October 2023

Accepted: 28 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biophysica

Review

Physical Virology in Spain
David Reguera 1, Pedro J. de Pablo 2, Nicola G. A. Abrescia 3, Mauricio G. Mateu 4, Javier Hernández-Rojas 5 ,
José R. Castón 6 and Carmen San Martín 6,*

1 Departament de Física de la Matèria Condensada and Universitat de Barcelona Institute of Complex
Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain; dreguera@ub.edu

2 Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid,
28049 Madrid, Spain; p.j.depablo@uam.es

3 Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE),
Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
nabrescia@cicbiogune.es

4 Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Department of Molecular Biology,
Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; mgarcia@cbm.csic.es

5 Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y Fotónica (IUdEA) and
Department of Physics, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain; jhrojas@ull.edu.es

6 Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid,
Spain; jrcaston@cnb.csic.es

* Correspondence: carmen@cnb.csic.es

Abstract: Virus particles consist of a protein coat that protects their genetic material and delivers it to
the host cell for self-replication. Understanding the interplay between virus structure and function is
a requirement for understanding critical processes in the infectious cycle such as entry, uncoating,
genome metabolism, capsid assembly, maturation, and propagation. Together with well-established
techniques in cell and molecular biology, physical virology has emerged as a rapidly developing
field, providing detailed, novel information on the basic principles of virus assembly, disassembly,
and dynamics. The Spanish research community contains a good number of groups that apply their
knowledge on biology, physics, or chemistry to the study of viruses. Some of these groups got together
in 2010 under the umbrella of the Spanish Interdisciplinary Network on Virus Biophysics (BioFiViNet).
Thirteen years later, the network remains a fertile ground for interdisciplinary collaborations geared to
reveal new aspects on the physical properties of virus particles, their role in regulating the infectious
cycle, and their exploitation for the development of virus-based nanotechnology tools. Here, we
highlight some achievements of Spanish groups in the field of physical virology.

Keywords: virus assembly; capsid stability; virus mechanics; nanocontainers; theoretical models;
cryo-electron microscopy; atomic force microscopy

1. Introduction

Viruses are pathogens causing disease, but they can also be modified to serve as
vectors in gene therapy or nanocontainers for technological purposes. Virus capsids are
the vehicle for transmission of the viral genome to the next host cell. In simple viruses, the
capsid consists of a number of copies of the same or a few different proteins organized into
a symmetric oligomer [1]. Structurally complex virus particles present a larger variety of
components than simple viruses. They may contain accessory proteins with specific roles
or incorporate non-proteic elements such as lipids. Complex capsids present a range of
geometrical variability, including symmetry mismatches, singular vertices, or completely
asymmetric elements [2]. Virus capsids play multiple roles throughout the infectious cycle,
from host recognition to successful genome delivery. To do so, they must be stable enough
to survive deleterious environmental conditions, but they must be able to disassemble at
the correct time and place to successfully deliver their genome into the host cell. Controlled
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uncoating is a critical part of the infectious cycle, as virions must fall apart in an orderly
fashion guided by cellular (e.g., receptor binding) or environmental (e.g., pH change)
cues [3,4]. To achieve this remarkable stability modulation, viruses must rely on general
physical and chemical mechanisms. Understanding how virus particles are organized,
how they are assembled, and how they are dismantled once they reach a new host cell is
required to understand the basic principles of biological macromolecular assembly and
function, facilitate the design of new antiviral drugs or virucidal materials, and engineer
vectors for efficient gene delivery.

Even in the absence of their genetic material, virus coat proteins are often able to
self-assemble in vitro, and the structural and physical traits of the empty capsids make
them ideal candidates for many promising applications [5]. Their tunable and perfectly
monodisperse size in the range of tens of nanometers converts viral capsids into invalu-
able building blocks for patterning on the nanometer scale or scaffolds to template the
production of nanowires or electrodes for efficient batteries [6]. Their unique mechanical
properties and conformational response to changes in pH or salt concentration offer new
ways to develop sensors or molecular switches for nanoelectronics. Moreover, coat proteins
can be genetically engineered to functionalize their external or internal surfaces, turning
them into customized nanocontainers, nanoreactors [7], or in vivo imaging probes. Efficient
encapsulation and subsequent controlled delivery of the cargo at the proper target is also
potentially very useful for the selective delivery of drugs or other non-genetic materials.
Many of these potential applications depend on the unique properties of the viral capsid
self-assembled structure and its ability to encapsulate and release its cargo.

Different techniques such as fluorescence, calorimetry, X-ray crystallography, electron
microscopy (EM), or molecular dynamics, have been used to investigate the molecular basis
of virus assembly and disassembly. In recent years, cryo-electron microscopy (cryo-EM)
has become the technique of choice to study the structure of virus particles at high resolu-
tion [8,9] and in the cell [10]. Also, the importance of understanding physical properties of
virus capsids has lately been recognized, as a means both to decipher basic macromolecular
processes and to exploit them for bio- and nanotechnological applications [11–14]. The
application of atomic force microscopy (AFM) has revolutionized the field, providing
invaluable information on the physical properties of individual viral particles. Cryo-EM
and AFM of viruses and viral capsids are complementary methods with which to examine
the close relationship between physical structure and biological function. Whereas cryo-EM
facilitates understanding of structure, AFM can provide information not evident from struc-
tural data, such as capsid stiffness or topographical evolution in liquid environment [15–17].
These new experimental approaches have raised the need for theoretical and coarse-grained
models to fully understand the relationship between mechanical response, stability, and
infectivity in viral capsids. Considerable progress has been made in understanding the
theoretical aspects of virus assembly and mechanical response, using simulations of various
complexities, from coarse grain to full atom [18–20].

Recognizing the importance of interdisciplinary networking, in 2010, several groups
in the Spanish scientific community got together under the umbrella of the BioFiViNet
(“Red de BioFísica de Virus”) project to promote our understanding of the physical aspects
of virus assembly, disassembly, and engineering. BioFiViNet has since developed into a
vibrant community integrating groups with expertise in theoretical and condensed matter
physics, molecular and structural biology, biophysics, and bio- and nanotechnology. A
notable contribution of this community was publication of the book Structure and Physics
of Viruses, which aimed to disseminate this new field among early career researchers [21].
Here, we highlight some of the work developed in recent years by BioFiViNet members.

2. Theoretical Modeling of the Assembly and Mechanical Properties of Viral Capsids
at Different Levels of Coarse Graining

One of the most fascinating aspects of viruses is the exquisite architecture of their
protein shell (the capsid) and the process by which it assembles. Viruses with different
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genetic material, different size, and infecting different hosts end up adopting common
geometries for their capsids, which in most cases are very well defined in terms of size,
shape, geometry, and number of proteins. The catalogue of architectures of viral capsids
that are not pleomorphic include: spherical shells with icosahedral symmetry characterized
by a discrete triangulation number, the T-number; rod-like viruses with helical symmetry;
spherocylindrical or conical capsids; and even the exotic spindle-shaped and bottle-shaped
shells discovered in archaeal and extremophile viruses [2,22–24]. The fact that very diverse
viruses end up spontaneously adopting a common set of architectures suggests the existence
of general and common principles involved in their formation.

The group led by D. Reguera develops theoretical models and simulations at different
levels of coarse graining to provide physical insights into the mechanisms underlying the
architecture, assembly, and mechanical stability of virus capsids. Simple physical models
have been able to explain why spherical viruses adopt icosahedral symmetry [25]. Beyond
the clever principles laid down by Caspar and Klug (CK) [26] to explain the geometrical
rules for the construction of icosahedral viruses, the physical mechanism justifying the
ubiquitous presence of icosahedral symmetry in viral shells was unknown. Using a very
low-resolution description of a capsid (capsomers placed on a spherical template) combined
with Monte Carlo simulations, it was possible to show that icosahedral symmetry arises
naturally from a very general physical principle: the energy minimization of a set of
identical units interacting with a potential that includes (i) an attractive contribution to
drive the assembly, and (ii) a short-term repulsion to prevent overlapping [25]. If the
system is allowed to switch between two capsomer sizes (hexamers and pentamers),
the optimal arrangement of N-interacting capsomers occurs for discretized values of N
and ends up coinciding with the number and disposition of capsomers in T-number
capsids. Moreover, if only one type of structural unit is available, e.g., only pentamers,
structures with non-icosahedral symmetry, such as the snub cube adopted by polyomavirus
in vitro [27], become energy minima too. Thus, this simple model explains why spherical
viruses adopt icosahedral symmetry and the structure of all-pentamer viruses, which were
puzzling exceptions to the CK classification.

For non-spherical viruses with architectures resembling a capsule or spherocylinder,
the situation was more complicated since there was no complete structural or geometrical
classification analogous to that of CK. By assuming that these viruses were hexagonally
ordered tubes closed by icosahedral caps cut perpendicular to the 5-fold, 3-fold, and 2-fold
axes of symmetry, it was possible to explain the geometrical rules of construction of prolate
viruses [28]. Using the same model of interaction between capsomers now placed on top
of a spherocylindrical template, it was possible to show that most of these structures, but
not all of them, were indeed energetically optimal [29]. For large cylinder diameters, only
spherocylindrical viruses with 5-fold axial symmetry were energetically favorable, since
fitting a tube to a cap with 3-fold and especially 2-fold symmetries involves very high
elastic stresses. With this geometrical and physical model, it was possible to establish a
classification of elongated viruses, extending CK’s ideas, and the rules for the discretized
lengths, diameters, and numbers of proteins allowed for these viruses that open the door
to identifying the structures of unknown viruses.

All of these models needed a template to force the capsid to adopt a particular shape.
However, assembly can proceed directly from capsid proteins in solution without the
presence of any mold or template. To account for that possibility, two more essential compo-
nents of the interaction between capsid proteins were added to the model: the spontaneous
curvature, representing the preferred angle of binding between capsid proteins; and the
bending stiffness, quantifying the energy cost needed to bend two proteins out of their
preferred angle of interaction. Now the model successfully mimicked the in vitro assembly
of empty spherical capsids with different T-numbers [30]. A phase diagram constructed in
terms of the two new parameters (Figure 1a) identified the range of stability of the different
structures. The diagram shows that the spontaneous curvature is the main parameter select-
ing the size of the shell, while the bending stiffness mostly dictates whether the resulting
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virus is rounded or faceted. More importantly, the model provides important clues about
possible mechanisms to destabilize a virus, leading to open, partial, or collapsed structures,
which can be of interest as potential therapeutic strategies to stop viral infections.
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Figure 1. Theoretical phase diagrams of viral assembly. (a) Representative phase diagram of the
region of stability of spherical viral shells made with one type of capsomer as a function of the
bending stiffness and spontaneous curvature. The green rectangle highlights the smaller region
where assembly is feasible from a kinetic point of view. Adapted with permission from ref. [30].
Copyright 2016 American Chemical Society (b) Phase diagram showing the efficiency of the assembly
(color scale) of different T-number shells as a function of the binding energy (measured in terms of
the reduced temperature T) and preferred radius (measured in terms of the parameter Nf using the
model of ref. [31]), Adapted from ref. [32]. (c) Phase diagram of the most stable shape of a forming
shell as a function of the protein concentration (expressed in terms of a scaled chemical potential) and
scaled line tension for a value of the ratio between the elastic and bending energy (i.e., the Flöppl-von
Kárman (FvK) number) of 200. Four possible regions are shown, corresponding to the formation of
tubes (dark orange), spherical shells (green), ribbons (light orange), and frustrated shells with one
defect (red). The insets show the structures observed in simulations. Adapted from ref. [33].
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Generalizations of CK geometrical construction have been provided to account for
other anomalous icosahedral viral capsids [34,35]. J. Hernández-Rojas and collaborators
have recently designed cost functions, the targets of which are the structures observed in
known viral capsids [36]. Each target structure is reproduced as the global minimum of
the corresponding cost function. With this coarse-grained model, the researchers repro-
duced practically any capsid structure, including those supported by the models of CK,
Twarock and Luque, Rochal and coworkers, double-shell capsids, capsids with protruding
decorations, along with many other anomalous structures.

Models have also been developed to analyze the kinetics of virus self-assembly, a
non-equilibrium process similar to a phase transition [37]. Brownian dynamics simulations
showed that the range of conditions required for successful assembly are different from
the ones that provide optimal energy or at which an already formed capsid is stable [32].
Efficient assembly occurs in a very narrow range of conditions (Figure 1a) and requires
weak energies (on the order of 5–7 kBT) and spontaneous curvatures larger than the optimal
value (Figure 1b) to prevent premature closure while the capsid is growing [38]. It was also
found that the outcome of viral assembly can be recast into a universal phase diagram that
explains how competition between bending and elastic contributions dictates the shape
of viral capsids (Figure 1c) [33]. By modifying the assembly conditions, a spherical virus
can become trapped into a partial shell or ribbon-like structure or end up forming tubes
instead of spheres, which will compromise its viability. This competition also explains why
some viruses need a maturation step, since capsids with high mechanical resistance cannot
be self-assembled directly as spherical structures. The results of these studies suggest
promising routes to hinder viral infections by inducing misassembly.

Other simple models have been designed to analyze the normal mode frequencies of
icosahedral empty viral capsids. Namely, ref. [39] proposed a coarse-grained model for the
interaction energy of viral capsids to evaluate the normal-mode spectrum of an icosahedral
T = 1 capsid. The model performance was evaluated by fitting its predicted spectrum to the
full-atom results for the Satellite Tobacco Necrosis Virus (STNV) capsid [40]. This model
found a latent instability consistent with the current knowledge about the STNV capsid,
which does not self-assemble in the absence of RNA.

The same simple models that have been used to describe the shape and assembly of
viruses are very useful for understanding different aspects of their mechanical response
(see Section 3). Simple continuum elasticity can be used to infer viral mechanical properties
(e.g., Young’s modulus) [41] and the pressure generated by the genetic material [42–45]
or other cargos encapsulated inside [41]. Describing viruses with a discretized model in
terms of capsomers explains the anisotropic response [46,47], the breaking patterns of
viruses [43], or the existence of pre-stress [48]. These models are, in general, extremely
useful for understanding the behavior of viruses in AFM experiments [49]. Even simple
models of dsDNA as an elastic rod provide insightful information about how the genetic
material of a virus is packed inside the capsid or released efficiently into bacterial host
cells [50].

In summary, theoretical models and coarse-grained simulations are very useful for un-
derstanding different aspects of viruses, such as how they self-assemble, their mechanical
properties, or the way they package and deliver their genetic material. This understanding
opens the door to developing alternative strategies to fight viral infections based on inter-
fering with these basic processes. There are still many biophysical aspects to discover by
modeling the different steps of the replication cycle of viruses, which can help us to better
understand how they work and how to be ready for fighting future pandemics.

3. Physical Virology with Atomic Force Microscopy

The study of viruses usually involves bulk experiments, which gather average data
from a large number of particles, thus considering them indistinguishable. However, bio-
chemical processes are highly asynchronous and intermediate states are poorly populated.
Therefore, average measurements might conceal details of the processes taking place in
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individual entities composing the bulk specimen. Atomic Force Microscopy (AFM) enables
imaging and manipulating individual virus particles adsorbed on a surface in liquid milieu
by using a sharp tip (~10 nm) located at the end of a microcantilever (Figure 2a) [15].

In AFM, the tip mounted at the end of a flexible microcantilever scans the sample in X,
Y, and Z directions using piezo actuators. While X and Y scanners move the tip over a square
region, the interaction with the surface topography will lead to a bending of the cantilever.
A four-quadrant photodiode registers the reflection of a laser beam focused at the end of
the cantilever, monitoring its deflection. Thus, each pixel of the image located at a position
of planar coordinates (X, Y) will be associated with certain bending value of the cantilever.
As the tip scans the surface, dragging forces are created that could damage the specimen
under study. Methods developed to avoid this damage include the so-called jumping
mode (JM) [51]. In JM, the tip moves laterally when it is not in mechanical contact with
the sample, thereby almost completely avoiding dragging forces. JM performs consecutive
approach–release cycles at every pixel of the sample. In each cycle, known as a force vs.
distance (FZ) curve, the Z-piezo moves the tip to the sample until establishing mechanical
contact and reaching a certain feedback force (Figure 2b, top). After a few milliseconds, the
Z-piezo retracts the tip for about 100 nm, releasing the surface. Subsequently, the scanner
moves laterally to the next pixel, and the process repeats [51,52]. Especially in liquid milieu,
where adhesion forces between the tip and sample are practically absent, JM has proven
very successful [15].

The study of virus mechanics by AFM has largely relied on single indentation assays
(Figure 2b). In this technique, the Z-piezo moves the tip towards the upper surface of the
virus particle until establishing mechanical contact and reaching a certain feedback force,
recording an FZ curve (Figure 2b, α). The cantilever bending can be converted into a force,
while the indentation of the virus particle is given by the motion of the Z-piezo minus
the bending of the cantilever. After contact between the tip and particle is established,
the FZ curves normally show an approximate linear behavior, which corresponds to the
elastic regime of the protein cage, from which the particle elastic constant k can be derived
(Figure 2b, β). When the indentation depth is kept small, it is possible to record repetitive
FZ curves, and the particle elastically deforms in a reversible way. However, when the
indentation surpasses the elastics limit, the particle breaks (Figure 2b, γ). In this case, the
curve provides information on both the breaking force and critical indentation tolerated
by the capsid, and the image recorded afterwards provides information about the capsid’s
weakest points (Figure 2b, bottom) and breaking pattern.

The breaking force describes the maximal force that a protein cage can sustain before it
collapses, exhibiting large structural alterations. Therefore, single nanoindentation assays
at forces beyond the elastic limit are not appropriate to investigate the sequential capsid
disassembly processes that may be relevant for the virus infectious cycle. JM imaging
performs a load cycle at each pixel of the virus particle during imaging, reaching about
100 pN [52] and transferring ~10 kBT to the particle at every cycle [43]. This energy is
about 10 times the value provided by the impact of a macromolecule, according to the
equipartition theorem [53]. Consequently, JM imaging probes the resistance of the virus
particle to mechanical inputs of moderate energies. Repeated imaging of the same virus
capsid under these conditions results in a gradual, increasing accumulation of mechanical
stress, which allows sequential disassembly of virus capsids under mechanical fatigue to
be simultaneously induced and monitored. Such mechanical fatigue experiments have
reproduced the natural pathway of adenovirus uncoating much more accurately than single
nano-indentation experiments at higher forces (see Section 6) [54].
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Figure 2. Atomic force microscopy of viruses. (a) Geometrical comparison between the cantilever
with the tip at the end (white circle) and virus capsids of ~100 nm in size (white blobs). Reproduced
from ref. [55] with permission. (b) (Top left) The three stages of a virus particle nanoindentation
experiment. α: approach, β: indentation, γ: breakage. (Top right) A FZ chart with the same keys
(α, β, γ) as the cartoon at top left. (Bottom) the FZ effects on the P22 virus capsid. Bottom panel
adapted from ref. [56] with permission. (c) Cartoon showing the structural progression of TGEV
particles under stringent environmental conditions. Reproduced from ref. [57]. (d) Artistic rendition
for the quenching of GFP packed inside P22 phage induced by insulating (left) or conductive (right)
AFM tips.

The group led by P.J. de Pablo has pioneered the use of AFM nanoindentation and
fatigue assays to reveal the remarkable mechanical properties of many different virus
particles [15]. These include a Young’s Modulus of 3 GPa (close to that of PlexiglasTM) and
critical strains of ~20% [41]. Thus, a protein virus capsid can elastically deform to about
0.2 times its size (tens of nanometers) before fracturing (Figure 2b, bottom). These properties
are intimately related to capsid resistance in stringent environments. For instance, in tailed
phages, the structural transformations undergone by virus particles during maturation
required for infectivity are accompanied by an increase in the mechanical resistance of the
capsid [43]. Maturation can also imply the binding of cementing proteins to the capsid shell,
improving both the mechanical and chemical resistance of the cage [53]. Virus mechanics
also depend on the cargo stored inside and its interaction with the protein shell, as shown
for human adenovirus, where maturation decreases capsid stability rather than increasing
it (see Section 6) [45,54,58,59].

Coronaviruses have been lurking pathogens causing occasional outbreaks (SARS-
CoV, MERS-CoV) until finally becoming the cause of the recent COVID-19 pandemic [60].
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The demanding biosafety requirements for the study of these serious human respiratory
pathogens require thorough adaptations of the AFM workflow [61]. An alternative is to
use surrogate models to facilitate their investigation. Thus, transmissible gastroenteritis
virus (TGEV), a porcine coronavirus, was used to study coronavirus mechanical properties
and nanostructure in liquid milieu and its response to different chemical agents commonly
used as biocides [57]. Monitoring the structure of single TGEV particles in the presence
of detergent and alcohol in real time revealed the stages of gradual degradation of the
virus structure in real time. Further, this work indicated that detergent is three orders of
magnitude more efficient than alcohol in destabilizing TGEV particles, paving the way
for optimizing hygienic protocols for viruses with similar structure, such as SARS-CoV-2
(Figure 2c).

Packing biomolecules inside virus capsids has opened new avenues for the study of
molecular function in confined environments. These systems not only mimic the highly
crowded conditions in nature but also allow their manipulation at the nanoscale for tech-
nological applications. Virus-like particles derived from P22 bacteriophage procapsids
packing green fluorescent protein (GFP) have been explored to monitor their emission
signals using total internal reflection fluorescence (TIRF) microscopy while simultaneously
changing the microenvironment with the stylus of AFM [62]. The mechanical and electronic
quenching can be decoupled using insulator and conductive tips, respectively (Figure 2d).
Upon indentation with conductive tips, the fluorescence quenches and then recovers re-
gardless of the structural integrity of the capsid. However, with insulator tips, quenching
only occurs if GFP molecules remain organized inside the capsid. Electronic quenching
is associated with coupling of the protein fluorescence emission with the tip’s surface
plasmon resonance. In turn, mechanical quenching is a consequence of the unfolding of the
aggregated proteins during mechanical disruption of the capsid.

4. Assembly, Stability, Dynamics, and Mechanics of Simple Viruses

The pathways by which structurally simple virus capsids are assembled from their
building blocks (CBB) had been difficult to unveil experimentally. The group led by
M.G. Mateu has studied the self-assembly and disassembly pathways of the icosahedral
T = 1 min virus of mice (MVM) capsid in vitro, using a combination of EM and AFM [63,64].
The results revealed that trimeric CBBs are sequentially bound to the growing viral particle
in a fully reversible process, and that pentamers of CBBs and capsids lacking one CBB
constitute conspicuous assembly intermediates [63].

The thermodynamics and kinetics of assembly and disassembly of the hexagonal
capsid protein (CP) lattice that forms the mature human immunodeficiency virus (HIV-1)
capsid were also analyzed in vitro by AFM [65,66]. This simplified system and the use of
high-speed AFM (HS-AFM) allowed visualization in real time and with single-molecule
resolution the pathways by which a virus capsid lattice is assembled (Figure 3) [67]. Indi-
vidual molecules of the mature HIV-1 capsid protein CA were observed while they built
the capsid lattice. Lattice patches grew independently from separate nucleation events
through addition of CA molecules or small CA assemblies through many different path-
ways. The experimental results of the studies with MVM and HIV-1 capsids summarized
above verified fundamental aspects of virus capsid assembly predicted by theory or molec-
ular dynamics simulations. Additionally, studies by this group have also revealed the
importance of macromolecular crowding for assembly of a virus capsid (the mature HIV-1
capsid) under physiological conditions [68,69], and its inhibition by small molecules [70].
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Figure 3. Self-assembly of the mature HIV-1 capsid protein lattice on a negatively charged substrate.
(Left): HS-AFM image of a growing lattice patch. Several capsid protein hexamers are fully assembled,
whereas other hexamers are still being formed. (Right): Several consecutive HS-AFM images
extracted from a movie where assembly of the HIV-1 capsid protein lattice from individual capsid
protein molecules is visualized at high resolution in real time. Figure composed by Alejandro
Valbuena, CBMSO.

Numerous mutational studies carried out by M. G. Mateu and collaborators have
identified individual capsid amino acid residues that play important roles in virus particle
assembly, physical stability, conformational transitions, or equilibrium dynamics. These
studies provide detailed insight into the complex relationships between virus structure,
stability, dynamics, and biological function [4,71]. This group is also using AFM for
studying in atomic detail the structural determinants of the mechanical behaviors of
viruses, including stiffness, brittleness, strength against disruption by mechanical force,
and resistance to material fatigue; the relationships between virus mechanics and virus
stability or dynamics; and the biological relevance of virus mechanics [72,73].

The individual effects on MVM mechanics of close to 50 engineered amino acid
substitutions in different capsid regions have been analyzed so far. The results show that
very small structural changes [74,75] may be translated into remarkable changes in the
mechanical strength of the particle [76]. Small structural changes can also lead to large
variations in stiffness and intrinsic elasticity in small spherical viruses [75,77–80]. In several
cases, changes in the mechanical behaviors of mutant particles were linked to different
mechanisms impairing infectivity.

Extensive mutational studies of independent, infectivity-related conformational tran-
sitions in MVM unveiled an intimate correlation between the stiffening of capsid regions
involved in the transition, and impairment of the transition itself [77,78]. An exponential
relationship between the transition rate constant and elastic constant was observed. This
relationship was justified in light of transition state theory [78]. In addition, mutational and
ligand-binding studies using the MVM capsid [74,75], human rhinovirus capsid [80], or
HIV-1 capsid lattice [81,82] unveiled in every case a correlation between changes in intrinsic
elasticity and changes in equilibrium dynamics (breathing). Local or global changes in
breathing (determined by, for example, HDX-MS) [83] or stiffness (determined by AFM)
are different manifestations of the same physical phenomenon: a structure-based variation
in the energy required to move atomic groups and larger structural elements in a virus
particle a certain distance around their equilibrium positions.

The mechanical properties of virus particles play a role in the biology of the virus:
the observed anisotropic distribution of stiffness in the MVM virion [84] may be the result
of biological adaptation. Capsid-bound ssDNA segments close to the 2-fold and 3-fold
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symmetry axes, but not to the 5-fold region, act like molecular buttresses that mechanically
stiffen the capsid or impair its conformational dynamics [78,85]. A heat/force-induced
transition that may lead to untimely DNA release is thus impaired, increasing the chances
of virion survival. Vertex regions around the capsid pores, free from bound DNA, preserve
low stiffness and high conformational dynamics. This feature facilitates an infectivity-
determining transition that, in vivo, may be mechanically induced by the encapsidated
ssDNA molecule and is required for externalization of infectivity-determining peptide
signals through the capsid pores [77].

From an applied perspective, the studies by Mateu and collaborators on virus assembly,
stability, dynamics, and mechanics are contributing to the development of: (i) improved
virus-inactivated vaccines for foot-and-mouth disease virus based on engineered virions of
increased thermostability [86,87]; (ii) peptide-based inhibitors of HIV-1 capsid assembly as
lead compounds for the development of novel anti-HIV-1 drugs [88]; antiviral agents based
on the modification of virion stiffness or mechanical strength [80,82]; as well as engineered
bidimensional virus-based protein materials for biomedical or nanotechnological uses that
feature genetically improved thermostability, resistance to mechanical stress and fatigue,
and self-healing potential, without unwanted stiffening [81].

5. Structural Studies for the Characterization of Virus-Based Nanocontainers

Structural, physical, and functional studies across virus families have provided data
that identify the principles of their structure–function relationship. Viral capsid structures
and properties have shown the dynamic nature of these macromolecular assemblies along
their infectious cycles. In virus-based biotechnology, 3D cryo-EM analysis of viral cap-
sids and virus-like particles (VLPs) is a key tool for the development of improved viral
assemblies [89], and structural “virotechnology” (or virus-based technology) is becoming a
reality [90].

Hollow protein containers are widespread in nature and include not only viral capsids
but also nanocages of bacterial or eukaryotic origin [91–94]. Their inner and outer surfaces
can be modified chemically or genetically, and the internal cavity can be used to template,
store, and/or arrange molecular cargos [5]. In viruses, the modified capsid proteins can
often self-assemble in vitro into non-infectious VLPs. Viral assembly is usually promoted
by single-stranded (ss) nucleic acids or by scaffolding proteins (SPs) or membranes (or a
combination of these). These natural assembly mechanisms can be used to encapsulate
heterologous cargos, including chemicals, enzymes, and/or nucleic acids for a variety
of nanotechnological applications [8], such as customized nanoreactors [95], delivery or
display vehicles [96–98], devices for imaging [99], and artificial compartments [100] for a
variety of applications in nanomedicine, materials science, and synthetic biology.

Here, we highlight two model viral systems used extensively for these applications:
the plant virus cowpea chlorotic mottle virus (CCMV), a ssRNA virus that co-assembles
with the viral genome, and bacteriophage P22, a dsDNA bacteriophage that requires
SP [13]. In both cases, cryo-EM analysis carried out by J.R. Castón’s group was important
for understanding structural and functional differences in hybrid assemblies. CCMV has a
280 Å diameter T = 3 capsid enclosing a 180 Å diameter cavity, and it can be produced in
gram quantities in infected plants. P22 VLPs assemble into a T = 7 procapsid (600 Å outer
diameter) that expands to a mature capsid (650 Å diameter) after heating in vitro.

Whereas the strategy for P22 is based on fusion of a heterologous protein to the SP C-
terminal helix-loop-helix fragment that binds with high affinity to the capsid
interior [41,101], for CCMV, selected protein/enzymes are bound covalently to nucleic
acids [102,103] (Figure 4). Both the scaffolding fragment and nucleic acid segment act
as efficient bait for specific regions on the CP inner surface. In CCMV, heterologous an-
ionic cargos, which also emulate the viral genome, act as a template for CP assembly into
different icosahedral (with T = 1, 2, or 3) and tubular structures [103].
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Figure 4. Assembly strategies to develop hybrid P22 and CCMV particles. (a) In vivo assembly
of P22 VLP with different cargos. Coexpression in Escherichia coli of capsid protein (CP, orange)
with N-terminal-truncated SP (green) fused to different cargos results in assembly of 60 nm T = 7
procapsids with encapsulated cargo. The SP fusion strategy has been used to incorporate from
one to three fused enzymes/proteins. (b) In vitro assembly of CCMV. The CCMV T = 3 capsid is
disassembled into CP dimers. After removal of viral RNA, CP re-assembly requires negative cargos
as templates (instead of the viral ssRNA) and a variety of structures can be formed, such as tubes or
icosahedral capsids of different sizes (only 18 nm T = 1 capsids are shown). Encapsulation is driven
by electrostatic interactions between the polyanionic cargo (blue) and positively charged residues
from the CP N-terminal region (reproduced with permission from ref. [8]).

Bacterial nanocages, termed encapsulins, are nanoplatforms with many similarities to
the P22-like system [104]. The Brevibacterium linens encapsulin houses within its cavity a
dye-decolorizing peroxidase (DyP) involved in oxidative stress. Like the SP of P22, the DyP
encapsulation mechanism is mediated by its C-terminal end, which interacts specifically
with a defined inner surface of the encapsulin region (similar to a capsid protein). Fusion
of the DyP C-terminal end to a heterologous protein (teal fluorescent protein) allows it to
be packaged in these bacterial nanocontainers [105].

New approaches in cryo-EM extend these analyses to the asymmetric organization of
the packaged genome and minor structural proteins, such as viral polymerases, that were
previously missed. Asymmetric structures have important functions in many steps of the
virus replication cycle, and many of these will be key targets for the development of new
antiviral drugs [106–108].

6. Assembly and Disassembly of Complex Viruses: The Case of Adenovirus

As the complexity of virus particles increases, the combination of structural and
physical approaches becomes even more necessary to understand the morphogenesis
and dynamics of viruses where, too often, no in vitro assembly system is available. An
example of such a specimen is the adenovirus (AdV) particle. AdVs are relevant as both
pathogens and therapeutic vectors in human and animal health [109,110]. The family
prototype, human AdV type 5 (Ad5), has a 35 kbp dsDNA genome housed inside a 95 nm
pseudo T = 25 icosahedral capsid. Human AdV with low seroprevalence, as well as non-
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human AdVs, have been proposed as vector candidates to circumvent targeting problems
posed by Ad5. Thanks to advances in cryo-EM that have greatly facilitated structural
determination of these large biological macromolecules, the architectures of some of these
vector candidates have now been examined [111–117].

The AdV icosahedral facets are formed by trimers of the major coat protein, hexon.
A pentamer of penton base protein sits at each vertex, in complex with a trimer of the
receptor-binding fiber. In addition, in Ad5, correct assembly requires four different minor
coat proteins: IIIa, VI, and VIII on the inner capsid surface, and IX outside (reviewed
in [118,119]) (Figure 5a). In the non-icosahedral core, the genome is packed together with
~25 MDa of positively charged, virus-encoded proteins V, VII, and µ. The AdV protease
(AVP) is also packaged together with the genome. Except for AVP, there are practically
no structural data on any of the core proteins. Based on a combination of cryo-electron
tomography (cryo-ET) and molecular dynamics, the group led by C. San Martín proposed
a model where the core would be organized by interactions similar to those in a fluid of
soft repulsive particles [120].

Ad5 virions enter the cell via endocytosis to the early endosome. During attachment
and internalization, the virion undergoes stepwise disassembly that starts by releasing
penton proteins, followed by the internal minor coat protein VI, a membrane-lytic factor
required for endosome escape. Cleavage of several capsid and core proteins by AVP
is required to yield the mature, infectious virion [121,122]. Immature Ad5 particles are
defective in the initial stages of uncoating. They do not expose the lytic protein VI in the
early endosome, becoming trapped in the endocytic pathway, and infection is aborted. After
endosome escape, partially disrupted Ad5 particles are transported along the microtubules
to the nuclear pore, where dsDNA enters the nucleus via unknown mechanisms that might
be related to the condensation state of dsDNA [123]. Collaborative studies by the groups
of P.J. de Pablo and C. San Martín have shown how modifications in core proteins change
virion structure, mechanics, and stability, and, therefore, uncoating and infectivity.

In vitro capsid disruption assays, cryo-EM, and AFM analyses showed that matura-
tion cleavages disrupt interactions in both the capsid and core that stabilize the immature
particle. Maturation makes Ad5 metastable, priming the virion for uncoating by facil-
itating vertex release and loosening the condensed genome and its attachment to the
icosahedral shell [58,59]. Mechanical fatigue induces stepwise disassembly of mature and
immature AdV particles, mimicking their uncoating differences in the cell [45,52,54,124,125]
(Figure 5b). Maturation of core proteins VII and µ increases the internal pressure exerted
by the genome, providing a physical mechanism to facilitate penton release (Figure 5c) [45].
Cryo-ET analyses of heated or acidified Ad5 particles, as well as simultaneous AFM/TIRF
imaging after cracking single Ad5 particles with the AFM (mechanical unpacking), showed
that the genome is less condensed after maturation and diffuses more easily out of the
open capsids [58,59,124]. One of the five Ad5 proteins required for genome packaging, L1
52/55k, is also a substrate for AVP [126]. L1 52/55k acts as a “velcro” tether, recruiting
capsid fragments to the condensed genome during assembly [127]. Proteolytic cleavages
disrupt this tether, facilitating separation of the genome from capsid fragments in the final
stages of uncoating [126,128]. Recent studies have shown that L1 52/55k has a liquid-liquid
phase separation activity that is required for Ad5 morphogenesis [129].

Cryo-EM and AFM combined are also helping to elucidate the specific role of each
one of the core proteins in the Ad5 infectious cycle. Core protein V stabilizes the capsid
to avoid genome misdelivery in the cytosol and facilitates genome release upon particle
disassembly at the nuclear pore [130,131]. Protein VII modulates capsid internal pressure
and DNA release from partially disrupted particles, which could be crucial for keeping the
genome protected while the particle travels to the nuclear pore [44]. Competition between
proteins VII and VI for hexon binding during assembly is required to facilitate the complete
maturation of VI and its exposure during uncoating in the endosome [132].
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sion from ref. [45]. Copyright 2015 American Chemical Society. (d) Penton aging revealed by real-
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Figure 5. Insights into adenovirus assembly and disassembly from physical virology approaches.
(a) General view of the Ad5 architecture as reported in ref. [116]. The fibers, which are not resolved in
icosahedrally averaged maps, are modeled from the crystal structure of the knob and distal shaft [133].
The right half of the figure is a cut open view showing the internal minor capsid proteins. Hexon
is depicted in white; penton base in dark pink; fibers in light pink; protein IX in blue and cyan;
IIIa in yellow; VIII in orange, and VI in green. (b) AFM images acquired during a mechanical
fatigue assay showing the sequential disassembly of an Ad5 particle. (Top-left): Intact particle. (Top-
right): The same particle with three pentons lost. (Bottom-left): The same particle after the shell has
cracked and its contents start being released (yellow filaments on the blue surface). (Bottom-right):
Final state of the collapsed particle. The number of consecutive images taken before reaching each
disassembly step is indicated in each panel. Reproduced from ref. [125]. (c) Uncleaved core proteins
in the immature Ad5 particle act as DNA condensing agents. Upon AVP cleavage, pressurization
induced by decompaction of the viral genome destabilizes pentons, facilitating initiation of stepwise
disassembly and enabling escape from the endosome. Reprinted with permission from ref. [45].
Copyright 2015 American Chemical Society. (d) Penton aging revealed by real-time monitoring of
Ad5 disruption by mechanical fatigue at different forces. Aging guarantees that the particle is ready
to deliver the genome at the nuclear pore, after initial disruption during endocytosis and transport
along microtubules. Modified from ref. [125].

Real-time imaging of Ad5 sequential disassembly induced by mechanical fatigue
at different forces revealed the dynamics of penton release [125]. Viruses retaining too
many pentons would not be able to release their DNA upon docking at the nuclear pore,
whereas those with too few pentons would suffer premature genome loss in the cytosol.
Mechanical fatigue induced by AFM imaging mimics the stresses sustained by the virus
particle during its journey to the nucleus due to molecular crowding and kinesin power
strokes. Survival analysis showed that the loss of one penton increased the release rate of
the remaining ones, accelerating the overall penton escape rate by ~50% with respect to a
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sequence of independent escape events. This “aging” effect, demonstrated for the first time
in a biomolecular assembly, provides evidence of a cooperative process involving pentons
as far apart as 45 nm and prepares the partially disrupted particles for successful DNA
translocation through the nuclear pore (Figure 5d).

7. Contributions to the Study of Membrane-Containing Bacteriophage PRD1

Some virus particles possess an internal membrane vesicle, such as the lipid-containing
bacteriophage PRD1, which over the years has become the model system for this type of
virus. Despite the advances in understanding PRD1 assembly provided by a combination
of protein crystallography and virus cryo-EM [134,135], only the X-ray structure at 4.2 Å
resolution of the complete particle unveiled the network of protein interactions and mecha-
nism of particle formation [136,137]. Until today, PRD1 is the only membrane-containing
virus to have been elucidated by X-ray crystallography. The crystal structure showed how
the 720 copies of the major capsid protein P3 arrange and interact on the membrane vesicle,
as well as the membrane organization and its interactions with viral proteins and dsDNA.
Four capsomers, each formed by one P3 trimer, plus one copy of the penton protein (P31),
make up the asymmetric unit in the pseudo T = 25 capsid, using the same arrangement
as that of the adenovirus capsid. The high-resolution structure of PRD1 provided insight
into its assembly by offering a distinctive and scalable mechanism to determine particle
size using a molecular tape measure. The tape measure protein, P30, is an elongated
molecule with little secondary structure that spans the icosahedron edge from one vertex
to the nearest 2-fold axis, where it intertwines with another P30 molecule to define the
facet dimensions. The similarities in capsomer fold and organization between PRD1 and
human adenovirus prompted the possibility that viruses infecting very different hosts
could be classified into so-called structural lineages [138]. Indeed, it is recognized today
that numerous viruses across the biosphere belong to what is now called the Bamfordvirae
kingdom [139].

Since the tail-less bacteriophage PRD1 has an additional structural component in the
form of the protein-rich membrane vesicle, considerable effort has been made to understand
how dsDNA is packed and how it is translocated into the host cell during infection. Early
negative-staining 2D images of PRD1 showed a tubular appendage protruding from one
of the twelve icosahedral vertices [140]. The icosahedral ordered protein components of
PRD1 were investigated in detail using averaging approaches, but all other components
that did not adhere to icosahedral symmetry remained hidden. Only when asymmetric
reconstruction of a single particle was performed via cryo-EM could the position and
structure of the unique vertex be elucidated [141]. Using immuno-labeling, cryo-EM
and cryo-ET techniques targeting mature PRD1, PRD1 procapsid (defective in genome-
packaging ATPase P9 protein), and virus-infected cells, the Abrescia Lab reported a new
principle of virus–cell interaction necessary for viral genome translocation [142]. According
to this study, the tube used for DNA ejection in PRD1 is structured and protrudes from
the same vertex that is utilized for DNA packaging. These findings support the direct
involvement of membrane-associated proteins that self-assemble and form lattices in the
conformational changes required to form the tube. Likely candidates are the proteins P7,
P14, P18, and P32 [143]. Notably, the packaged genome does not play a role in the initiation
or formation of the tail tube. However, in the procapsid in which the membrane vesicle is
devoid of genome, the formation of the tail tube fails to orient correctly and, as a result,
the tubular structure does not always protrude from the apex. Furthermore, the genome-
free membrane vesicle showed different morphologies from stomatocytes to discocytes,
displaying not only the elasto-mechanical properties of unilamellar giant proteo-vesicles
but also the triggering factors leading to membrane remodeling [142]. These factors have
been attributed to changes in the structural, environmental, and/or osmotic conditions of
the inner membrane vesicle caused by phage-binding to the cell receptor (which is still
unknown). This event (or series of events) would initially modify the structure of the vertex
complex, promoting vertex decapping and exposing the membrane to extracellular milieu
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conditions. This would then initiate membrane vesicle remodeling and tube formation.
In situ cryo-ET captured PRD1 infecting an E. coli cell by puncturing the bacterial cell
membrane with the tail tube, elucidating the mechanisms that govern tube self-assembly,
viral DNA ejection apparatus, and cell infection [142] (Figure 6). In light of these results,
a further study using modeling techniques proposed that the elastic properties of the
membrane may favor translocation of the viral genome into the host cell in the early phases
of infection [50]. This hypothesis led also to question whether the PRD1 membrane vesicle
provides further protection to the viral genome. To protect the genetic cargo outside the cell,
viruses have developed various viral protein folds, architectures, and material compositions
(protein, lipid, or a mixture of both). This mix of materials and architectures provides
specific mechanical properties that meet protection requirements. Indeed, when virions
leave the host cell, they may experience extreme environmental conditions.
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Figure 6. In vivo PRD1 genome delivery. Tomographic slices of an Escherichia coli cell infected by
wild-type PRD1 (∼30 min post infection). Scale bar, 50 nm. (Left) Full particle, marked with a black
square, with forming tube crossing the outer membrane (OM). Inner plasma membrane (IM) and
peptidoglycan layer (PL) are indicated. (Centre) Semi-full particle, marked as previous. (Right) An
almost empty particle, outlined in a black square. Insets provide enlarged views and corresponding
segmentations color-coded as follows: blue, capsid; yellow, membrane vesicle and tube; red, outer
and inner membranes; cyan, peptidoglycan layer. The white arrowhead indicates additional openings
of the capsid. Adapted from ref. [142].

The abundance of genetic, biochemical, and structural information on PRD1 as well as
the availability of several particles [e.g., (1) mature PRD1; (2) procapsid lacking genome and
ATPase P9 protein; (3) icosahedral P3 shell composed of the major coat protein and minor
protein P30 but lacking pentons and peripentonal capsomers; and (4) PRD1 protein-lipid
membrane vesicle encapsulating a full genome] made it an ideal system for AFM analysis.
Using AFM, the Abrescia group studied the deformability (stiffness, k), energy required
for mechanical failure (toughness, T) and fatigue limits of the PRD1 virion and derived
particles. To the best of our knowledge, this AFM study on PRD1 remains the only one
for a virus in which an inner membrane vesicle surrounds densely packed dsDNA [144].
One of the most important discoveries was that full (genome-containing) or empty PRD1
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particles have a similar breaking force, with the presence of DNA causing a stiffening of
the mature PRD1 relative to the procapsid [144]. This implies that the mechanical stability
of the PRD1 particle is independent of the presence of the genome. In contrast, the fragility
(brittleness) of the P3 shell particle clearly showed a decrease in the structural reinforcement
of the particle when one only considered interactions between the capsomeres in the central
plate of the icosahedral facet and the P30 cementing protein. The membrane vesicle
with its protein enrichment had the lowest stiffness and no discernible yield point. Thus,
the membrane mostly transmits stiffening to the capsid due to DNA pressure, and its
contribution to the total stiffness of mature PRD1 is limited.

To determine how the capsid and membrane vesicle collectively affect resilience, the
toughness was estimated for each PRD1-derived particle and the results were compared to
information available of other icosahedral dsDNA viruses. Surprisingly, only adenovirus
particles can match PRD1 in toughness. Adenovirus lacks an inner membrane but has
a considerable number of cementing proteins that hold the capsid together [117]. Thus,
according to the study on PRD1 mechanics, the proteinaceous capsid is stiff and brittle,
whereas the membrane vesicle is ductile and soft [144]. Strikingly, the high resilience of
PRD1 is only reached when these two layers of materials are architecturally combined,
suggesting a composite material optimized through evolution for the protection of the
valuable genome.

In summary, the integration of structural and biophysical techniques has provided a
unique methodological framework to unravel the PRD1 biology, which has elevated PRD1
as a model system for complex membrane-containing viruses [138].

8. Conclusions

After millions of years of evolution, viruses are capable of carrying out their infectious
cycle with remarkable efficiency. This efficiency may result in the development of diseases
with serious social and economic consequences. On the other hand, their nanometer
dimensions, precise architectures, and exceptional stability properties make virus particles
particularly attractive for the development of promising nanotechnological applications.
In recent years, the physical properties of viruses have been revealed as the fundamental
determinant of many of these functionalities. In this way, physical virology complements
structure–function relationships and sheds new light on the basic principles regulating the
dynamics of these remarkable molecular machines.

Currently, there is a thriving interdisciplinary research community in Spain work-
ing in this field. Since its establishment in 2010, the Spanish Interdisciplinary Network
on Virus Biophysics (Biofivinet) helps connect groups within this community and with
the international sphere. This network has fostered the initiation and strengthening of
collaborations and knowledge interchange. The second edition of the book Structure and
Physics of Viruses [21] is in progress. The 7th International Biofivinet Meeting will soon
be held, incorporating new groups at the frontier between physics, chemistry, and biol-
ogy to progressively tackle more ambitious goals in our understanding of virus assembly,
disassembly, function, and engineering.
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