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Abstract: Single-molecule Förster resonance energy transfer (smFRET) enables the deconvolution
of various conformational substates of biomolecules. Over the past two decades, it has been widely
used to understand the conformational dynamics of enzymes. Commonly, enzymes undergo re-
versible transitions between active and inactive states in solution. Using smFRET, the details of these
transitions and the effect of ligands on these dynamics have been determined. In this mini-review,
we discuss the various works focused on the investigation of enzyme conformational dynamics
using smFRET.
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1. Introduction

Fluorescence resonance energy transfer (FRET) emerged as a widely practiced experi-
mental technique toward the end of the past century [1–5]. It is preferentially called Förster
resonance energy transfer to lionize Theodor Förster, who first observed the phenomena in
1946 [6]. All the molecules remain in the ground state in the absence of any stimulation.
Upon exposure to an external energy source, such as photons, they are excited to higher
electronic states. The event of fluorescence stems from the radiative deexcitation of a fluo-
rescent molecule to the ground state. The fluorescence emission of a particular substance
(usually termed fluorophore) is characterized by a specific wavelength and intensity. Both
the excitation and emission processes have a specific transition dipole moment [7,8]. In
order for FRET to happen between two fluorophores, the emission profile of one fluo-
rophore (which acts as a donor) should overlap with the absorption profile of the other
(acting as acceptor) to a significant amount. The extent of this overlap is characterized
by the overlap integral [7,8]. During an event of FRET, two fluorophores (one energy
donor and one energy acceptor) located nearby and having suitably aligned transition
dipoles can communicate through a dipole–dipole coupling mechanism to transfer energy,
which results in the alteration of the fluorescence signal of each of them compared with
when they are not in close proximity (Figure 1A) [7,8]. Owing to the donation, the donor
emission intensity goes down and the acceptor emission intensity goes up. The efficiency
(E) of this transfer measures the amount of energy transferred per excited donor molecule
and shows an inverse proportionality with the sixth power of distance (r) between the
fluorophores [9–11]. The distance that allows 50% energy transfer is known as the Förster
distance (r0) [9–11]. This r0 has a defined value for each donor–acceptor pair, and this value
characterizes the specific donor–acceptor pair; a higher r0 value enables the observation
of processes involving a higher distance change. Although FRET operates in a 10–100 Å
distance range, its sensitivity depends on a lot of factors, such as the relative orientation of
dipoles, the presence of fluorescence quenchers, the overlap integral of the pair (Figure 1B), etc.
Because of its distance-dependent nature (Figure 1C), FRET can be utilized to understand
an array of biophysical and biochemical processes, such as protein dynamics, drug binding,
protein folding, chromatin dynamics, and DNA dynamics [12–16]. When there is a change
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in the distance between two moieties in a biomolecule due to intrinsic dynamics or ligand-
induced conformational changes, it is reflected in the change in E. From the variations in E,
one can calculate the distance change or rate of associated conformational changes.

Biophysica 2022, 2, FOR PEER REVIEW 2 
 

 

processes, such as protein dynamics, drug binding, protein folding, chromatin dynamics, 
and DNA dynamics [12–16]. When there is a change in the distance between two moieties 
in a biomolecule due to intrinsic dynamics or ligand-induced conformational changes, it 
is reflected in the change in E. From the variations in E, one can calculate the distance 
change or rate of associated conformational changes. 

 
Figure 1. (A) Schematic of energy transfer from a donor (green star) to an acceptor (red star). The 
transfer efficiency depends on the distance (r) between the donor and the acceptor. In the top panel, 
the donor and the acceptor are further apart than they are in the bottom panel. This results in a 
much lower value of E for the top panel. (B) The spectral overlap (shaded region) between the donor 
emission and the acceptor absorption. The higher the overlap, the higher the efficiency of energy 
transfer. (C) The dependence of E on distance (r) between two fluorophores labeled on a 
macromolecule (blue ribbon structure). r0 denotes the distance at which 50% energy transfer 
happens. (D) Real-time FRET traces from reference [17] (Liu, S.; Abbondanzieri, E.A.; Rausch, J.W.; 
Le Grice, S.F.J.; Zhuang, X. Slide into action: dynamic shuttling of HIV reverse transcriptase on 
nucleic acid substrates. Science (New York, N.Y.) 2008, 322, 1092–1097, doi:10.1126/science.1163108.) 
with permission. The work involves unzipping of the non-template strand of RNA (labeled with the 
donor) from the template strand (labeled with the acceptor). Upper panel shows donor (ID, green) 
and acceptor (Ia, red) emissions. The bottom panel shows the FRET efficiency (blue) calculated using 
the equation E = IA/(ID + IA). On the right is the histogram showing population corresponding to the 
specific value of E. 

Although FRET is a very efficient technique to measure inter- and intra-molecular 
distances, ensemble or solution FRET comes with a few limitations and drawbacks. The 
first and the most crucial drawback is its inability to deliver precise information about 
processes that are temporally unsynchronized for different molecules in the solution 
because of the ensemble averaging of the fluorescence signal. The second point is that 
there is also a contribution from only donor-labeled or only acceptor-labeled molecules 
present in the solution because of incomplete labeling, thus making the results erroneous. 
The third limitation is that ensemble measurements cannot distinguish between 
subpopulations of different conformational states that are only minutely different from 
each other. All these drawbacks can be bypassed if one can look at one molecule at a time. 
Hence, a combination of single-molecule techniques and FRET was highly called for. Two 
major experimental designs have been adopted by researchers in this regard. One involves 

Figure 1. (A) Schematic of energy transfer from a donor (green star) to an acceptor (red star). The
transfer efficiency depends on the distance (r) between the donor and the acceptor. In the top panel,
the donor and the acceptor are further apart than they are in the bottom panel. This results in
a much lower value of E for the top panel. (B) The spectral overlap (shaded region) between the
donor emission and the acceptor absorption. The higher the overlap, the higher the efficiency of
energy transfer. (C) The dependence of E on distance (r) between two fluorophores labeled on
a macromolecule (blue ribbon structure). r0 denotes the distance at which 50% energy transfer hap-
pens. (D) Real-time FRET traces from reference [17] with permission. The work involves unzipping
of the non-template strand of RNA (labeled with the donor) from the template strand (labeled with
the acceptor). Upper panel shows donor (ID, green) and acceptor (Ia, red) emissions. The bottom
panel shows the FRET efficiency (blue) calculated using the equation E = IA/(ID + IA). On the right is
the histogram showing population corresponding to the specific value of E.

Although FRET is a very efficient technique to measure inter- and intra-molecular
distances, ensemble or solution FRET comes with a few limitations and drawbacks. The first
and the most crucial drawback is its inability to deliver precise information about processes
that are temporally unsynchronized for different molecules in the solution because of
the ensemble averaging of the fluorescence signal. The second point is that there is also
a contribution from only donor-labeled or only acceptor-labeled molecules present in the
solution because of incomplete labeling, thus making the results erroneous. The third
limitation is that ensemble measurements cannot distinguish between subpopulations
of different conformational states that are only minutely different from each other. All
these drawbacks can be bypassed if one can look at one molecule at a time. Hence,
a combination of single-molecule techniques and FRET was highly called for. Two major
experimental designs have been adopted by researchers in this regard. One involves recording
fluorescence signals from an ultra-dilute solution of dye-labeled biomolecules [18,19], whereas
the other uses surface-immobilized dye-labeled molecules for prolonged observation of
each molecule [20,21]. In the first case, molecules freely diffusing in and out of the focal
volume generate the signal, whereas in the second case, fluorescent pixels are sorted from
a recorded movie.
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The first report on smFRET came out in 1996 when Ha et al. successfully employed
near-field scanning optical microscopy (NSOM) to observe FRET between a tetramethyl-
rhodamine (TMR, donor) and Texas Red (TR, acceptor) couple on 10 and 20 base-pair-long
DNA molecules at the single-molecule level [22]. They were able to see distance-dependent
FRET changes for different DNA constructs and could obtain information about the possible
conformations of DNA from the calculated FRET efficiencies at the single-molecule level. In
this mini-review, we discuss all the scientific works focused on conformational dynamics of
enzymes using smFRET. Enzymes are one of the most important subclasses of biomolecules,
administering many life processes with utmost control and efficiency. The active site of
most of the enzymes has at least two conformations: one either facilitates ligand binding
or regulates specific processes, and another is inactive conformation. Besides these two,
the presence of additional factors is also quite common. The reversible interconversion
of these states defines the active site dynamics of the enzyme and is responsible for their
specific activity. The timescale of this fluctuation varies from 1 ms to 100 s. Because of
the presence of various conformational states with different ligand-binding capabilities
and functions, it is practically impossible to scan the active site dynamics with ensemble
measurements. This fact justifies the increasing number of reports being published on
enzyme conformational dynamics using smFRET. smFRET enables the segregation of dif-
ferent conformational states and the rates of interconversion precisely (Figure 1B). For this
purpose, the enzyme must be labeled with one donor and one acceptor dye at the active site,
and the distance between these two dyes must be in the range that allows highly efficient
energy transfer. Without satisfying the above conditions, the conformational fluctuations
cannot be monitored properly.

2. Enzyme Conformational Dynamics

In this mini-review, we tried to put together all the scientific works focused on the in-
vestigation of enzymatic conformational dynamics using smFRET (see summary in Table 1).
We classified the collection of scientific works into three categories (Figure 2): allosteric
regulation type (in which the conformational changes are induced by small-molecule or
ligand binding), ligand-independent regulation type (in which the conformational changes
are modulated by self-regulation or external factors with no ligand binding required), and
feedback regulation type (in which the structural rearrangements are made in response to
mismatch binding).

Table 1. List of available reports on the study of enzyme conformational dynamics using smFRET.

Type Enzyme References

Allosteric regulation

Staphylococcal nuclease (SNase) [23]
T4-lysozyme [24–26]
Adenylate kinase (AK) [27]
RNA helicase (eIF4A) [28]
Telomerase ribonucleoprotein (RNP) [29,30]
Phosphoglycerate kinase (PGK) [31]
RING E3 ligase [32]
ATP synthase [33]

Ligand-independent
regulation type

Hairpin ribozyme [34,35]
6-hydroxymethyl-7,8-dihydropterin
pyrophosphokinase (HPPK) [36–38]

Restriction endonucleases
(Ecl18kI and NgoMIV) [39–41]

Dengue virus protease (DENV-PR) [42]
Sec preprotein translocase [43]

Feedback regulation type RNA Polymerases I and II [44–47]
CRISPR-associated protein 9 (Cas9) [48–50]
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Figure 2. Different mechanisms of enzyme conformational dynamics. Three different categories are 
discussed in this review: allosteric regulation, ligand-independent regulation, and feedback 
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fluorophores under a specific condition of interest. 
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The earliest demonstration of protein as well as enzyme conformational dynamics at 

the single-molecule level also came from Ha et al. a few years later [23]. Inter- and intra-
molecular FRET measurements were performed on TMR (donor)- and Cy5 (acceptor)-
labeled surface-immobilized staphylococcal nuclease (SNase) at a 5 ms resolution using a 
confocal fluorescence setup. SNase is a Ca2+-dependent enzyme that catalyzes the 
hydrolysis of DNA and RNA into mono- and di-nucleotides. The time-dependent 
fluctuations of the donor and the acceptor emission showed traces of the anticorrelated 
donor–acceptor signal that represents FRET. In the presence and absence of an inhibitor 
(deoxythymidine diphosphate, pTp), the average time constants of the FRET efficiency 
fluctuations were 41 msec and 133 msec, respectively. These results proved that the 
conformational dynamics of SNase in the ligand-free and ligand-bound states are 
significantly different. The successful employment of smFRET in this work paved the way 
toward a more structured understanding of enzyme conformational dynamics. 

Starting in 2003, Peter Lu’s group has performed extensive research on the 
conformational dynamics of T4-lysozyme [24–26]. In the first report, they unveiled the 
dynamics of the hinge bending motion of the active site of the enzyme [24]. From the 
results, they could attribute the inhomogeneity in the enzymatic reaction rates to the 
difference in the time needed for the enzyme molecule to find the binding domain of the 
substrate. They also found that the subsequent steps had similar rate constants. The 
presence of different substrate-bound enzyme conformational states was also observed. 
Later, they also studied the bunching effect of the conformational times and concluded 
that this effect stems from the convolution of different conformational motions of protein 
under the effect of the substrate [26]. 

In 2007, Haw Yang’s group reported the smFRET measurements of labeled adenylate 
kinase (AK) [27]. AK catalyzes the reversible reaction Mg2+·ATP + AMP = Mg2+·ADP + 
ADP. The ligand-free open conformation and the ligand-bound closed conformation were 
reported through crystal structures. The Yang group reported the effect of ligand binding 

Figure 2. Different mechanisms of enzyme conformational dynamics. Three different categories
are discussed in this review: allosteric regulation, ligand-independent regulation, and feedback
regulation types. The green symbol represents the donor, and the red symbol denotes the accep-
tor. The conformational changes are monitored by collecting the changes in the intensities of the
two fluorophores under a specific condition of interest.

3. Allosteric Regulation Type

The earliest demonstration of protein as well as enzyme conformational dynamics
at the single-molecule level also came from Ha et al. a few years later [23]. Inter- and
intra-molecular FRET measurements were performed on TMR (donor)- and Cy5 (acceptor)-
labeled surface-immobilized staphylococcal nuclease (SNase) at a 5 ms resolution using
a confocal fluorescence setup. SNase is a Ca2+-dependent enzyme that catalyzes the hydrol-
ysis of DNA and RNA into mono- and di-nucleotides. The time-dependent fluctuations of
the donor and the acceptor emission showed traces of the anticorrelated donor–acceptor
signal that represents FRET. In the presence and absence of an inhibitor (deoxythymidine
diphosphate, pTp), the average time constants of the FRET efficiency fluctuations were
41 msec and 133 msec, respectively. These results proved that the conformational dynamics
of SNase in the ligand-free and ligand-bound states are significantly different. The suc-
cessful employment of smFRET in this work paved the way toward a more structured
understanding of enzyme conformational dynamics.

Starting in 2003, Peter Lu’s group has performed extensive research on the conforma-
tional dynamics of T4-lysozyme [24–26]. In the first report, they unveiled the dynamics
of the hinge bending motion of the active site of the enzyme [24]. From the results, they
could attribute the inhomogeneity in the enzymatic reaction rates to the difference in the
time needed for the enzyme molecule to find the binding domain of the substrate. They
also found that the subsequent steps had similar rate constants. The presence of different
substrate-bound enzyme conformational states was also observed. Later, they also studied
the bunching effect of the conformational times and concluded that this effect stems from
the convolution of different conformational motions of protein under the effect of the
substrate [26].

In 2007, Haw Yang’s group reported the smFRET measurements of labeled adenylate
kinase (AK) [27]. AK catalyzes the reversible reaction Mg2+·ATP + AMP = Mg2+·ADP + ADP.
The ligand-free open conformation and the ligand-bound closed conformation were re-
ported through crystal structures. The Yang group reported the effect of ligand binding on
the reversible transition between open and closed states (Figure 3). The timescales of these
transitions were calculated as kopen = 120± 40 s−1, kclose = 220± 70 s−1. Additionally, various
conformational substates of the active site of the enzyme were observed through smFRET.

In 2012, Amit Meller’s group employed smFRET measurements to study eukaryotic
translation initiation [28]. The subject of their study was RNA helicase (eIF4A), which is
responsible for unwinding mRNA, thus recruiting ribosomal complexes required for the
translation process. Messenger RNA (mRNA) can exist as an RNA/DNA hybrid, which
inhibits the binding of the ribosomal complex. By monitoring the changes in the FRET
pair between DNA and RNA in the RNA/DNA hybrid, they were able to capture the
eIF4AI unwinding activity, which separates RNA from the hybrid and allows for ribosome
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docking. They also investigated the relationship between eIF4AI and eIF4H, which has been
known to enhance helicase activity. A DNA/RNA hairpin was constructed and labeled
with a FRET pair, and by noting its changes in fluorescence intensities, they observed
repetitive RNA unwinding activity in the presence of eIF4H in an ATP-dependent manner
and an increased eIF4AI/eIF4H complex binding preference for the hairpin loop over
single-stranded mRNA.
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and A194 residues. The open (left) and closed (right) conformations represent the substrate-free
and substrate-bound states of AK, respectively. (B) The change in R/R0 reflects the relative change
in distance between the donor and acceptor. The population of molecules with a smaller distance
(representative of closed conformation) increases significantly upon substrate binding. Figure is
adapted from [27]. [Copyright (2007) National Academy of Sciences, U.S.A.].

In 2012, Michael Stone’s group from the University of California, Santa Cruz, investi-
gated the conformational changes in the La-domain protein p65, which has been known to
regulate telomerase ribonucleoprotein (RNP) assembly [29]. Telomerase RNP is vital for
preserving telomere presence and optimal length, whose imperfections can lead to serious
cell defects or death. In this research, they explored the interactions between different
regions of p65 and telomerase RNA (TER) binding by labeling specific residues within
TER with a FRET pair. They found that the C-terminal domain of p65 is required to in-
duce conformation changes in TER, while other regions, despite not directly influencing
TER, help stabilize the binding between the p65 CTD and TER. In 2019, a review written
by the same group introduced how smFRET measurements provided insights into the
structural changes of the human immunodeficiency virus (HIV) reverse transcriptase and
telomerase ribonucleoprotein (RNP) enzymes and their potential consequences [30]. In
the HIV reverse transcriptase case, the Zhuang group reported that HIV transcriptase
possesses contradictory binding structural arrangements for DNA and RNA, and these
two binding modes are interchangeable. Additionally, they explored the pathways in
which HIV reverse transcriptase is used to search for the correct primer to initiate DNA
synthesis [17]. They observed that HIV reverse transcriptase utilizes both DNA sliding
and flipping to search for the primer, and the structural arrangement of the viral RNA
template can regulate the initiation of the DNA synthesis process by determining the HIV
reverse transcriptase binding mode. In the RNP enzyme case, they resolved the interactions
between the telomerase essential N-terminus (TEN) domain within the telomerase RNP
and either DNA or RNA templates. Therefore, they found that the TEN domain helps in
maintaining DNA–RNA hybrids in the telomerase active site not only in eukaryotes but
also in yeast and humans.

In 2014, Jorg Fitter’s group from Germany used a previously established enzyme
system phosphoglycerate kinase (PGK) to study the effects of substrates on the enzyme in
ligand-bound complexes [31]. smFRET measurements were utilized to follow the structural
changes induced by doubly labeled PGK in the presence of different substrate-binding
modes. They found that PGK alone exists predominantly in a compact form, despite a small
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population possessing a more expanded conformation, while in the presence of substrate
binding, they observed a more compact conformation with an increased population.

In 2020, the Hay group from the UK employed smFRET measurements to study the
process of ubiquitination, specifically regarding the mechanism of how RING E3 (a class of
E3 ligase) acts on the ubiquitin-bound E2 (conjugating enzyme) complex, thus leading to
the transfer of ubiquitin from the complex to the final substrate [32]. On the basis of the
fluorescence intensity collected from a FRET pair on ubiquitin-bound E2 complex (E2-Ub),
they resolved three conformations of the E2-Ub complex: closed, open, and intermediate.
Their results also confirmed that the active conformation is the closed one, where ubiquitin
can be deposited onto the substrate. Additionally, they found that the presence of both
the UEV (E2-ub binding partner) and the RING domain is required to preserve the closed
active conformation of E2-Ub, and the mutations in those regions result in a defective
ubiquitination process.

ATP synthases are enzymes that catalyze the process of ATP synthesis from ADP and
phosphate. Its working domain is the inner membrane of the mitochondria. Synthases
have a large complex structure, which can be described as a rotary nanomotor. The rotary
activity of the motor works toward the conversion of electrochemical energy to cellular
energy and vice versa. Recently, Sielaff et al. labeled the rotor and stator of F0-F1-ATP
synthases with a FRET pair to see their relative motion and characterize the ATP-dependent
rotation process [33]. They observed a mean rotational frequency of 91 ± 3 s−1 in the
presence of 1 mM ATP, which decreased to 42 ± 3 s−1 with 10 µM ATP. With the help of
the smFRET-based approach, they were able to resolve the stepwise rotation of F0-F1-ATP
synthase driven by ATP.

4. Ligand-Independent Regulation Type

smFRET started gaining popularity rapidly around the beginning of the past decade,
with an increasing number of articles coming out each year. In 2002, Steven Chu’s group
published an smFRET-based work on the structural dynamics and function of the hairpin
ribozyme, an enzyme that reversibly cleaves its substrate (S) into two products (3′P and
5′P) [34]. They used part of a hairpin ribozyme (which lacks a four-way junction) and
showed the presence of four active (docked) states and one inactive (undocked) state. They
also calculated the rates of transitions between different conformational states and proved
that these transitions define the rate-determining step of the cleavage reaction. Shortly
after this, another article was published by the same group, this time with the hairpin
junction intact [35]. This work reported the presence of three distinct states, namely the
folded, proximal, and distal states. The folded state converts to the proximal state via
a slow, reversible reaction (3 s−1), whereas the proximal to distal transition is fast and
reversible (50 s−1). The success of this detailed study of the enzymatic cleavage process can
be extended to other ribozymes and other enzymes with complex structural dynamics.

After studying lysozymes, Peter Lu’s group focused on HPPK (6-hydroxymethyl-7,
8-dihydropterin pyrophosphokinase) which helps in the biosynthesis of folates by catalyz-
ing the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (HP), giving rise to
6-hydroxymethyl-7,8-dihydropterin pyrophosphate (HPPP) [36–38]. The catalytic process
involves three catalytic cycles. Using an smFRET approach, they showed a coherence of
conformational dynamics involved in the catalytic cycles. From the results, they concluded
that (i) the product release is the rate-determining step and (ii) the conformational changes
do not always lead to product development; they can also be unproductive. Using a corre-
lated smFRET-magnetic tweezers approach, they were able to see a significant restriction of
conformational flexibility upon ligand binding.

From 2014 to 2017, Danielis Rutkauskas’s lab from Lithuania worked on the inter-
actions between DNA and restriction endonucleases, specifically those leading to DNA
looping upon the binding of restriction enzymes [39–41]. In 2014, they started working on
Ecl18kI, a well-defined restriction enzyme [39]. Ecl18kI exists in a dimer conformation, and
the binding of two dimers on the target DNA strand results in the formation of the active
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tetramer complex, which can induce DNA looping on the target DNA strand. By labeling
the target DNA strand with a FRET pair, they were able to capture DNA loop formation
and kinetics in real-time. From the extracted looping and unlooping kinetics, they observed
the productive formation of the active tetramer from two DNA-bound Ecl18kI dimers;
however, their complex was short-lived. In 2017, Danielis Rutkauskas’s lab employed
alternating laser excitation (ALEX) with a 1000 bp DNA template to distinguish two DNA
looping conformations induced by Ecl18kI: antiparallel loop and parallel loop [40]. They
reported no difference in the lifetimes of DNA looping in either conformation, while the
parallel DNA loop formation was much preferred over the antiparallel DNA loop forma-
tion. Also in 2017, Danielis Rutkauskas’s group published another article on DNA looping
induced by another restriction endonuclease, NgoMIV [41]. Unlike Ecl18kI, which only
has one DNA binding site, NgoMIV has two DNA binding sites, which can result in more
complex DNA-bound NgoMIV conformations. With only one NgoMIV on the target DNA
strand, parallel and antiparallel loops are still the only two conformations. However, DNA
semi-loops could also form when two NgoMIVs bind to the target DNA strand, in which
one binding cleft was bound to the DNA binding site for NgoMIV while the other binding
cleft was attached to a nonspecific DNA region. Furthermore, they also reported diverse
types of loop formations with different stabilities, in which some loops were more dynamic
than the others.

The dengue virus protease (DENV-PR) is a heterodimeric serine protease that plays
an active role in the generation of new virus particles in the cell. It has been targeted for
drug discovery because of its crucial role in viral infection. In the catalytically active state
(closed conformation), the cofactor (NS2Bcf) wraps around the protease domain (NS3pro)
to form two pockets S2 and S3 [42]. In the inactive state or the open conformation, the
(NS2Bcf) is disordered [42]. Gotz et al. investigated the presence of different conformational
states and their susceptibility to inhibitors [42]. Their results suggested the interconversion
of an open and a closed state on a 10 ms timescale. Because of the unstructured nature of
(NS2Bcf) in the open state, this state can adopt different closely related conformations. They
also observed that the presence of a competitive inhibitor stabilized the closed state.

In 2021, a collaboration work in Europe utilized the smFRET technique to study the
structural rearrangements of Sec preprotein translocase to provide more insights into how
a ligand protein can modify itself conformationally and exhibit distinct functions in different
environments [43]. The authors reported three conformational states of SecA protein: the
open state, the intermediate state, and the closed state. These three conformational states
were found to be interchangeable at low concentrations, while the open state was preferred
over the two other conformational states at higher concentrations. Therefore, the authors
proposed that SecA protein mostly existed in monomers at low concentrations but formed
dimers at high concentrations, thus restraining the population of the intermediate and
closed conformational states.

5. Feedback Regulation Type

Multiple research projects have been conducted to study the biological activities of
polymerase(s) using smFRET over the past decade [44–47]. In 2012, David Millar’s group fo-
cused on DNA Polymerase I during the DNA replication process [44]. To maintain genomic
integrity, DNA Polymerase I must incorporate the correct nucleotide during replication,
during which DNA Polymerase I may adopt either the open or closed conformations with
DNA. David Millar‘s group performed an smFRET experiment on a FRET pair between
the DNA template and DNA Polymerase I. They successfully presented two previously
confirmed conformations (open and closed) and a newly discovered third conformational
state (intermediate) for DNA Polymerase I and DNA complexes, all of which were found
to be interchangeable during replication. They also found that the closed conformation and
a longer DNA Polymerase I resident time were predominant with correct nucleotide inser-
tion, while increased intermediate conformation and fast DNA Polymerase I dissociation
were observed with incorrect nucleotide insertion. In 2022, in a review also written by David
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Millar, a fourth conformational state was reported with incorrect nucleotide insertion [45].
Therefore, it was suggested that DNA Polymerase I may engage in another pathway to
inhibit the insertion of the mismatched nucleotide by altering its interactions with the
DNA template, which was confirmed by monitoring doubly labeled DNA Polymerase I in
additional smFRET measurements (Figure 4).
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Figure 4. (A) Two distinct conformational states detected upon the binding of the Klenow fragment
of Pol I. (B) The representative trace denoting the changes in the intensities of the donor (green) and
the acceptor (red). The FRET efficiency (blue) was extracted. (C) The FRET efficiency histogram
extracted from the intensities of the donor and the acceptor. Two conformational states were detected
and quantified. (D) The histogram of the time taken for Pol II to transition from Pol to Exo site. It was
fitted (black line) with a single exponential function to obtain the rate constant (k). Figure is adapted
from [44] with permission.

In addition to DNA replication, extensive research has been conducted on a different
class of polymerase, RNA Polymerase II, during the transcription process [51–53]. In 2014,
Gonzalo Cosa’s lab from Canada employed smFRET to study the activity of the RNA-
dependent hepatitis C virus (HCV) polymerase, which was called non-structural protein
5B (NS5B), in transcription initiation [46]. A DNA–RNA hybrid containing RNA overhang
for NS5B binding was constructed with a FRET pair and monitored for its fluorescence
fluctuations upon NS5B addition. They reported that the NS5B–RNA complex was more
compact at low NSB5 concentrations, while the complex was remarkably more dynamic at
high NSB5 concentrations. These changes in the complex behavior were proven to depend
on the length of the RNA overhang. Furthermore, they performed similar experiments
on different mutations at the entrance and the RNA binding channel of NS5B and found
that these mutations led to diminished NS5B–RNA complexes. In 2021, a paper published
by Achillefs Kapanidis’s group reported structural conformations of RNA Polymerase II
and their population changes in different environments [47]. By labeling both the RNA
Polymerase II clamp and the active cleft (opposite to the clamp), they were able to resolve
three distinct conformational states of RNA Polymerase II, which were the open, partially
closed, and closed conformations. It is worth noting that the majority of RNA Polymerase
II could switch between different conformation states, and these states could be very long-
standing. In this paper, they also found that RNA Polymerase II became less dynamic at
increasing concentrations of divalent cations, while increased RNA Polymerase II dynamic
motions were observed in the presence of molecular crowding (PEG-8000). An additional
study was conducted to study the effects of DNA on the RNA Polymerase II clamp, and
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it showed that most RNA Polymerase II in a DNA-rich environment either adopted the
closed conformation or possessed a terribly slow transformational dynamic.

Since the invention of Clustered, Regularly Interspaced, Short Palindromic Repeats
(CRISPR)-associated (Cas) proteins, Cas9 has quickly gained enormous popularity in the
field of genome editing. Since 2014, several papers have been published on the structural
conformations and functions of Cas9 protein [48–50,54–60]. In 2018, by doubly labeling
Cas9 in an smFRET study, Osuka et al. were able to monitor the activity of different Cas9
domains upon the binding of single-guide RNA (sgRNA) or target DNA [48]. Multiple
switching FRET states observed in their smFRET experiments confirmed that Cas9 protein
exhibits both flexible and interconvertible conformational states, which were observed
in the interactions between a recognition (REC) lobe and a nuclease (NUC) lobe within
Cas9. They also found that a more rigid Cas9 was observed upon the addition of sgRNA,
while a more dynamic Cas9 was seen upon the addition of the target DNA binding.
Another paper from Chunlai Chen’s lab focused on the Cas9 complex in the presence of
mismatched DNA [49]. Using their smFRET setup, they confirmed three Cas9 fluctuating
conformational states, in which the open conformation was predominant, while the closed
but active cleavage-competent state of Cas9 was the most minor. With the introduction
of double-stranded DNA (dsDNA) mismatches into the Cas9 system, they found that
more than four mismatches diminished the intermediate and the active closed states, thus
inhibiting Cas9 nuclease activity. In another paper published in the same year, Jizhong
Lou’s group further investigated the formation and dynamics of an R-loop, which was
formed after the binding of gsDNA and dsDNA in the Cas9 protein and was primed
to initiate Cas9 nuclease activity [50]. As Cas9 activation requires the recognition of
the protospacer-adjacent motif (PAM) on the DNA sequence, the interaction between
sgRNA and dsDNA was under investigation for the regions both proximal and distal to
the PAM sequence. Interestingly, they observed increased Cas9 cleavage activity in the
mismatch of two nucleotides between sgRNA and dsDNA at the PAM distal region, while
in general, a higher number of mismatches (>2) between sgDNA and dsDNA resulted
in the diminished closed and active Cas9 conformation. At the same time, they also
reported a new intermediate state that formed during R-loop formation. This newly found
intermediate FRET state became more stable with increasing mismatches between sgDNA
and dsDNA. Therefore, the authors hypothesized that the presence of this intermediate
state serves as a regulatory mechanism for Cas9 activation.

6. Conclusions

The field of single-molecule spectroscopy is growing each and every day. This com-
prehensive discussion is just a glimpse of a segment of its use. The use of more than
two dyes for site-specific labeling enables the extraction of minuscule structural informa-
tion; the invention of highly fluorescent dyes helps reduce the noise level; and increasing
camera resolution helps visualize ultrafast processes [9,61–67]. Besides these, combining
smFRET with other techniques and using theoretical models to analyze the data provides
additional information [68–76]. With these upgrades, smFRET serves as one of the most
efficient techniques to understand enzyme conformational dynamics and to use this under-
standing for good.
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