Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing
Abstract
1. Introduction
2. Materials and Methods
| Components | Materials | Elastic Modulus [GPa] | Poisson’s Ratio | Yield Strength [MPa] | Tensile Strength [MPa] | Shear Strength [MPa] |
|---|---|---|---|---|---|---|
| Airfoil and Connecting Rod | Aluminum | 71.7 | 0.3 | 503 | 572 | 331 |
| Outer Skin | Natural Rubber | 5 | 0.45 | - | 23 | 4 |
3. Aerodynamic Analysis
- Continuity Equation (Mass Conservation)
- Momentum Conservation Equationwhere is the effective viscosity and is the turbulent eddy viscosity.
- Turbulent Kinetic Energy (k) Equation
- Specific Dissipation Rate () Equationwhere
- ρ—density
- , —velocity components
- —pressure
- —molecular viscosity
- —turbulent eddy viscosity
- —production of turbulent kinetic energy
- —specific dissipation rate
- —empirical constants
- F1—blending function for SST
3.1. Hinged Wing
3.2. Morphing Wing
3.2.1. Airfoil Model-1 (36 mm Deflection Point)
3.2.2. Airfoil Model-2 (50 mm Deflection Point)
3.2.3. Airfoil Model-3 (72 mm Deflection Point)
3.2.4. Airfoil Model-4 (108 mm Deflection Point)
3.2.5. Airfoil Model-5 (115 mm Deflection Point)
3.2.6. Airfoil Model-6 (120 mm Deflection Point)
3.2.7. Airfoil Model-7 (130 mm Deflection Point)
3.2.8. Airfoil Model-8 (150 mm Deflection Point)
4. Results and Discussion
4.1. Lift and Drag Forces
4.2. Lift to Drag Ratio (L/D)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sicim Demirci, M.S.; Pecora, R.; Chianese, L.; Viscardi, M.; Kaya, M.O. Structural Analysis and Experimental Tests of a Morphing-Flap Scaled Model. Aerospace 2024, 11, 725. [Google Scholar] [CrossRef]
- Rao, H.; Shi, Y.; Bai, J.; Chen, Y.; Yang, T.; Li, J. Aerodynamic Optimization Design of Supersonic Wing Based on Discrete Adjoint. Aerospace 2023, 10, 420. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Zhao, K.; Zhang, R.; Gao, Z.; Shu, B. Airfoil Design Optimization of Blended Wing Body for Various Aerodynamic and Stealth Stations. Aerospace 2024, 11, 586. [Google Scholar] [CrossRef]
- Ameduri, S.; Concilio, A. Morphing wings review: Aims, challenges, and current open issues of a technology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 4112–4130. [Google Scholar] [CrossRef]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Sivanandi, P.; Gupta, C.; Durai, H. A Review on Evolution of Aeroelastic Assisted Wing. Int. J. Aeronaut. Space Sci. 2023, 24, 652–688. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, G. Review on the Structure Design of Morphing Winglets. Aerospace 2024, 11, 1004. [Google Scholar] [CrossRef]
- Yao, Z.; Kan, Z.; Li, D. Gust Response of Spanwise Morphing Wing by Simulation and Wind Tunnel Testing. Aerospace 2023, 10, 328. [Google Scholar] [CrossRef]
- Bashir, M.; Negahban, M.H.; Botez, R.M.; Wong, T. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil. Biomimetics 2024, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.; Nagel, C.; Pecora, R.; Schorsch, O.; Concilio, A.; Dimino, I. Static and Dynamic Performance of a Morphing Trailing Edge Concept with High-Damping Elastomeric Skin. Aerospace 2019, 6, 22. [Google Scholar] [CrossRef]
- Chae, E.J.; Moosavian, A.; Pankonien, A.M.; Inman, D.J. A comparative study of a morphing wing. In Smart Materials, Adaptive Structures and Intelligent Systems; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 58264. [Google Scholar]
- Lyu, Z.; Martins, J.R. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing. J. Aircr. 2015, 52, 1951–1970. [Google Scholar] [CrossRef]
- Ahmad, D.; Parancheerivilakkathil, M.S.; Kumar, A.; Goswami, M.; Ajaj, R.M.; Patra, K.; Jawaid, M.; Volokh, K.; Zweiri, Y. Recent developments of polymer-based skins for morphing wing applications. Polym. Test. 2024, 135, 108463. [Google Scholar] [CrossRef]
- Fang, H.; He, Y.; Li, Y.; Du, J. A Study on the Preparation of a Vulcanizing Mixture and Its Application in Natural Rubber Latex. Polymers 2024, 16, 1256. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.C.; Marimuthu, S.; Rajendran, P.; Natarajan, M.; Murugesan, R. Computational Analysis of Blended Winglet Designs to Reduce the Wake Turbulence on the Airbus A380 Wingtip. Eng 2025, 6, 68. [Google Scholar] [CrossRef]
- Wüest, V.; Jeger, S.; Feroskhan, M.; Ajanic, E.; Bergonti, F.; Floreano, D. Agile perchinge maneuvers in birds and morphing-wing drones. Nat. Commun. 2024, 15, 8330. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gong, A.; Song, C.; Wang, Y. Sliding mode Control of Active Trailing-Edge Flap Based on Adaptive Reaching Law and minimum Parameter Learning of Neural Networks. Energies 2020, 13, 1029. [Google Scholar] [CrossRef]
- Xu, J.; Ji, Z.; Zhang, Y.; Yao, G.; Qian, Y.; Wang, Z. Numerical Simulation of Aerodynamic Characteristics of Trailing Edge Flaps for FFA-W3-241 Wind Turbine Airfoil. Machines 2025, 13, 366. [Google Scholar] [CrossRef]
- Öztürk, A.; Çoban, M.; Koca, F. Experimental and numerical investigation of the control of the flow structure on surface modified airfoils. J. Appl. Fluid Mech. 2023, 16, 2381–2395. [Google Scholar] [CrossRef]
- NACA 0018 Standard Analysis. Available online: http://airfoiltools.com/airfoil/details?airfoil=naca0018-il (accessed on 7 January 2023).















| Airfoil | Deflection Angle | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| Hinged wing | 0.00006 | 0.00117 | 0.00304 | 0.00543 | 0.00304 | 0.00363 | 0.00418 | 0.00477 | 0.00544 | 0.01020 |
| Model-1 (36 mm deflection point) | 0.00141 | 0.00278 | 0.00420 | 0.00562 | 0.00705 | 0.00850 | 0.00992 | 0.01142 | 0.01286 | 0.01440 |
| Model-2 (50 mm deflection point) | 0.00684 | 0.00174 | 0.00264 | 0.00353 | 0.00443 | 0.00528 | 0.00619 | 0.00706 | 0.00791 | 0.00876 |
| Model-3 (72 mm deflection point) | 0.00112 | 0.00235 | 0.00332 | 0.00443 | 0.00552 | 0.00668 | 0.00783 | 0.00952 | 0.01001 | 0.01118 |
| Model-4 (108 mm deflection point) | 0.00135 | 0.00270 | 0.00406 | 0.00544 | 0.00685 | 0.00825 | 0.00968 | 0.01109 | 0.01247 | 0.01394 |
| Model-5 (115 mm deflection point) | 0.00141 | 0.00278 | 0.00420 | 0.00562 | 0.00705 | 0.00850 | 0.00992 | 0.01142 | 0.01286 | 0.01440 |
| Model-6 (120 mm deflection point) | 0.00138 | 0.00281 | 0.00426 | 0.00571 | 0.00639 | 0.00861 | 0.01013 | 0.01161 | 0.01313 | 0.01462 |
| Model-7 (130 mm deflection point) | 0.00143 | 0.00294 | 0.00439 | 0.00588 | 0.00739 | 0.00893 | 0.01042 | 0.01198 | 0.01355 | 0.01512 |
| Model-8 (150 mm deflection point) | 0.00148 | 0.003028 | 0.00455 | 0.006103 | 0.007702 | 0.009266 | 0.011561 | 0.012485 | 0.014098 | 0.015809 |
| Airfoil | Deflection Angle | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| Hinged wing | 0.00076 | 0.00077 | 0.00086 | 0.00109 | 0.00086 | 0.00090 | 0.00095 | 0.00103 | 0.19726 | 0.00212 |
| Model-1 (36 mm deflection point) | 0.00075 | 0.00077 | 0.00078 | 0.00082 | 0.00085 | 0.00089 | 0.00094 | 0.00099 | 0.00105 | 0.00075 |
| Model-2 (50 mm deflection point) | 0.00113 | 0.00078 | 0.00081 | 0.00085 | 0.00091 | 0.00097 | 0.00105 | 0.00114 | 0.00124 | 0.00135 |
| Model-3 (72 mm deflection point) | 0.00076 | 0.00055 | 0.00083 | 0.00090 | 0.00098 | 0.00109 | 0.00121 | 0.00118 | 0.00151 | 0.00169 |
| Model-4 (108 mm deflection point) | 0.00076 | 0.00079 | 0.00087 | 0.00096 | 0.00110 | 0.00125 | 0.00145 | 0.00166 | 0.00190 | 0.00218 |
| Model-5 (115 mm deflection point) | 0.00076 | 0.00080 | 0.00088 | 0.00098 | 0.00112 | 0.00128 | 0.00148 | 0.00171 | 0.00197 | 0.00227 |
| Model-6 (120 mm deflection point) | 0.00075 | 0.00080 | 0.00088 | 0.00099 | 0.00105 | 0.00130 | 0.00151 | 0.00174 | 0.00202 | 0.00232 |
| Model-7 (130 mm deflection point) | 0.00075 | 0.00080 | 0.00088 | 0.00100 | 0.00115 | 0.00134 | 0.00155 | 0.00181 | 0.00210 | 0.00243 |
| Model-8 (150 mm deflection point) | 0.00074 | 0.00079 | 0.00089 | 0.00101 | 0.00117 | 0.00137 | 0.00172 | 0.00189 | 0.00221 | 0.00258 |
| Airfoil | Deflection Angle | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| Hinged wing | 0.07400 | 1.03278 | 3.54999 | 4.99456 | 3.54999 | 4.02777 | 4.37964 | 4.64455 | 4.99423 | 4.79921 |
| Model-1 (36 mm deflection point) | 0.90456 | 1.78491 | 2.65281 | 3.40974 | 4.12644 | 4.69454 | 5.18253 | 5.49585 | 5.82553 | 1.16153 |
| Model-2 (50 mm deflection point) | 6.07433 | 2.23967 | 3.27700 | 4.16702 | 4.88874 | 5.43940 | 5.89825 | 6.18386 | 6.38733 | 6.48642 |
| Model-3 (72 mm deflection point) | 1.47872 | 4.24751 | 3.99635 | 4.93519 | 5.62449 | 6.14396 | 6.47149 | 8.03924 | 6.64542 | 6.60790 |
| Model-4 (108 mm deflection point) | 1.78520 | 3.40693 | 4.68596 | 5.64781 | 6.22201 | 6.58564 | 6.68275 | 6.69506 | 6.55702 | 6.39135 |
| Model-5 (115 mm deflection point) | 1.84773 | 3.48647 | 4.78691 | 5.74364 | 6.30483 | 6.62725 | 6.69654 | 6.67686 | 6.53348 | 6.33644 |
| Model-6 (120 mm deflection point) | 1.83496 | 3.52501 | 4.85674 | 5.78015 | 6.07662 | 6.63408 | 6.71725 | 6.65947 | 6.50254 | 6.30256 |
| Model-7 (130 mm deflection point) | 1.90578 | 3.67894 | 4.98644 | 5.88672 | 6.42229 | 6.67159 | 6.71905 | 6.62333 | 6.45412 | 6.22174 |
| Model-8 (150 mm deflection point) | 1.99526 | 3.83999 | 5.12623 | 6.06879 | 6.56202 | 6.73947 | 6.71427 | 6.59695 | 6.37711 | 6.12176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivanandi, P.; Sanjay, N.; Chidambaram, S.; Varatharaj, S. Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing. Eng 2025, 6, 354. https://doi.org/10.3390/eng6120354
Sivanandi P, Sanjay N, Chidambaram S, Varatharaj S. Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing. Eng. 2025; 6(12):354. https://doi.org/10.3390/eng6120354
Chicago/Turabian StyleSivanandi, Periyasamy, Nathish Sanjay, Senthilkumar Chidambaram, and Suresh Varatharaj. 2025. "Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing" Eng 6, no. 12: 354. https://doi.org/10.3390/eng6120354
APA StyleSivanandi, P., Sanjay, N., Chidambaram, S., & Varatharaj, S. (2025). Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing. Eng, 6(12), 354. https://doi.org/10.3390/eng6120354

