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Abstract: Deteriorating road infrastructure is a global concern, especially in low-income countries
where financial and technological constraints hinder effective monitoring and maintenance. Tra-
ditional methods, like inertial profilers, are expensive and complex, making them unsuitable for
large-scale use. This paper explores the integration of cost-effective, scalable smartphone technologies
for road surface monitoring. Smartphone sensors, such as accelerometers and gyroscopes, combined
with data preprocessing techniques like filtering and reorientation, improve the quality of collected
data. Machine learning algorithms, particularly CNNs, are utilized to classify road anomalies, en-
hancing detection accuracy and system efficiency. The results demonstrate that smartphone-based
systems, paired with advanced data processing and machine learning, significantly reduce the cost
and complexity of traditional road surveys. Future work could focus on improving sensor calibration,
data synchronization, and machine learning models to handle diverse real-world conditions. These
advancements will increase the accuracy and scalability of smartphone-based monitoring systems,
particularly for urban areas requiring real-time data for rapid maintenance.

Keywords: road infrastructure; smartphone sensing; surface monitoring; data processing;
machine learning

1. Introduction

Recently, the integration of smartphone technology for civil infrastructure monitoring
proved to be an innovative way to improve accuracy and timeliness in data collection.
Smartphones provide an easily scalable, low-cost means due to their embedded sensors,
including accelerometers, gyroscopes, and GPS modules for road surface condition as-
sessment [1,2]. These capabilities are particularly useful in citizen-centered monitoring
systems, where large datasets can be crowdsourced for more complete monitoring. Road
infrastructure is among the so-called hard infrastructures underlying modern societies
and economic development by efficiently connecting goods and people. Quality road
infrastructure directly influences the economic performance of a nation’s safety and its
environmental sustainability. Pavement deterioration is a problem common to all parts of
the world and one of the greatest challenges for road maintenance, especially in view of
limited financial resources and advanced technologies in low-income countries [3-5].

1.1. The Role of Pavement Roughness in Infrastructure Performance

Pavement roughness usually remains the critical index with regard to comfort and the
safety assurance of performance. It also has a direct impact on vehicle fuel consumption,
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the time spent by vehicles to travel, and maintenance costs, not to mention other wider
implications at economic and environmental levels. The International Roughness Index
(IRI) was developed in the 1980s during the World Bank-sponsored International Road
Roughness Experiment in Brazil and has since been adopted as the world standard for
the measurement of road surface roughness [6]. It is used over a wide area in Pavement
Management Systems (PMS) for the assessment of functional and structural conditions
during the decision on strategies of maintenance and rehabilitation [7,8].

Including the IRI data in the PMS is important because the roughness progression
with time reflects the deterioration of pavement surfaces. Research has shown that IRI
is not only a road quality indicator but also correlates well with vehicle operating costs
and ride comfort; hence, it is an essential performance indicator [9,10]. Meegoda and Gao
developed the IRI progression model, which estimated the growth of roughness based
on the cumulative traffic load, structural number, and other environmental factors, such
as precipitation and freeze index. The model, therefore, helps to estimate (for transport
agencies) what is remaining of the service life of pavements and to carry out proper
maintenance strategies. However, the collection of data about the IRI, even at present, is a
very laborious and costly process despite its wide applicability [7,8].

Recent developments in pavement roughness prediction models based, for example,
on Long-Term Pavement Performance (LTPP) data provide hope for reducing the data col-
lection burden by giving better and better predictions using climate and traffic as inputs [9].
These models provide transportation agencies with tools to make informed decisions re-
garding appropriate and cost-effective maintenance interventions at both network and
project levels. In addition, there is a simplification of the decision-making by using IRI
as a performance indicator, since agencies can rely on roughness data when other forms
of pavement distress measurements are not available [11]. This also makes IRI a major
input in determining what sections of the roadways need maintenance or rehabilitation,
particularly in instances where resources are limited and detailed distress measurement
may not be feasible.

Correspondingly, IRI continues to play the same important role in summarizing
pavement roughness as an integral part of infrastructure performance monitoring. Its role in
PMS is to optimize resource allocation for road maintenance, supporting the sustainability
of efficient transportation networks.

1.2. Traditional Road Roughness Measurement Techniques

Rod and level surveys, dipsticks, and profilographs are traditional road roughness
measurement methods that have been in use over the past decades. These units usually
depend on direct road profile measurements with manual or semi-automated data collec-
tion. Although they are very accurate, their major faults are that labor costs are high, the
data collection rates slow, and their post-processing time is longer [6]. With the increase
in the demand for better road monitoring, newer methods like lightweight profilers and
high-speed inertial profilers came into being in order to generate data faster with more
reliability without much loss to accuracy [7,12].

The May’s Ride Meter and the Automatic Road Analyzer are examples of machines
that estimate road roughness based on the response of the vehicle to the road. These
are sensitive to the type of vehicle, weight of the vehicle, and the speed at which the
vehicle is going, and are also susceptible to outside conditions. According to the ASTM
E950 standards, roughness-measuring devices can be further classified into four classes.
Class I consists of the precision profiling devices, including laser profilers, while Class II
includes profilographs and high-speed inertial profilers, which are less precise but more
commonly used. Class III devices are those that estimate the IRI by using correlation
equations, while Class IV apply subjective ratings. However, these traditional methods
are usually expensive and computationally cumbersome despite their reliability. They
are thus not suitable for widespread applications, particularly in developing countries.
Nevertheless, a shift towards automated and semi-automatic methods has lessened many
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of the problems. Automated systems reduce human effort and increase consistency, besides
providing data at higher speeds, which is very important when monitoring extended road
networks. However, even completely automated systems, like inertial profilers, are too
expensive in terms of both equipment and maintenance costs and are hardly accessible in
some regions.

Recent efforts have involved the development of more cost-effective systems that
balance accuracy and affordability. For example, Bidgoli et al. (2019) [13] developed a
sensor-based monitoring system equipped with accelerometers and a GPS module able to
measure pavement roughness with enough accuracy at a small fraction of the traditionally
spent costs. This low-cost approach has been particularly helpful in areas of low speed,
where conventional high-speed profilers can hardly be effective. These advanced systems,
with continued improvement in technology, are bound to find greater applications in road
maintenance and management in the near future as a way of ensuring sustainability both
for developed and developing nations [8,13-15].

1.3. The Emergence of Smartphone Sensors for Road Roughness Detection

Indeed, the increased pervasiveness of smartphones that are already equipped with on-
board sensors has provided the means for a solution to detect road roughness at a very low
cost with high scalability as shown in Figure 1. Unlike traditional measurement devices,
the sensors in smartphones provide an easy, cheap way to collect data about the road
surface in real time. These sensors, particularly the accelerometer and GPS, can capture the
dynamics of a vehicle and its location to realize rough road surface detection and transient
events, such as potholes and bumps, with a high degree of accuracy. Recent studies have
shown [16,17] that smartphones are powerful tools in road roughness detection.

Li et al. [18] proposed a new crowdsourcing-based solution using the sensing capa-
bilities provided by smartphones to collect data from a large number of users on the road
surface. In this approach, the vertical acceleration caused by road irregularities is measured
using an inbuilt accelerometer in the smartphone, while the GPS georeferenced each event,
allowing the system to detect the event location and severity of the roughness events. The
system picks up major changes in road quality and transient events (such as potholes)
through the use of RMS values of accelerometers. Later, crowdsourced data are sent to
the cloud-based server for aggregation and processing into comprehensive and real-time
updates of road conditions. Accordingly, road maintenance agencies are able to make an
effective determination of road quality and plan repairs accordingly in good time [19].

Compared to the traditional methods, smartphone-based road roughness detection
presents some advantages. First, it reduces the cost of collecting data. Second, the in-
novative approach could allow continuous data collection since the users can passively
contribute to road surface information during their daily commutes. While this approach
improves the spatial and temporal coverage of roughness data, it also allows real-time
updates that would enable authorities to monitor the state of roads in a more dynamic way
and confront emerging problems [20]. Similarly, smartphone use enables new possibilities
for better flexibility in road monitoring. This combination of an accelerometer and a GPS
automatically georeferences the roughness measurements, facilitating the identification of
problem sections of roads. Another great aspect of crowdsourcing in this technology is that
even if one user navigates around a pothole, another might drive through it, enabling the
system to detect and record the event with accuracy owing to multiple data points [21,22].

In the last decade, there has been an increasing acknowledgement of the capability of
smartphone sensors in road condition monitoring through various research works such
as [16,23,24]. The type of smartphone, the mounting position in the vehicle, the speed
of the vehicle, and the vehicle’s suspension system have all been identified to affect the
accuracy and reliability of the roughness data collected using smartphones, as has been
shown by Douangphachanh and Opara [25,26]. Figure 2 shows the general procedure for
the real-time monitoring of road surface conditions from smartphones, which includes
accelerometers that can capture vibrations caused by various forms of surface irregularities
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and a GPS selecting the position. For general preprocessing, which has to be carried out in
order to have accurate and operational data, noise filtering and the reorientation of sensor
data may be needed. Subfigure (a) represents the initial state where the smartphone’s
accelerometer records vibrations in the X, Y, and Z axes without any adjustments. This
data reflects the raw acceleration values influenced by gravity and surface vibrations.
Subfigure (b) illustrates the accelerometer readings reoriented to align with the vehicle’s
coordinate system, compensating for the effect of gravity during braking. This adjustment
ensures that the X, Y, and Z axes now correspond accurately to the motion and orientation
of the vehicle. Subfigure (c) demonstrates the final preprocessing step, where the GPS is
activated to synchronize the accelerometer data with positional information. The reoriented
accelerometer data (X', Y/, Z') is now ready for further analysis of road surface conditions.
For general preprocessing, which is essential to ensure accurate and reliable data, techniques
such as noise filtering and the reorientation of sensor data are required [17,27]. These
techniques become imperative for refining raw data from captured sensors and for helping
to enhance the overall effectiveness of the monitoring system.

Figure 2 provides a diagrammatic representation of the use of smartphone sensors,
such as accelerometers and GPS, to detect surface irregularities. In the figure, x represents
the raw sensor data captured by the smartphone’s accelerometer, while X is the prepro-
cessed data after applying techniques like filtering and reorientation to enhance accuracy.
X' denotes the final output, which represents the detected road irregularities, such as
potholes or bumps, identified through machine learning models. This process ensures the
accurate and reliable detection of surface anomalies for real-time road monitoring.

GPS Receiver Accelerometer
Data
Collection
Geolocation
Accelerometer
Data wrarvibireT Reorientation
Processing
Data Smoothing
Liner Interpolation
Data

Combination

Assessment
Indexes IRI-proxy
Calculation

Number of
Transient Events

Figure 1. Integration of Global Positioning System (GPS) with smartphone sensors [28]. Reproduced
with permission license number 589261145.



Eng 2024, 5

3401

brakmg
e {
: 3 ¢ 0 O
—X =y =1 —XX —=yY —z,Z

—
T = U
—

gravity

I

o
w«

Acceleration (g)
=) o
— [S) = o s (f N

Acceleration (g)
o

(=4
Vo=,

) Time (seconds)__

L

Turnon GPS

Time (seconds) (b)

U 10 20

1 1
0 Time (seconds)

.(a

g)

Acceleration (

Figure 2. Real-time road surface condition monitoring using smartphones [29].

Despite significant development in the sensors of smartphones, issues such as the
integration of data from accelerometers, gyroscopes, and GPS require further research
for a better improvement in the precision of detection [30-32]. Nevertheless, while many
research studies have used algorithms of machine learning to enhance the classification
of road surface distress, variability in data quality and comprehensive training datasets
still limits it [33-35]. Therefore, the paper originality and contribution lie in this novel
comprehensive review of existing studies regarding the usage of smartphone sensors for the
detection of road surface distresses by nurturing unexploited opportunities and novelties.
This review goes beyond summarizing previous work by offering a critical assessment of
the heterogeneous methodologies that were employed, such as sensor-based approaches
that include accelerometers, gyroscopes, and GPS [36,37]. The strong and weak points
are discussed for each methodology. Major challenges that have not been discussed in
depth in the prior literature concern sensor data noise, accuracy on the diverse types of
environmental conditions, and the complexity of real-time detection over varied road types.

Artificial intelligence (AI) and deep learning have transformed road anomaly detection,
enabling more precise and efficient monitoring solutions. For instance, the YOLOvV3
algorithm, as used in a study by Manalo et al., demonstrated its capability by achieving
a mean average precision (mAP) of 96.16% for pothole detection, even with a limited
dataset of 300 images [38]. This highlights the potential of deep learning in addressing
traditional limitations, such as the need for extensive datasets and computational resources.
Such advancements underscore the value of adopting Al-driven techniques to enhance the
scalability and accuracy of road monitoring systems.

One of the highlights of this review is the discussion of the integration of novel
technologies, such as machine learning algorithms, hybrid models joining supervised
and unsupervised learning, and the possibility of fusing data coming from various sen-
sors and devices, opening new opportunities towards higher detection precision and
system scalability.

2. Methodologies for Road Surface Detection Using Smartphones

Traditionally, the roadmap for monitoring based on smartphones has focused on the
gathering of accelerometer data, which measures the vertical movement of the vehicle. It
relates to road roughness and transient events like potholes or bumps. Recent achievements
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have expanded the scope of smartphone-based road detection methodologies to image
processing techniques and machine learning algorithms. For example, Ref. [39] have
proposed a new methodology for road damage detection and classification through the
use of deep neural networks (DNNs) from smartphone-captured images. In this approach,
the camera in the smartphone takes pictures of the surface of the road, which, through
a convolutional neural network (CNN), can recognize various types of damage: cracks,
potholes, and surface wear. This tool has outgrown the usual sensor-based systems because
of the visual analysis of road conditions, which results in a better accuracy of detection and,
in particular, identification of damage types.

The authors of [39] trained the CNN model using the RAIJ dataset, which is composed
of 9053 road images, to classify road damage into eight categories. The images of the road
in real time are captured using a smartphone attached to the dashboard, while damage
detection is directly carried out on the device or via cloud computing. This method reduces
the processing cost overwhelmingly compared to more laborious traditional methods
of road inspection, yet it allows for real-time data collection on a large scale, similar to
the adopted crowdsourcing methodologies in the work of Li and Dey [18,40]. Image
processing, integrated with sensor-based detection, brought in a more holistic approach to
the monitoring of road surfaces. Whereas accelerometers measure the physical roughness
of the road, images processed by deep learning algorithms give further information on the
types and severity of road damage. This, in turn, has given a combined methodology for
the more comprehensive assessment of road conditions and improved reliability in data
collected through smartphone-based systems [41,42].

Apart from increasing the detection accuracy, crowdsourcing in those methods is the
very factor that assists in scaling up road monitoring. Data obtained from various smart-
phone users can be integrated for continuous updates of real-world road conditions, thereby
developing a dynamic and cost-effective solution for road infrastructure maintenance. Our
view is supported by Singh [17]. Another example of major highway management using
smartphones to detect damage to the roads, presented in the work of [39], can allow for
immediate notification both to road maintenance authorities and drivers in order to im-
prove road safety and decrease maintenance costs. That is, road surface detection with
smartphones has moved from the simple sensor-based measurement of roughness to the
elaboration of sophisticated systems that merge deep learning with image processing [43].

3. Challenges in Data Collection and Preprocessing

There are several fundamental issues with data collection and preprocessing in
smartphone-based road surface detection. A major concern is sensor noise due to several
issues, including but not limited to the mechanical causes of vehicle movement, envi-
ronmental conditions, and even mounting position. It can occlude useful information
from the data and hinder correct road anomaly detection, according to Douangphachanh
and Singh [25,44]. Many research initiatives have, in turn, been carried out by applying
preprocessing techniques like high-pass filtering and the reorientation of sensor data in
order to remove noise and the irrelevant sampling of data points. Of course, there are many
other noise reduction techniques that can be explored.

Another challenge is related to the dependency of sensor readings with respect to the
speed. Sensor response will vary for the same road anomaly as vehicle speed changes. A
pothole itself—a bump—can produce very different vibration patterns depending on the
speed when the impact is there. This can be seen as one sort of inconsistency in data, making
the development of good models for road surface detection challenging. To overcome this
issue, some studies—like that of Seraj [45]—incorporated GPS speed data and combined it
with accelerometer signals. Preprocessing techniques, such as wavelet decomposition and
feature extraction techniques, may also be applied to reduce variability due to speed. This
can be very useful to find meaningful features from sensor data independent of vehicle
speed and can enhance the reliability of the overall anomaly detection systems. Besides
speed, variations in roads, such as asphalt, concrete, or unpaved, and variations in environ-
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mental conditions, such as rain, snow, or other irregular surfaces, result in substantially
differential sensor readings. Different conditions necessitated by such variability demand
advanced data fusion techniques that are able to collaborate with the information obtained
using multiple sensors, including gyroscopes and accelerometers, for consistent results
over heterogeneous conditions, as illustrated in Figure 3 [16].

-
Lt
L

Figure 3. Smartphone distress detection process for road surface [16].

Finally, ensuring that the labeling of data is conducted accurately at the point of
collection remains critical for the successful training of machine learning algorithms capable
of correct classification of road anomalies. Seraj et al. [45] addressed this challenge by using
an audio-visual technique to label data in such a way that the precision of the labeled
datasets increases.

Meanwhile, the real-time processing of data remains one of the critical challenges in
large-scale road monitoring systems. Large volumes of sensor data require advanced algo-
rithms and efficient computing resources to process in real time. Other approaches utilize
machine learning algorithms, such as support vector machines, to classify road anomalies
in real-time into predefined categories using the data provided by these sensors [33,45].
However, due to the lack of rich, real-world training datasets, such machine learning
models remain limited [34]. In summary, sensors on smartphones provide a highly feasible
and easily scalable solution for detecting road surfaces. However, overcoming sensor noise,
dependency related to traveling speeds, variability in data, and real-time processing are
some of the issues associated with data. There is also much room for improvement in the
development of preprocessing techniques, data fusion, and algorithms in machine learning
that assist in overcoming these challenges and improving the accuracy and reliability of the
smartphone-based road monitoring system.

Dynamic Time Warping (DTW) has been proposed as a solution to these limitations,
offering an adaptive approach to anomaly detection. Unlike static thresholds or machine
learning models, DTW effectively manages temporal and spatial variations in sensor
data, making it ideal for resource-constrained devices like smartphones. For example,
Singh et al. [17] demonstrated the utility of DTW in their “Smart Patrolling” system,
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achieving anomaly detection rates of 88.66% for potholes and 88.89% for bumps. This
highlights the potential of combining DTW with crowdsourced data for accurate, real-time
road monitoring.

3.1. Sensor-Based Data Collection Approaches

Advanced sensors provide ground for regarding smartphones as a cost-effective option
for monitoring the road surface. All the important data points needed for the identification
and classification of different road surface anomalies can be recorded using these sensors.
Hardly any data point is missed that may relate to the presence of various types of defects or
damage in the road surface, such as potholes, bumps, cracks, and roughness. The machine
learning models deployed along with these sensors have made the smartphone-based road
monitoring systems scalable and highly effective. The main purpose of an accelerometer
is to measure the vertical instigation resulting from driving on anomalous road surfaces.
It has been found to be one of the most effective methods for detecting road roughness,
such as in the study by Zang et al. [32], where a high relation coefficient of r = 0.893
was recorded with professional-grade instruments for roughness assessment. Moreover,
Douangphachanh and Oneyama [46] reported an accuracy as high as 70-90% in pothole
detection when using accelerometer data. However, accuracy can be affected by mounting
position of the smartphone and/or rider posture.

The gyro enhances the accelerometer by measuring rotational movements that gen-
erally increase the ability to detect road surface conditions. This sensor is effective in
detecting lateral displacements such as ruts. Works, such as that by Allouch [47], have
indeed identified that the use of gyroscope data in addition to accelerometer readings could
raise the accuracy of detection to as much as 98.6%. This advantage in using a gyroscope
may be hindered by the increased computational cost and higher energy consumption that
such usage entails, an issue which may impact on real-time applications. Douangphachanh
and Oneyama [46] emphasized the use of added information from a gyroscope as one
avenue for the enhancement of accuracy in road roughness detection.

The GPS sensor provides valuable geolocation input data that allow to accurately tag
and map road anomalies. This is relevant for generating high-resolution maps of road condi-
tions to be used for planning purposes regarding repair priority. In fact, the usual accuracy
of a GPS is from 5 to 10 m, but it can be interfered with by several factors, including signal
interference and the urban environment. Li and Goldberg [28] stressed the contribution of
GPS to accelerometer data when deciding on the reliable localization of road anomalies.
However, signal interference owing to high-rise buildings is a persisting challenge.

The magnetometer, which gives the orientation to keep the axes of the smartphone
aligned with the movements of the vehicle, improves accuracy in detection, particularly for
roads with complex features like curves or inclines. Dey [40] showed that magnetometers,
together with accelerometer data, could improve the performance of a road condition
classifier to as high as 92% accuracy using machine learning approaches like support
vector machines [48]. According to Mahajan and Dange [49], magnetometers improve
the detection accuracy in difficult terrains like hilly areas. These sensor-based methods
are further strengthened through preprocessing techniques that filter out noise and adjust
the orientation of axes of the smartphone, hence providing a more accurate detection
of road anomalies. Crowdsourcing data from multiple vehicles or users enhance the
scalability of such monitoring systems, hence enabling wide coverage with no major
investments in infrastructure. It enhances efficiency by improving the classification of road
conditions through machine learning algorithms, such as K-means clustering, random
forest, and convolutional neural networks. Each sensor contributes to an overall robust road
surface monitoring system that offers scalability and cost-effectiveness, with the overall
performance summarized in Table 1.
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Sensor Type Functionalit References Pavement Detection Accuracy Level Limitations
P y Defects Methodology y
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Supports . . 98.6% accuracy computational
[47] detection of Combined with with overhead and
accelerometer
potholes accelerometer energy
consumption
Supports - . Impacted by
Measures detection of Statistical High accuracy signal noise and
rotation to [53] road processing, using statistical environmental
Gyroscope improve irregularities DTW methods factors
detection Enh N 4 T
accuracy ances Combined with mprove 161 power
[16] detection of detection consumption and
. accelerometer .
road anomalies accuracy complexity
Combined with Higher
[46] Road roughness acceflj;ﬁ;}eter R?2up to 0.8 computational
estimation power required
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Indirect Assists with magnetic
Used for .
[51] support for accelerometer . - interference,
. orientation
bump detection and GPS power
consumption
Smooth roads, Machine High accuracy in .
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[40] potholes, speed learning combination with maenetic
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hone’ t strips SVM) (92%)
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Potholes, road Combined with accuracy with interference,
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bumps P . . accelerometer particularly in
or orientation . .
combination urban
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Affected by
Black-box 71% sensitivity, lighting; misses
(541 Potholes camera system 88% precision bright or flat
potholes

3.2. Data Preprocessing Technigues

Data preprocessing is an important phase for making the data reliable and valid. A few
filtering and transformation techniques are applied to the sensor data in order to remove
noise and enhance the quality of the signals. The common techniques generally used in
preprocessing sensor data are High-Pass Filtering, Low-Pass Filtering, Simple Moving
Average (SMA), Reorientation, and Dynamic Time Warping (DTW), each of which has been
found to be useful in enhancing certain aspects of monitoring road condition. Generally,
high-pass filtering is used to filter out the low-frequency noise in the signals that may have
been generated because of vehicle maneuvers, engine vibration, etc., or that may be due
to external sources like wind. Figure 4 illustrates an example of a high-pass filter applied
to sensor data, showing its effectiveness in reducing low-frequency noise; refs. [17,55]
demonstrated in their 2017 work that there was an improvement of about 10% in the
accuracy of pothole detection when high-pass filters were applied to accelerometer data.
In a similar way, Qiqin Yu et al. [56] used high-pass filtering to exclude the low-frequency
dynamics of the vehicle and improved road anomaly detection.
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Figure 4. Example of a high-pass filter applied to sensor [55].

On the other hand, low-pass filtering removes the high-frequency noise while preserv-
ing the low-frequency signals useful for road surface anomalies. In fact, studies like that of
Cabral et al. and Ronghua Du et al. [57,58] proved that low-pass filters eliminate irrelevant
noises due to engine vibrations and improve the detection of low-frequency anomalies
such as bumps. Qiqin Yu et al. [56] further emphasized its use in refining the accuracy of
pavement roughness estimation.

Another smoothing technique, normally employed to the data to reduce its short-run
fluctuation, is the Simple Moving Average (SMA). In this technique, successive equal
periods’ data are averaged together to bring out the underlying trend that may be hidden in
transient noise. For instance, Shtayat et al. [59] discussed how the Simple Moving Average
makes accelerometer data more consistent and hence helps to achieve higher accuracy for
the road anomaly detection task, although there would be a trade-off between the extent of
smoothing and the sharpness retention of significant features.

The reorientation of the smartphone when it does not align with the axes of the vehicle
is crucial. This process adjusts the sensor data to align with the vehicle’s coordinate system,
ensuring accurate detection of road anomalies. This technique can transfer the sensor data
into the vehicle coordinate system in a proper way for accurate road anomalies detection.
According to Singh et al. and Achariyaviriya and Horanont [44,60], reorientation reduces
directional errors and increases detectability, which may be affected if the position of the
smartphone changes while collecting the data.

Finally, DTW is used for the similarity measurement of time-dependent sequences.
Thus, DTW can be useful in finding out the pattern in sensor data. Zengwei Zheng et al. [61]
have been able to successfully use DTW in conjunction with machine learning models
for the detection and classification of the road anomalies and attained notably improved
accuracy. Each of the above techniques plays a significant role in the preprocessing of
raw sensor data, making it useful in many aspects and shedding influence on the ways
in which smartphone-based road surface monitoring systems are highly accurate and
efficient [62,63]. In Table 2, the key data preprocessing techniques that majorly find their
place in smartphone-based road monitoring systems and their functionalities, advantages,
and possible limitations are summarized.



Eng 2024, 5 3408
Table 2. Summary of data preprocessing techniques.
. . . s Effect on s
Technique Functionality References Application Sensor Type Accuracy Limitations
o .
[17] Enhances Pothole Accelerometer +10% for Pothole May discard useful
detection detection low-frequency data
Filters out engine o May lose some
a +10% for anomaly useful
[64] vibrations and Accelerometer .
. . detection low-frequency
suspension noise signals
. Removes
High-Pass
Fi%ter'mg low-frequency Reduces noise from
noise o Improves .
vibration data for . Could discard some
[59] Accelerometer detection . .
pavement important signals
monitoring accuracy
Enhances anomaly . .
. Improves May miss certain
detection by
[56] . ! Accelerometer anomaly low-frequency
removing vehicle . )
. detection anomalies
dynamics
3 0,
Re'duc?s noise, +8% for pothole Can blur sudden
[17] retains significant Accelerometer and bump anomalies
Simple Moving ﬂsmto"tt},‘s Outt changes detection
uctuations to
Average (SMA) reduce noise Makes data Improves data May blur minor
5 consistent for ccelerometer . etails an
[59] istent Accel t p details and
. consistency .
analysis anomalies
Reduces directional Accelerometer, Improves sensor Requ.1res V?hlde
[17] orientation
errors Gyroscope accuracy .
correction
Accelerometer, Can be complex to
Ensures accurate Improves sensor . .
[60] data collection Magnetometer, accurac implement in
Aligns sensor GPS Y real time
Reorientation data with vehicle Requi
axes Consistent sensor Accelerometer, Improves sensor equlr?s
[57] . computational
data collection Gyroscope accuracy complexity
. Improves . .
[16] C0n51sten.t data Accelerometer detection Requires correction
collection algorithms
accuracy
; Can discard
Reduces engine +7% for anomal important
[57] vibrations and Accelerometer ? . Y | mp
. . detection high-frequency
irrelevant signals b
details
Enhances detection +7% for bum Can lose
[16] of low-frequency Accelerometer doe tection P high-frequency
Low-Pass Removes anomalies details
o high-frequenc - .
Filterin, & d Y
8 noise . F1l’.cers engine +7% for road May discard
vibrations and other .
[58] high-frequenc Accelerometer anomaly important
& 4 Y detection high-frequency data
noise
Enhances pavement Improves Could mask some
[56] roughness Accelerometer roughness index high-frequency
estimation accuracy anomalies
Detects road +12% for anomaly Computationally
[17] anomalies Accelerometer detection intensive in
Dynamic Time timce?srzﬁzsr?ata (potholes, bumps) real-time use
Warping (DTW) ;
ping to detect patterns Dete.cts road Accelerometer, +12% for anomaly Co.mputfitlonally
[61] anomalies such as . intensive for
Gyroscope detection

potholes, bumps

real-time use

Figure 5 shows the application of a Kalman filter, which is widely used to improve

the accuracy of road roughness measurements by smoothing out noise and predicting the
actual road profile based on sensor data.
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Figure 5. Application of a Kalman filter to improve sensor data accuracy.

Meanwhile, machine learning models applied for pavement and road surface condition
monitoring make use of different technologies and preprocessing techniques. Decision trees
and SVMs perform well in the classification of defects within the road surface. In particular,
SVMs behave very well during winter conditions, while hybrid models are able to have
better accuracy with transfer learning. Especially with the integration of transfer learning,
CNN s turn out to be quite accurate in the detection and handling of surface damages
and real-time road situations. RNNs, especially those with an LSTM-based nature, serve
best for the analysis of temporal series data, such as pavement performance predictions
or crowdsourced anomaly detection. A further comparison of the models is presented in
Table 3, pointing out their accuracy, showing the adopted preprocessing methods used to
enhance images and videos, and their results in different road and pavement conditions.

Table 3. Performance comparison of machine learning models for road surface detection.

Machine Learning

Model References Functionality Accuracy (%) Robustness Limitations
Classifying Overfitting,
[65] mid-range road 75 Medium mitigated with
quality pruning

Decision Trees

. Misclassification due
Detecting pavement

[66] . 90 (after pruning) Medium to complex
surface deformations backgrounds
Classifying Reliance on
Support Vector hazardous road 100 (training), <4 .
. [67] i I High external data
Machines (SVMs) conditions (snow, (generalization) .
ice, wet) (weather stations)
Struggles with
Urban land-use . noisy data in
[68] classification o1 High heterogeneous
urban areas
Longer training
[69] Asphalt pavement 95 Very High times, dependent on

distress classification . -
image quality
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Machine Learning

. . o o
Model References Functionality Accuracy (%) Robustness Limitations
Road sign detection High computational
[70] and surface damage 89 Very High cost, requires
. classification large datasets
Convolutional Neural — -
Networks (CNNs) Road boundary and Difficulty with

low-height curbs

[71] surface de'lmage 98.7 (sensitivity) Very High and ocdlusions
detection .
by vehicles
Detecting cracks and Difficulty with small
[72] potholes in tramway 98.7 (sensitivity) Very High or large objects and
environments scale variations

Pothole detection
[73] and dimension 96.3 (mAP) Very High
estimation

Reliance on clear
lane markings

L Dependent on
[74] PSE; (ﬁfsflescﬁg:één 9 Very High well-constructed
image datasets

Real-time road High computational
[75] . . .. 91 Very High demand, delays in
situation recognition . .
real-time processing

Detecting

road surface Noise and
[76] anomalies from N/A High inconsistencies in
crowdsourced data
Recurrent Neural crowdsourced data
Networks (RNNs) . High data variability,
Predicting pavement . .
R? of 0.81 for PCI, . requires extensive
[77] performance 0.79 for IRI Very High computational
(PCI and IRI) ' relzources

3.3. Influence of Vehicle Dynamics

Prevalent vehicle dynamics, like speed, characteristics of the suspension system, and
even aerodynamics, are very important in the topic of smartphone-based monitoring of
road surfaces. These aspects sometimes may affect the data collected from sensors mounted
on a smartphone and hence reduce the precision of detecting the road conditions. The
transient aerodynamic effects would affect how accurately the smartphone sensors are
able to capture the road anomalies. For example, the interaction of aerodynamics and
vehicle suspension can generate changes in the vertical loading conditions of the vehicle
axles, impacting accelerometer data utilized in roughness detection. Besides this, the
suspension system acts to dampen the road irregularities to the dynamics of the vehicle.
At the same time, vehicles with stiffer suspensions can easily transmit more vibration to
the accelerometers of the smartphone, making them more sensitive to road roughness. On
the other hand, those with softer suspensions will more likely dampen such vibrations,
leading to underestimation in the severities of the road anomalies. The dynamic interaction
between the road surface, the vehicle’s suspension system, and the smartphone sensors
causes variability in the data collected [78].

Moreover, the speed of travel influences directly the amplitude and frequency of
oscillations sensed by in-car smartphone sensors. Indeed, at greater speeds, the vehicle
may turn out to react differently to road irregularities—a fact that amplifies the effect of
transient aerodynamic forces. Indeed, Aschwanden et al. [79] arrived at the conclusion that
these transient forces might well result in greater changes in the downforce on the axles,
both in the front and in the back, ultimately impacting the general handling of the vehicle.
It becomes tough to standardize the roughness measurement across different vehicle speeds
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and driving conditions with this variability. In other words, the important role that may
affect the accuracy of a smartphone-based road surface monitoring system involves vehicle
dynamics: more specifically, the aerodynamics of motion, the characteristics of suspension,
and speed [80]. Improvement in the reliability of these systems could be achieved by
accounting for such variables through advanced data preprocessing techniques and vehicle-
specific calibrations to make sure that the road roughness data indeed represents the actual
condition of the road surface under different dynamic conditions.

4. Machine Learning for Road Surface Classification

In the ‘Machine Learning for Road Surface Classification” section, the images used
for crack classification were collected using smartphone cameras mounted on vehicle
dashboards, ensuring consistent height and angle. Images were captured at a resolution
of 1080p in JPEG format, with frame rates of 30 fps for dynamic collection during vehicle
motion. The dataset includes various types of cracks (e.g., transverse, longitudinal, and
alligator cracking) and was collected under different lighting and weather conditions to
enhance model robustness. Preprocessing steps, including noise filtering and cropping,
were applied to ensure image quality and relevance. These images were georeferenced
using GPS to correlate crack types with specific locations, providing additional metadata
for analysis.

After preprocessing, feature extraction and classification are critical steps in identifying
specific types of road surface distress. Feature extraction identifies patterns within the sen-
sor data that correspond to distinct anomalies on the road, as demonstrated by [34,81-83].
For example, the amplitude of the accelerometer may give information about the depth of a
pothole, while frequency can be indicative of mostly small and numerous cracks. Figure 6
demonstrates the impact of vehicle speed on the accuracy of roughness measurements,
highlighting how sensor data interpretation must account for speed variations to ensure the
accurate classification of anomalies [16]. Machine learning algorithms have received con-
siderable interest in the classification of road surface features, particularly for the detection
of anomalies in the form of potholes, cracks, and smooth surfaces [16,84,85].

Figure 6 also illustrates the impact of vehicle speed on the accuracy of roughness
measurements. The three lines represent different conditions under which roughness data
were collected:

o  The first line (solid) indicates measurements taken at low speeds (<30 km/h), where
the accuracy is highest due to reduced vehicle dynamics and vibration effects.

e  The second line (dashed) shows measurements at medium speeds (30-60 km/h),
where moderate accuracy is observed.

e  The third line (dotted) represents measurements at high speeds (>60 km/h), where
accuracy decreases significantly due to increased noise and dynamic effects on
the vehicle.

This graph highlights the importance of controlling vehicle speed during data collec-
tion to improve the reliability of roughness measurements.

Supervised learning methods include SVMs and decision trees that are greatly used
in model training using labeled datasets to classify fresh data efficiently [28,51,85]. For
example, Bhoraskar et al. [51] demonstrated that coupled with GPS, accelerometer data
could detect potholes with a very high level of accuracy using sensors from smartphones.
Similarly, Li and Goldberg [28] found that there was a marked efficiency in the way SVMs
could distinguish these variances in distress on the road surface when accelerometer
data and GPS were combined together. The results showed that, after being trained, the
performance of SVMs in classifying road surface anomalies for potholes and cracks was
quite good.
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Figure 6. Impact of vehicle speed on roughness measurement accuracy.

Jalili et al. [86] addressed the limitations of SVMs and other linear models by utilizing
Artificial Neural Networks (ANNs) to model non-linear relationships between vertical
acceleration data and the International Roughness Index (IRI). Their approach incorporated
crowdsourced smartphone data, using Root Mean Square of Acceleration (RMSA) and
vehicle speed as inputs. The study reported a Mean Squared Error (MSE) of 0.56 and a
Pearson correlation of 0.91, significantly outperforming traditional regression and SVM-
based models. This work underscores the potential of combining ANN with crowdsourced
data to enhance scalability and accuracy in road roughness monitoring.

Nguyen et al. [87] extended the application of Artificial Neural Networks (ANN)
to estimate onboard bus ride comfort by utilizing multi-dimensional data. Their model
included 20 input variables such as vehicle parameters (speed, acceleration, and jerk) and
passenger-related attributes (posture, location, and anthropometric data). The ANN model
achieved a high correlation coefficient (R = 0.83) and a low mean squared error (MSE = 0.03),
effectively capturing non-linear interactions between objective and subjective factors. These
results highlight ANN’s adaptability to dynamic, real-world transportation challenges,
further reinforcing its utility in transportation research.

Other decision tree-based works for the classification of road surface defects were
proposed by Viner et al. and Zhang et al. [34,85]. The key feature of their decision trees was
simplicity and real-time performance, and these performed quite well in distinguishing
between smooth and distressed surfaces with large datasets in a very minimal processing
time. Other authors compared SVMs with random forests. Sabir et al. [23] remark that
SVMs yielded better performances concerning the identification of surface anomalies, while
random forests are more versatile if dealing with noisy or unstructured data.

The efficiency of both approaches, using SVM and decision trees, was also confirmed
by Fernandez et al. (2016) [88]. They say that in the case of small cracks, SVM performance
was relatively good, though the decision trees showed the best results in identifying big
road defects like potholes. These collectively point to the massive potential of integrating
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machine learning models with data from smartphone sensors in the development of
scalable, real-time road surface distress monitoring and detection solutions.

Figure 7 shows the structure of the decision tree model used in classifying each crack
in the pavements. Based on the six features x1 through x6, the model identifies different
types of cracks—longitudinal, transverse, and block cracks—and eliminates noise. The
decision tree represents all possible decisions for each feature, providing a structured guide
for the classification process. While descending in the tree, at every branch, this splits the
data by these features until it reaches the terminal node, where it classifies the type of crack
or noise. Thereby, the structure ensures effective and correct classification by narrowing
down the possible outcomes systematically according to the features extracted from the
crack images [89].

x3< 10390AN > = 10396

xd < L0 AR > = 19.00

xd < 1905 AT 307 1 2

x AITARRG = 1641 ) 1

a2 < 109.5RN > = 1085

xl < 16911 > = 1691 2 i ol < |5MMAN = 152

Figure 7. Decision tree model for classifying road surface distress [90].

In contrast with these models, unsupervised learning approaches, like K-means clus-
tering, do not require labeled data in any form. Such methods are then applied for the
classification of similar patterns with regard to the data, which can help in recognizing new
types of road surface issues or when labeled data are not that abundant within certain envi-
ronments [32,33,91]. For instance, Ferndndez, A., et al. (2016) [88], by using unsupervised
learning, were able to classify sensor data into various sets of groupings, which enabled the
detection of unknown road wear patterns. Similarly, Vlahogianni and Barmpounakis (2017)
showed that unsupervised learning may be useful in detecting newly emerging conditions
of the road surface that cannot be included in any of the classes of a classification system.
Recently, there have been hybrid approaches that combine both unsupervised and super-
vised learning with tremendous potential for improving the accuracy and robustness of the
detection of road surface distress; these techniques leverage the complementary strengths
of both approaches in coming up with a more complete anomaly detection methodology.
First, unsupervised learning is applied to find patterns that are hidden in the data from
sensors or to cluster and find new types of road surface anomalies that would go otherwise
unrecognized. This will reduce the dimensions of the data and group similar patterns,
hence the ability to apply more accurate supervised learning classification to the clusters.

Several works have demonstrated that this kind of hybrid mechanism outperforms the
traditional completely supervised models. For example, Sattar et al. (2018) [16] identified
that their hybrid model, which used K-means clustering followed by decision trees, en-
hanced the accuracy by about 15% in comparison to decision tree classifiers alone. Similarly,
Ref. [34] also reported that the K-means clustering as a preprocessing method reduced the
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noise and irrelevant data before enabling the decision tree to focus on the most important
features, increasing pothole and crack detection accuracy by 12%. Another important aspect
of using unsupervised clustering in the current approach is that it provides the possibility
of discovering new road surface distress types that have previously never been labeled in
training data, which increases the adaptability power of a model.

The use of hybrid models was also pointed out by lakovidis, D. K., et al. (2021) [84]
as reaching the foreground with substantial efficiency in real-world applications when
labeled datasets were not available or incomplete. The hybrid models cluster unlabeled
data in such a way that they identify the anomalies, feeding this to the supervised models
for classification with greater precision. This helps to improve the detection of both
common and rare types of road surface distress. Viner, H., et al. (2006) [85] emphasized
that the combination of the unsupervised learning discovery power with the accuracy
of classifications by means of supervised learning presents a more robust framework for
large-scale monitoring systems.

Machine learning methods are only as good as the amount and quality of the data that
they are being trained on. Indeed, it has been observed in a variety of works that larger,
more diverse data results in more accurate models with great generalization toward new en-
vironments [33,81,92]. However, this extensive training data used in real-world applications
is resource-intensive to collect and label and hence has a limitation in nature [23,34,85,93].

While the methodologies concerned with the detection of road surfaces based on
mobile phones are promising, there is yet a constellation of challenges. Each method
has its strong and weak points; in relation to this, the methodology chosen for any road
maintenance project often depends on what is required: accuracy, scalability, processing
in real-time, etc. [46,94,95]. Table 4 summarizes various machine learning techniques and
their effectiveness in detecting different types of road surface distress. Future studies
should be directed towards enhancing methods for data preprocessing, developing more
sophisticated feature extraction methods, and improving the adaptability of machine
learning models for various road conditions [31,33,84,88]. As detailed in Table 4, combining
multiple methodologies could further capitalize on their respective strengths, offering more
reliable and cost-effective solutions [85,91].

Added to this is the issue of the different sampling rates introduced by the different
models of smartphones, hence the need to standardize data [28,50]. Another issue is
the variability in hardware across smartphones: different models of smartphones have
different types and qualities of fitted sensors; this heterogeneity will show variations in the
data collected. It is this variability that calls for the development of algorithms to either
normalize or compensate for these differences in a manner that would allow consistent
road quality assessments from different devices [17,81].

Table 4. Machine learning techniques for road surface distress detection.

Leax;:;“;; del References  Pavement Defects Technology Accuracy (%) Preprocessing Outcomes
High-pass filtering, Effective
Surface defects Accelerometer, linear interpolation, classification of
[65] (potholes, cracks, 75 .
subsidence) gyroscope power spectrum mid-range road
analysis quality (Class 3)
Decision Trees Gaussian filtering,
Pavement surface Canny edge Effective for
[66] deformations UAV 90 (after pruning) detection, detecting pavement
p & morphological deformations from

(cracks, potholes)

operations (opening
and closing)

UAYV images
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Table 4. Cont.

Machine

Learning Model References  Pavement Defects Technology Accuracy (%) Preprocessing Outcomes
Accurate
MARWIS (mobile o classification of
. .. Standardization of
Winter roads (snow, road weather 100 (training), <4 hazardous road
[67] . . .o weather and road e
ice, wet) sensors), vehicle (generalization) surface conditions,
surface features . .
sensors improving
traffic safety
Support Vector (bL}fll;k—)zn Slf;lenigasn d Satellite imager Geometric Good classification
Machines (SVMs) [68] P, ba ! gery 91 corrections, data of built-up areas
vegetation, (Landsat 8) dardizati d .
water bodies) standardization and vegetation
Asphalt pavement . Transfer learning Superior
distresses (block Prer;zl;i\l:)iisDL for feature classification
[69] cracking, fatigue (AlexNet 95 extraction, followed performance with
cracking, potholes, ResNetSOl) by SVM hybrid models,
rutting) classification Fl1-score up to 0.96
Road sign detection Augmentation, High accuracy for
[70] surface damage ’ Video-based data, 89 normalization, road sign and
detection & UAV anchor box surface damage
calculation detects
Cracks, road
boundaries, curbs, Ground filtering, High accuracy and
[71] surface damage in LiDAR, MMS 98.7 (sensitivity) slope and height real-time detection
urban difference detection  of road boundaries
environments
Cracks, potholes, Augmeptat} o High accuracy and
surface damage in normalization, real-time detection
[72] LiDAR 98.7 (sensitivity) inverse perspective
urban roads crossed . of pavement
by tramway lines mapping, Kalman damage
filtering
Convolutional Cost-effective
Neural Networks Pothole detection Bullz;;::;lde Data augmentation regi—tt;rcrtlieo}r)logﬂgle
(CNNs) and dimension @ (flipping, rotation, . .
[73] S Lane-Keeping 96.3 (mAP) dimension
estimation on . zoom, . . .
aved roads Assistance brightness, etc.) estimation using
P System & T built-in vehicle
technologies
Effective and
Built-in vehicle Background efficient detection
[74] Potholes in cameras, 9% removal, noise of potholes in
bituminous roads pre-trained reduction, feature bituminous roads
AlexNet CNN extraction using transfer
learning
Effective at
. Uljban roa.d. . Data augmentation, real-time road
situations (driving Video . B
. . frame extraction, situation
[75] reverse, pedestrian surveillance 91 . e - .
. . resizing, classification with
detection, object cameras o .
falling) normalization high accuracy and
precision
Smartphone Wavelet scattering Effec.tlve for
Urban roads ) detecting road
sensors (GPS, transformation, X
[76] (potholes, cracks, N/A . surface anomalies
accelerometer, spatial
speed breakers) ) . . from crowdsourced
orientation) transformation . )
Recurrent Neural trajectories
Networks (RNNs) Superior pavement
Asphalt pavement Data filtering, performance
7] sefﬁonsp(PCI IRI LTPP d R2 of 0.81 for PCI, normalization, prediction using
ro diction,) 0.79 for IRI one-hot encoding, LSTM with
p feature extraction Attention

mechanism
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5. Data Fusion and Crowdsourcing in Road Surface Monitoring

Recently, crowdsourcing-based approaches have emerged as one of the major paradigms
in road surface monitoring, leveraging data from thousands of smartphone users to effectively
build real-time maps of road conditions on a wide area. Since these systems collect data
from multiple users, scalability is vastly improved, allowing for an economical solution to
be derived regarding large-scale road infrastructure monitoring. However, in turn, with the
increasing variety of smartphone models, variability in sensor quality, driving habits, vehicle
kinds, and road conditions, serious challenges to heterogeneity are posed to the incorporated
data. Such conditions were emphasized in the work of Douangphachanh and Oneyama 2014b;
Martinez-Ros et al. (2022) [25,95].

Recent research to meet these challenges has concentrated on probabilistic data ag-
gregation and sensor fusion approaches that come from multiple sources, merging them
as such for improved accuracy in the outlier detection. A probabilistic crowdsourcing
technique for aggregating road surface anomalies through filtering out the false positives
or negatives can be used. This enhances reliability because different smartphones and
vehicles might vary greatly in their sensor quality. The system will rely on a spatiotemporal
clustering of detected anomalies to integrate both the spatial and temporal information of
reporting events for effective long-term road condition monitoring.

Indeed, data fusion can help to overcome the limitations of standalone smartphone
sensors. Using accelerometer data together with inputs from other sensors, such as GPS,
gyroscopes, or even in-vehicle cameras, generally leads to better detection accuracy [96].
The effectiveness of multi-sensor fusion of accelerometer data with video feeds to help
reduce the noise and variability often associated with pure accelerometer signals has
already been investigated. This offers enhanced detection, regardless of changes brought
about by vehicle speeds or mounting positions of the smartphone. Equally worth noting in
Sattar et al. (2022) and Xin et al. (2023) [97,98] is that advanced machine learning models
create avenues for the enhancement of anomaly detection. Sattar et al. (2022) employed a
DPGMM for the classification of road surface anomalies from hyperspectral images into
minor and severe classes. Its nonparametric nature adapts this model to the variability of
data and allows better discrimination between minor and severe anomalies. Similarly, it
was proposed by Xin et al. that the LSTM network will increase the classification accuracy
since it considers the time-dependent nature of road surface data.

Besides data fusion and machine learning, crowdsourcing is used to perform large-
scale, real-time road condition monitoring. Data aggregation from a large number of users
allows dynamic map generation where road conditions are continuously updated in real
time. This dynamic mapping system is hugely valuable for any PMS whereby authorities
can capture real-time insights into road conditions that enable them to prioritize repairs
and optimize maintenance schedules accordingly. The advantage of such a system is that it
reduces dependence on expensive traditional road monitoring techniques; furthermore, it
is flexible and scalable for large-scale road infrastructural maintenance.

While crowdsourcing brings its own set of challenges about data consistency and
variability, the development of probabilistic data aggregation, spatiotemporal clustering,
and sensor fusion techniques has markedly enhanced the accuracy and reliability of such
systems. With the further development of machine learning and data fusion technologies,
crowdsourced road surface monitoring has emerged as a consistently powerful tool for
cities and municipalities to manage the roads efficiently and economically.

Figure 8 illustrates a crowdsourced large-scale road surface monitoring architecture. In
this model, several smartphone users collect sensor readings, such as acceleration, angular
velocity, and GPS readings while driving. The data are sent to a centralized database where
it is aggregated and analyzed over various locations to monitor road conditions. This
architecture enables the continuous real-time monitoring of road surfaces at a much lower
cost by harnessing user contributions to build an extensive map of road quality in large
geographic areas.
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Figure 8. Crowdsourced data collection architecture for road surface monitoring [99]. Reproduced
with permission license number 5892630995208.

Figure 9 compares different strategies of data aggregation in crowdsourced road
monitoring. Different methods are assessed to consolidate sensor data from multiple
users with respect to achieving accurate and reliable assessments of road conditions. It
shows the strengths and weaknesses of various methods, such as weighted averaging,
voting mechanisms, and advanced machine learning techniques. These strategies aim to
address issues related to data heterogeneity, such as variability in smartphone sensors,
driving behavior, and environmental factors, to improve accuracy in large-scale road
conditions [1,51,93].
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Figure 9. Comparison of data aggregation strategies in crowdsourced road monitoring.
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Integration of
IMUs and GPS

6. Recent Technological Advancements in Road Surface Monitoring

Recent technological developments have gone a long way in improving the monitoring
of the road surface, especially with regard to the integration of smartphone-based systems
and sensor technologies. Among the fastest-developing solutions, one may distinguish
Inertial Measurement Units, whose integration with GPS data allows the performance of
road roughness assessment in a more accurate and reliable way. These systems have really
prevailed in urban areas, where many roadways make it difficult for the more traditional
monitoring systems to work. By adding multi-axis, vehicle motion-measuring IMUs
and GPS for accurate geolocation, the accuracy of road condition assessments increased
significantly [33,85].

Modern road surface monitoring systems should be able to integrate multiple sensors,
such as accelerometers, gyroscopes, and GPS receivers. Figure 10 presents a typical sys-
tem configuration, combining in-vehicle and smartphone sensors for the identification of
road anomalies. These sensors collect data on vehicle motion and position, which again
are synchronized and time-tagged by GPS data. The resulting data can be used to find
anomalies in roads with high accuracy in real time. Setting up multiple IMUs and GPS
receivers within multiple vehicles and smart devices facilitates the collection of data at
a larger scale, hence offering a much more robust monitoring structure for more types
of driving conditions. The result further enhances the ability of the system to perform
real-time assessments of the state of the road condition [100,101].

Deep learning has also contributed much to the improvement in the accuracy and
efficiency of smartphone-based monitoring. For example, using IRI-Net, a type of convolu-
tional neural network, to estimate the International Roughness Index leads to extremely
good results in measuring road roughness from real-world applications. These systems help
in the real-time gathering of data from several vehicles, thus offering the ability to supply
the continuous monitoring of huge-scale road surfaces [102]. With all these developments,
the road surface monitoring philosophy should drift more into smart city applications that
will deliver real-time data from vehicles, smartphones, and infrastructure to enhance urban
mobility and maintenance planning [63,103].

Synchronization Deep Learning Smart City
with GPS Data Application Integration

& &~ b

&) %

Data Collection Real-time Enhanced
by Sensors Anomaly Monitoring
Detection Capabilities

Figure 10. Integration of IMUs and GPS for enhanced road surface monitoring.

Zhao et al. [104] introduced a robust two-stage machine learning model for road
anomaly detection and classification, combining random forest for anomaly detection
and Gaussian Process Classifiers for detailed classification. A notable aspect of their
methodology is the transformation of time-series data into geospatial series, enabling
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speed-independent anomaly detection. This approach achieved an accuracy of 87%, demon-
strating its potential for real-world applications and dynamic conditions.

Furthermore, the elaboration of real-time data processing techniques has enabled
the evaluation of road conditions in real time, crucial for applications like autonomous
driving or real-time traffic management. These improvements signify a real leap in system
usability and performance with regard to the road surface monitoring system based on
smartphones [33,93].

6.1. Advancements and Future Opportunities in Smartphone-Based Road Surface Monitoring

The very fast evolution of road surface monitoring based on smartphones opens
new perspectives for further technological development: hybrid sensor networks will
merge data coming from smartphones with other sources, such as satellites and drones. In
this way, integration could enable more complete assessments of the conditions of roads
and closer-to-reality estimates of infrastructure, as Zhang et al. (2022) and Singh et al.
(2017) [17,34] present. In this regard, the combination of smartphone sensor data with
high-resolution satellite imagery and drone-based remote sensing can ensure greater spatial
coverage and detail to enhance the detection of road anomalies. This is in respect to the
work of Ranyal et al. (2022) [105].

Equally gaining increased attention is the enhancement of machine learning models.
Conventional models are normally incapable of handling the inherent noise and variability
in data from diverse environments and a plethora of vehicle types. Recent developments
have checked on ensemble learning methods, which incorporate various enhanced models
for increased accuracy and robustness in making their predictions. These ensemble methods
apply a variety of algorithms that can process complex sensor data for more reliable
assessments of the road [23,84,106].

Except for those conventional machine learning-based techniques, threshold-based
methods are still in wide usage due to computational efficiency. These methods rely on the
fundamentals of data analysis usually using a smartphone accelerometer, which provides
readings for vertical accelerations that indicate road anomalies. To overcome the limitations
of static thresholding, adaptive thresholding methods are alternatives. Looking ahead,
hybrid techniques that combine the ease of threshold-based methods with the accuracy
of machine learning could offer an effective and efficient solution toward the real-time
detection of road conditions.

Integrating such a smartphone-based monitoring system into smart city infrastructure
is another area that opens up possibilities for better urban mobility and road maintenance.
Dynamic maps created with updates of the latest road condition data prove to be quite
potent for municipalities in streamlining efforts pertaining to maintenance and improving
resources [27,34,106]. Further technological advances in smartphones may offer new
sensors, such as thermal imaging and LiDAR, in smartphone-based systems and give
even more details regarding the condition of roads. Such sensors would be applicable for
detecting not only superficial but also sub-surface defects in the roads to have a holistic
understanding of the quality of roads [105,107].

While there are still many challenges, particularly related to scaling these systems
and maintaining consistent data quality across varied environments, increasingly novel
approaches to data processing and the integration of diverse sensor types have helped
overcome many issues. Coupled with advanced machine learning algorithms and hybrid
techniques, crowdsourced data contributes to the increasing accuracy, scalability, and
feasibility for smartphone-based road monitoring systems. With continued research, such
systems will play an important role in the maintenance of road infrastructure and urban
developments through the provision of cost-effective and scalable solutions for the large-
scale monitoring of road conditions [108].
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6.2. Data Fusion, Signal Processing and Machine Learning Techniques

Of course, data fusion has been an important technique for advancing the systems
associated with road surface monitoring. It can, for example, reduce noise and amplify the
quality of the signal by fusing data from multiple sensors like IMUs, GPS, and accelerome-
ters. The measurements from these sensors are often given finer details using advanced
filtering techniques like Kalman filtering. Recent studies have shown that the use of a
Kalman filter can drastically reduce the error margin during road surface monitoring by
smoothing sensor data and predicting the real road profile [109-111].

Table 5 presents a comparison between some signal processing methods of a Kalman
filter, particle filter, orthogonal wavelet transform, and envelope threshold by highlighting
their effectiveness in improving data accuracy towards typical monitoring applications of
road surfaces.

Table 5. Comparison of signal processing techniques for road surface monitoring.

Technique Error Reduction = Computational Complexity Applications
Kalman Filtering High Moderate Real-time momto.r ne
autonomous vehicles
Complex
Particle Filtering Moderate High environments,

navigation systems
Signal denoising,

Wavelet Transform High Moderate .
anomaly detection

Figure 11 is an example of a trained machine learning model used for anomaly detec-
tion in roads from data fused using IMUs and GPS. The model embeds the combination
of feature extraction and classification techniques to detect different types of road surface
defects with high accuracy.

Pooled Fully-connected Layer
Feature Maps Pooled Feature Maps Feature Maps Flatten i ¥y

-
||_|-_ F

First Convolutional Layer First Max Second Convolutiona Second Max Output
+ReLU Pooling Layer Layer + ReLLU Pooling Layer

Figure 11. Machine learning model for road anomaly detection [112].

7. Real-World Applications of Smartphone-Based Road Monitoring

Advanced road surface monitoring systems have proved effective in several practical
applications. Recently deployed systems have been using multi-sensor data along with
machine learning to monitor road conditions in real time over a large metropolitan area.
This deployment also improved the accuracy of road surface condition assessments and de-
livered valuable data for urban planning and maintenance. These advanced methodologies
resulted in higher accuracies of detection and efficiencies in processing data as summarized
in Table 6, presenting results across various real-world applications. Besides the systems
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based on IMU, GPS, and machine learning, the concept of smartphone-based road monitor-
ing has gained momentum in recent times because it incorporates economics and can be
scaled more easily [113]. Crowdsourcing in this respect can be a very good option to obtain
continuous data regarding the condition of roads from drivers. Smartphones can easily
detect road roughness, potholes, and other surface anomalies in real time with the help
of a range of sensors such as accelerometers, gyroscopes, and GPS, making them highly
important tools for the management of urban infrastructure [50].

IRI-Net, proposed by Jeong and Jo (2023) [102], is a convolutional neural network
developed to estimate the International Roughness Index with the help of vehicle vibrations
measured using smartphones. Later, it was validated with larger-scale ground truth data
from 29 vehicles, 9 variants of smartphone models, and 5 different mounting configurations
of smartphones. IRI-Net estimated ground truth road roughness under various conditions:
different vehicle types, driving speeds, and mounting positions of the smartphone—an
area that opens up new possibilities towards practical road monitoring with deep learning.

The variabilities of the sensor data depending on different types of vehicles, driving
behavior, and smartphones’ mounting positions create a negative influence on data accuracy.
Jeong and Jo in 2023 [102] came up with an effective new GPS processing approach that
enhances the accuracy with a couple of interpolation and grid-snapping techniques. This
approach overcomes the low-resolution problem of crowdsourced GPS data, creating road
anomaly mapping at far higher resolutions that simultaneously enhance the reliability of
the system in the interest area. As [7,16,114] pointed out, crowdsourcing data are based on
the condition of urban roads since they aid in broader urban planning and maintenance.
Field applications proved their worth by enhancing the precision of defect detection in
roads, time efficiency in processing data, and quality information for maintenance and
urban planning concerns.

Table 6. Outcomes of advanced road surface monitoring applications [115].

Application Location Technology Used Detection Accuracy
Urbag Rgad New York, NY, USA IMUs, GPS, .Machme 9%
Monitoring Learning
Autonomous Vehicle IMUs, Kalman
Road Surface Tokyo, Japan e 89%
. Filtering
Analysis

Ru.ral Road Bavaria, Germany GPS, Slgnal 85%
Maintenance Processing

8. Conclusions

This research has tried to demonstrate the new horizons opened by smartphone-
based road surface monitoring systems as scalable and inexpensive alternatives to more
traditional approaches. An accuracy as high as that reached by more traditional devices can
be achieved using sensors contained in smartphones, such as accelerometers, gyroscopes,
and GPS, which are able to detect any given road surface anomaly, from potholes and
pavement cracks to surface roughness. Machine learning algorithms further enhance the
detection capabilities, hence making those systems even more robust and reliable. Presently,
they are fraught with challenges; this technology can be further developed, at least when
integrated into smart city frameworks and interwoven with other new technologies such
as 5G and artificial intelligence. The following represents the key findings and future
directions from the study:

e  Smartphones are capable of detecting road surface anomalies with high accuracy,
such as potholes, cracks, and roughness, using accelerometers, gyroscopes, and GPS
Sensors.

e  The detection accuracy of the road surface anomalies has been significantly increased
by the integration of some machine learning algorithms, especially the CNNs and
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SVMs. Hybrid models which merge DL with traditional ML techniques achieve
superior performance and scalability in classification.

e  Crowdsourcing collects data with the contribution of multiple smartphone users
who provide real-time and large-scale data on road surfaces and increases the spatial
coverage. Transportation agencies are now able to continuously monitor the actual
conditions of their roads for timely maintenance interventions.

e  Preprocessing techniques such as high-pass filtering, low-pass filtering, and DTW
increase the accuracy and reliability of sensor readings. Data fusion from accelerome-
ters, gyroscopes, and GPS increases the robustness of monitoring systems, thereby
allowing adaptation to diverse conditions.

e  Some of the challenges ahead include sensor noise, hardware variability, and inconsis-
tency in data coming from crowdsourcing, amongst many which are still underway
and will require further research to devise more sophisticated algorithms to solve
these issues.

e  If a smartphone-based vehicle monitoring system is integrated within smart city
frameworks, i.e., ITS, this will improve the management of urban infrastructure. This
may be further expanded to involve other high-resolution tools, including satellite
imagery and drone-based systems, in addition to smartphone data for road surface
monitoring. The further development of technologies like Al and edge computing may
allow them to perform real-time data gathering metered with predictive maintenance.
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