
Citation: Paulo-Redondo, G.;

Nebot-Díaz, I. Study of the Synthesis

Variables in the Preparation of

CoAl2O4 Pigment Using Microwaves

to Reduce Energetic Consumption.

Eng 2023, 4, 2826–2839. https://

doi.org/10.3390/eng4040159

Academic Editor: Jorge Roberto

Vargas Garcia

Received: 10 October 2023

Revised: 30 October 2023

Accepted: 10 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Study of the Synthesis Variables in the Preparation of CoAl2O4
Pigment Using Microwaves to Reduce Energetic Consumption
Guillermo Paulo-Redondo 1 and Isaac Nebot-Díaz 2,*

1 Science Programme, Escuela Internacional de Doctorado, Universidad Nacional de Educación a
Distancia (UNED), 28015 Madrid, Madrid, Spain; jpaulo1@alumno.uned.es

2 Ceramic Technology Department, Escola Superior de Ceràmica de L’Alcora, ESCAL-ISEACV,
12110 L’Alcora, Castellón, Spain

* Correspondence: isaac.nebot@escal.es; Tel.: +34-964399450

Abstract: Due to the importance of optimizing the manufacture of ceramic pigments, motivated
by the increase in prices of both raw materials and energy, and the need to control manufacturing
parameters to obtain optimal conditions for the preparation of ceramic inks, two synthesis routes
(traditional route and coprecipitation) and two calcination methods (traditional oven and microwave
oven) are proposed to obtain the blue ceramic pigment CoAl2O4 with the aim of minimizing the
use of mineralizers or flux agents and reducing energy consumption in its manufacturing. The
pigments prepared were characterized by thermal analysis and structurally by XRD and SEM, with
particle sizes below 300 nm observed. Finally, the colorimetric coordinates of glazed tiles with the
pigments obtained were characterized. In all cases, the microwave-assisted synthesis increased the
color intensity, considerably decreasing the temperature and calcination time, obtaining a particle
size under 300 nm with a very narrow size distribution, and substantially improving the energy cost
of its preparation and the color development of the final product. The viability of the combination
of synthesis by coprecipitation and microwave calcination as a method of industrial preparation of
ceramic pigments has been demonstrated.
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1. Introduction

The progress in advancing ceramic pigments has been notably significant in recent
years, thanks mainly to the development of digital decoration technology using printing
systems. To develop the ceramic inks necessary for use in this digital technology, the need
to obtain increasingly smaller particle sizes, less than 1 µm, and the development of higher
color intensities has encouraged research into new ways to obtain pigments with these
characteristics and with high coloring power and to reduce the high energy costs derived
from current grinding processes using attrition mills for long periods of time [1].

The correct development of the properties of the pigments used in this decoration
technology is closely linked to their preparation and synthesis conditions. That is the reason
why the correct control and optimization of these stages can reduce the manufacturing cost
without a loss of color properties, or even with their improvement [2]. Several alternative
preparation methodologies have been proposed for the synthesis routes of ceramic pig-
ments [3–8], but one of the most useful and easy to move to industrial processes, thanks to
its simplicity, is coprecipitation [9–11].

Ceramic pigments are based on mixed-metal oxides with a crystalline structure com-
posed, at minimum, by a group of two metals combined with oxygen. At least one of these
metals must belong to the transition series and must have free electrons to produce d-d or
f-f type transitions, which are responsible for the color along with other mechanisms such
as band transfer. We can find several crystalline structures in these mixed-metal oxides.
Some examples that can be found are zircon, pyrochlore, garnet, rutile and spinel. These
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ceramic pigments are formed after mixing, homogenizing and firing the stoichiometric
ratio-dosed raw materials. Temperatures needed are very high (ranging from 1000 ◦C to
1350 ◦C) and must be accompanied by long reaction periods to promote ion interfusion
phenomena and increase the reactivity of the different raw materials used, since they are in
a solid state.

Depending on the type of crystalline structure formed, they can be classified into four
types or families: structural (chromophore is integrated into the crystalline structure as its
main component), solid solution (chromophore ion is hosted into the network, replacing
some of the cations that form the crystalline network), encapsulated or occlusion pigments
(crystals of the pigment are encapsulated within the host network) and mordant pigments
(chromophores are incorporated superficially on a basis crystalline structure) [12].

Spinel-type pigments (Figure 1) are the most used in the ceramic industry. Many of the
transition metals used for ceramic colors can be found in its structure, because it can contain
divalent and trivalent cations in its structure, providing a wide variety of compositions
with which the color can be adapted to production needs [13].
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The traditional route is the most used for the synthesis of ceramic pigments. It consists
of the mixture of solid precursors and subsequent firing at high temperatures, but it has
the drawback of the high temperatures and long firing times required, due to the slow
diffusion processes of atoms in the crystalline network that occur in these solid-state
reactions [12]. A traditional way to reduce this great energy consumption is the use of flux
agents, also named mineralizers. These types of compounds reduce the energy required to
start the solid-state diffusion reaction thanks to the formation of a melted phase at lower
temperatures than are otherwise required to start that reaction [14,15].

On the other hand, synthesis by coprecipitation consists of the joint precipitation of
the cations corresponding to the crystalline structure to be prepared [9]. Most of the cations
of transition metals, alkaline earth metals and the rest of those used in the preparation of
ceramic pigments, when found in aqueous solution, can form the corresponding hydroxides
with the addition of a basifying agent. Thus, by adding the stoichiometric mixed-metals
solution to a basic solution at the appropriate pH, a mixed hydroxide is formed that
contains all the metals in the stoichiometric proportions in which they have been mixed.
The particle size of the precipitated material is very small, and the homogeneity of all
the components is very high, so the energy conditions for the thermal treatment decrease
substantially compared to those required in the traditional synthesis method without this
compositional homogeneity.

One of the most important ceramic pigments in the industry is cobalt blue, with spinel
structure CoAl2O4, due to its color and thermal stability when it is used as a coloring
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agent in glaze and bulk tile compositions [12]. Due to its importance, several synthesis
methods have been studied to obtain it to improve some of the final characteristics, such
as hydrothermal [16,17], sol-gel [18–20], low-temperature combustion [21,22] and spray
pyrolysis [23].

Recent studies in material preparation have used microwave technology in order to
reduce temperature synthesis requirements and improve environmental friendliness due to
shorter time reactions and the energy consumption saved. Several authors have reported
ceramic pigment preparation research using this microwave firing technology [24,25] with
very good results, reducing the energy in the synthesis process. The use of microwave
technology in the production of ceramic pigments is drawing interest because of its precise,
rapid and effective volume heating, offering advantages over traditional firing methods.
Some of these advantages include accelerated synthesis rates, uniform heating and a lower
temperature needed for the synthesis process [26].

For the present study, we focus on the synthesis of structural pigments of cobalt spinel
(CoAl2O4) both by the traditional method and by coprecipitation [27], as well as on different
technologies for the firing of said pigments (traditional and microwave kilns) [28]. The
main reason for choosing these techniques is because they are susceptible to being applied
in industrial production. Other synthesis methods described before are very expensive and
difficult to scale in industrial processes, whereas coprecipitation is very easy to carry out.
On the other hand, the microwave firing process is used in industrial processes without
any problem, and it is an energy-saving solution.

The main objective that we propose in this work is the comparison of the results of
the analysis of the pigments obtained by both synthesis routes, and the viability of using
microwave firing to obtain these pigments will be verified. Also, we want to demonstrate
that the results obtained could be applied in the industrial preparation of ceramic pigments,
being much more sustainable and economical than the traditional methods currently used,
reaching reductions in energy consumption of close to 95%. This would allow for a process
with a lower carbon footprint and would be an environmentally friendly process.

2. Materials and Methods

CoAl2O4 pigments featuring a spinel structure were synthesized with the aim of
checking the synthesis parameters of both conventional and coprecipitation methods; also,
the results obtained by traditional and microwave firing were compared.

2.1. Synthesis by Traditional Route

The reagents used in the traditional route were cobalt oxide (Co3O4, 99% purity, PAN-
REAC, Darmstadt, Germany) and aluminum hydroxide (Al(OH)3, 99% purity, MERCK,
Darmstadt, Germany). The pigments were prepared through solid-solid reactions employ-
ing the conventional approach. The raw ingredients were milled into a stoichiometric
combination, and this reagent mixture underwent homogenization within a planetary mill
using acetone dispersing medium, followed by drying of the resultant material.

2.2. Synthesis by Coprecipitation Route

The reagents used in coprecipitation synthesis were cobalt chloride (CoCl3·6H2O, 99.5%
purity, SIGMA-ALDRICH, Darmstadt, Germany), and aluminum chloride (AlCl3·6H2O,
99.5% purity, SIGMA-ALDRICH, Darmstadt, Germany), used to prepare a solution of 0.5 M
of each one. These solutions were mixed in a stoichiometric ratio to obtain the final product.

For the coprecipitation process, the Al/Co solution was introduced dropwise into a
basic NaOH solution (99.5% purity, SIGMA-ALDRICH, Darmstadt, Germany) with a pH
of 10 to prevent fractional precipitation. This led to the formation of a mixed Co-Al(OH)3
hydroxide precipitate from the precursor compounds present in the solution. To maintain a
consistent pH of 10, a saturated NaOH solution was continuously added while stirring until
a colloidal gel was formed. The gel was then filtered, washed until all chloride residues
were completely removed, and subsequently dried. The dried material was further refined
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using a planetary ball mill with acetone as the dispersing medium in preparation for
subsequent heat treatment.

2.3. Traditional Heat Treatment

The powders produced through both synthesis methods were carefully measured and
placed into mullite crucibles. They were then subjected to firing cycles in a Nanetti Mod.
FCN furnace, with temperatures ranging from 1000 ◦C to 1200 ◦C, using a heating rate
of 8 ◦C per minute and a 20 min dwelling period at the maximum temperature followed
by slow cooling for 18 h. Following the firing process, the resulting material was further
processed and purified in an agate mortar to break up possible agglomerates formed.

2.4. Microwave-Assisted Heat Treatment

Microwave-assisted thermal treatment was conducted employing a household mi-
crowave oven rated at 800 W to heat an Al2O3 container internally coated with SiC (refer
to Figure 2) [10]. Various samples were positioned within this container, and microwave
radiation at 800 W was employed for durations of 20 and 40 min, resulting in peak temper-
atures of 900 ◦C and 970 ◦C, respectively. Temperature measurements were determined
using FERRO’s process temperature control rings (PTCR) of the ETH type, designed for a
temperature range of 850 ◦C to 1100 ◦C.
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2.5. Characterization of Samples

To assess the color development of all prepared pigments, a 2%-by-weight inclusion of
these pigments was incorporated into an alkaline transparent industrial glaze (provided by
ESMALDUR, Sant Joan de Moró, Spain, Ref. CP-900). This glaze mixture was then applied
onto a single-fired ceramic test piece, featuring a glaze thickness of 0.6 mm. Subsequently,
the glazed tiles underwent an industrial firing cycle, reaching 1100 ◦C with a 5 min hold at
the maximum temperature and a total firing time of 50 min (from cold to cold).

The chromatic characteristics of the pigments generated in this investigation and
the glazed surfaces were determined using an ultraviolet-visible spectrophotometer that
adheres to the CIE L*a*b* color system (KONICA MINOLTA (Tokyo, Japan), CM-3600A,
utilizing SpectraMagicNX software, d65 illumination, and a 2◦ observer angle).

The crystalline phases present in the specimens were identified via X-ray diffraction
(BRUKER AXS (Billerica, MA, USA), EndeavorD4) with a scanning range of 10–75◦ 2θ and
an acquisition time of 2 s per 0.05◦ 2θ using a Cu anode emitting in Kα radiation with a
wavelength of 1.54056 Å.
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Thermal analysis was carried out using TG-DTA (Thermogravimetric Analysis–Differential
Thermal Analysis) equipment (BÄHR STA503) featuring a Pt crucible, and the samples
were heated at a rate of 5 ◦C per minute in an air atmosphere.

For morphological examination and size distribution analysis, scanning electron
microscopy (SEM) was employed (JEOL7001) with an FED warm cathode, operating
at 15 kV, and the samples were coated with a thin layer of carbon prior to imaging.

2.6. Sample References

Table 1 shows the different sample references used in the present work, relating the
synthesis and firing method with the temperature reached during each firing method.

Table 1. Samples references.

Sample Reference Synthesis Firing Temperature (◦C)

TK1000 Traditional Conventional 1000

TK1200 Traditional Conventional 1200

CK1000 Coprecipitation Conventional 1000

CK1200 Coprecipitation Conventional 1200

TMW1000 Traditional Microwave 1000

TMW1200 Traditional Microwave 1200

CMW1000 Coprecipitation Microwave 1000

CMW1200 Coprecipitation Microwave 1200

3. Results
3.1. Differential Thermal Analysis and Thermogravimetric Sample Characterization

Thermal analysis shows different reactions through the firing process. Figure 3 shows
DTA (red line) and TG (black line) analysis of the sample prepared by the traditional route
and Figure 4 shows the one corresponding to the sample prepared by coprecipitation.
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In the sample prepared by the traditional method (Figure 3), a small weight loss
with an endothermic signal was observed at 100 ◦C, corresponding to the loss of residual
moisture in the sample. And especially at 300 ◦C, a significant weight loss was observed,
accompanied by an endothermic signal, corresponding to the dehydroxylation of Al(OH)3.

In the case of the coprecipitation method, several endothermic signals could be ob-
served between 200 ◦C and 400 ◦C that are due to the dehydroxylation of the Co-Al mixed
hydroxide formed.
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3.2. X-ray Diffraction Analysis of Crystalline Phases

Below are the results regarding the development of the crystalline phases of the
different samples prepared, analyzed using X-ray diffraction, in the traditional way or with
coprecipitation and using a traditional kiln or microwave.

Figure 5 shows XRD analysis of the sample prepared through the traditional method
and with a traditional kiln fired to 1000 ◦C. It can be observed that the formation of the
CoAl2O4 phase was not obtained, but the Co3O4 remains unreacted, while the Al(OH)3
has reacted to Al2O3, but with no formation of the spinel phase.
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Figure 5. XRD pattern of sample TK1000.

When the firing temperature was increased to 1200 ◦C using the traditional method
(Figure 6), the formation of spinel Co2AlO4 could be observed, instead of spinel CoAl2O4.
This is because there is still an Al2O3 phase present, so, although the spinel formed, it did
not do so completely.

On the other hand, when the coprecipitation method was used (Figure 7), a CoAl2O4
crystalline phase was obtained even at 1000 ◦C, albeit with broad and low defined peaks,
maybe due to poor crystallization because the dwelling time at the maximum temperature
was only 20 min, and it might be necessary to increase it.

When the maximum firing temperature was increased to 1200 ◦C (Figure 8), the
coprecipitation method showed a very good CoAl2O4 crystalline development without
any secondary phase. This is very important to highlight because the dwelling time was
only 20 min, whereas in the industrial process using the traditional method, it is necessary
to use flux agents to reduce the firing temperature, and a long time process is required to
obtain good crystallization without secondary phases.
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Microwave treatment substantially improved crystallization in all cases; lower temper-
atures than those used in traditional firing were used. At 900 ◦C, by using both traditional
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and coprecipitation methods, CoAl2O4 was obtained, although with traditional synthesis,
Co3O4 and Al2O3 were still present (Figure 9).
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When a temperature of 970 ◦C was used, some Al2O3 was detected with the tradi-
tional method (Figure 10), but when the coprecipitation method was used, the CoAl2O4
crystallization was very good (Figure 11).

Eng 2023, 4, FOR PEER REVIEW 9 
 

 

 
Figure 10. XRD pattern of sample TMW970. 

 
Figure 11. XRD pattern of sample CMW970. 

3.3. Scanning Electron Microscopy Characterization of Microstructure 
As seen in the previous paragraph, the best results were obtained at the maximum 

firing temperature with both firing methods, so, at this point, we limit our discussion to 
these synthesis conditions. 

Figure 12 shows SEM images of samples produced by traditional firing, (a) prepared 
by the traditional method, and (b) by coprecipitation. In both cases, an irregular size dis-
tribution was obtained, but in the coprecipitation case, it can be observed that the crystal 
size is smaller than that produced in the traditional way. 

Figure 10. XRD pattern of sample TMW970.

Eng 2023, 4, FOR PEER REVIEW 9 
 

 

 
Figure 10. XRD pattern of sample TMW970. 

 
Figure 11. XRD pattern of sample CMW970. 

3.3. Scanning Electron Microscopy Characterization of Microstructure 
As seen in the previous paragraph, the best results were obtained at the maximum 

firing temperature with both firing methods, so, at this point, we limit our discussion to 
these synthesis conditions. 

Figure 12 shows SEM images of samples produced by traditional firing, (a) prepared 
by the traditional method, and (b) by coprecipitation. In both cases, an irregular size dis-
tribution was obtained, but in the coprecipitation case, it can be observed that the crystal 
size is smaller than that produced in the traditional way. 

Figure 11. XRD pattern of sample CMW970.



Eng 2023, 4 2834

3.3. Scanning Electron Microscopy Characterization of Microstructure

As seen in the previous paragraph, the best results were obtained at the maximum
firing temperature with both firing methods, so, at this point, we limit our discussion to
these synthesis conditions.

Figure 12 shows SEM images of samples produced by traditional firing, (a) prepared
by the traditional method, and (b) by coprecipitation. In both cases, an irregular size
distribution was obtained, but in the coprecipitation case, it can be observed that the crystal
size is smaller than that produced in the traditional way.
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Figure 12. SEM micrographies (magnification ×10,000) of samples (a) TK1200 and (b) CK1200.

Figure 13 shows particle aggregates with a nominal size under 500 nm obtained by
the coprecipitation method using traditional firing to 1200 ◦C (sample CK1200).
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(a) (b) 

Figure 13. SEM micrography (magnification ×20,000) of sample CK1200.

When microwave heating was used, the final firing temperature was 970 ◦C. The
microstructure of the sample obtained by the traditional method is very similar to the one
obtained by traditional firing (Figure 14a). But in the coprecipitation method, a significant
change can be observed in the microstructure (Figure 14b) because there are no large
crystalline growths.

The high-speed firing and low dwelling times in the microwave process and the homo-
geneity of the temperatures reached inside the crucibles prevented crystalline growth, and in
all cases, a distribution of nanometric-sized particles close to 100 nm was obtained (Figure 15).
Although the material is agglomerated, there was no sintering between the particles.
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(a) (b) 

Figure 14. SEM micrographies of samples (a) TMW970 with magnification ×10,000 and (b) CMW970
with magnification ×20,000.
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3.4. Color Characterization

As in the previous section on microstructural characterization, the only pigments that
were studied were those obtained at higher temperatures, since they are the ones that show
the best crystallizations, and, therefore, the best results in color development.

Figure 16 shows the final aspect of glazed tiles prepared with different pigment
samples. The most intense colors were obtained by the coprecipitation method in both
traditional and microwave firing. It can also be observed that, regardless of the preparation
method, microwave calcination also improves the intensity of the color obtained.

In Table 2, color coordinates using the CIE-L*a*b* reference are shown. The dark-
est blue result is the one corresponding to the sample prepared by coprecipitation and
microwave firing, as expected from the previous results.

Table 2. Color coordinates (CIE-L*a*b*) of glazes prepared with different pigment samples.

Sample Reference L a b

TK1200 54.77 7.86 −30.55

CK1200 48.59 10.78 −33.67

TMW970 49.49 9.88 −33.04

CMW970 34.98 14.15 −33.14



Eng 2023, 4 2836Eng 2023, 4, FOR PEER REVIEW 12 
 

 

 
Figure 16. Glazed tiles prepared with different pigment samples. 

In Table 2, color coordinates using the CIE-L*a*b* reference are shown. The darkest 
blue result is the one corresponding to the sample prepared by coprecipitation and micro-
wave firing, as expected from the previous results. 

Table 2. Color coordinates (CIE-L*a*b*) of glazes prepared with different pigment samples. 

Sample Reference L a b 
TK1200 54.77 7.86 −30.55 
CK1200 48.59 10.78 −33.67 

TMW970 49.49 9.88 −33.04 
CMW970 34.98 14.15 −33.14 

It can also be observed that the chromatic coordinates are practically the same for the 
sample prepared with coprecipitation and fired in a traditional kiln to 1200 °C and for the 
sample prepared by the traditional route and fired by microwave to 970 °C (CT1200 and 
TMW970, respectively). 

In fact, the chromatic coordinate that indicates the blue hue (−b) is almost identical in 
these three glazes (CT1200, TMW970 and CMW950), with differences appearing both in 
the L coordinate (which decreases as the intensity of the glaze increases) and in the chro-
matic coordinate indicated by red (+a), being greater in those of the coprecipitation route 
than in those of the traditional route. 

These differences in the chromatic coordinates (and therefore in the blue shade) are 
probably due to the lower percentage of spinel (CoAl2O4) formed at lower temperatures, 
especially in the traditional method, as observed in the XRD analysis. 

4. Discussion 
Several blue ceramic pigment compositions were synthesized, from different synthe-

sis routes (traditional and coprecipitation) and different firing techniques (traditional kiln 
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It can also be observed that the chromatic coordinates are practically the same for the
sample prepared with coprecipitation and fired in a traditional kiln to 1200 ◦C and for the
sample prepared by the traditional route and fired by microwave to 970 ◦C (CT1200 and
TMW970, respectively).

In fact, the chromatic coordinate that indicates the blue hue (−b) is almost identical in
these three glazes (CT1200, TMW970 and CMW950), with differences appearing both in the
L coordinate (which decreases as the intensity of the glaze increases) and in the chromatic
coordinate indicated by red (+a), being greater in those of the coprecipitation route than in
those of the traditional route.

These differences in the chromatic coordinates (and therefore in the blue shade) are
probably due to the lower percentage of spinel (CoAl2O4) formed at lower temperatures,
especially in the traditional method, as observed in the XRD analysis.

4. Discussion

Several blue ceramic pigment compositions were synthesized, from different synthesis
routes (traditional and coprecipitation) and different firing techniques (traditional kiln and
microwave treatment), as we sought to obtain pigments with the structure of cobalt spinel
(CoAl2O4).

Blue pigments were obtained in all cases without the use of mineralizing agents in any
of them, although the shade varied quite a bit depending on the amount of spinel formed,
so we concluded that in those resulting in lower intensity, mineralizing agents should be
used if you do not want to vary the synthesis conditions to obtain pigments with better
properties (intensity, morphology, structure, etc.).

Through X-ray diffraction, it can be observed that the pigments prepared by the
traditional method develop a CoAl2O4 phase with worse crystallinity than those prepared
by coprecipitation, since the raw materials remained unreacted. This is the main reason that
explains the need to use mineralizing agents in the current synthesis processes of industrial
pigments, which are based on the traditional method [14].
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X-ray diffraction results also allow us to conclude that the higher the firing temperature,
the greater the amount of spinel formed in the pigments (which translates into a greater
color intensity) and that microwave firing improves the development of the crystalline
phases with respect to those obtained by firing in a traditional kiln, regardless of the
preparation method used.

The study results from the use of scanning electron microscopy allow us to observe that
the particle size obtained is much smaller and narrower when the pigments are prepared
by coprecipitation than when they are prepared by traditional synthesis, which increases
their specific surface area and, therefore, their reactivity, allowing for a higher intensity of
color, as shown in the colorimetry results.

Furthermore, scanning electron microscopy results show that microwave firing always
produces narrower particle size distributions (similar morphology and size) and smaller
particle sizes (up to nanometric sizes) than when pigment is fired in a traditional kiln.
This is due to the rapid heating speed, the homogeneity of the temperature and the short
dwelling time in the microwave, which prevents unwanted aggregates or crystalline growth
from occurring.

On the other hand, colorimetry analysis allows us to observe how the previous mi-
croscopic properties are transferred to real pieces and allows us to corroborate that the
most intense glazes are those that were colored using the pigments that formed the greatest
amount of CoAl2O4 spinel and that also had smaller particle sizes.

With all the above, we can highlight that coprecipitation offers great advantages over
the traditional method, such as greater development of the crystalline phase and a smaller
particle size, which translates into better reactivity and greater color intensity and allows
avoiding the use of expensive and often polluting mineralizing agents. It is also highly
recommended for the development of pigments for inkjet inks, which require nanometric-
sized pigments for their preparation in order not to clog the nozzles used in digital-head
printers for the application of the inks [16].

It should also be noted that microwave firing provides great benefits in the synthesis
of ceramic pigments, since it requires a very short time to reach the maximum temperature
and cool (short firing cycles), which prevents crystalline growth, speeds up production
processes and reduces energy consumption to a large degree. On the other hand, firing in a
traditional kiln requires higher temperatures and longer residence times at the maximum
firing temperature to favor the process of pigment formation via the solid-state route, and
even then, it obtains worse results than using microwaves. The reduction in the operating
temperature from the traditional 1200 ◦C to 970 ◦C when using the microwave technology
represents a reduction in overall thermal losses.

Therefore, we could finally conclude that the optimal conditions for the synthesis of
the ceramic pigment with a spinel structure (CoAl2O4) would be the preparation of the
precursors by coprecipitation and calcination in a microwave kiln for 40 min (970 ◦C).

Energetic Savings Estimation

After the tests were carried out in the laboratory and under the conditions described
in the experimental part, we can affirm that the traditional kiln requires an energetic
consumption of 3.5 KW/h, with a firing cycle of 3 h, and the consumption is 10.5 KW. On
the other hand, the microwave kiln requires a consumption of 0.8 KW/h, with a firing cycle
of 0.5 h, and consumes a total of 0.4 KW.

The cooling time is also significantly reduced, since the microwave does not have the
thermal inertia that is found in the traditional kiln, so the total firing time is much shorter.

As a summary of these considerations, this study represents that the same ceramic
pigment fired on a microwave has 96.2% energy savings in electrical consumption and 90%
savings in total firing time compared to its manufacture in a traditional kiln.

These data are estimated for a laboratory muffle. In industrial conditions, the savings
would be greater.



Eng 2023, 4 2838

5. Conclusions

The results shown in this study allow us to consider the possibility of using this
method for the industrial production of ceramic pigments in a faster way and with less
energy consumption than the traditional methods used until now. In all cases, microwave
treatment improves the pigment crystallization and allows much smaller particle sizes
to be obtained without the formation of agglomerates, which allows for greater color
performance and favors its use in the manufacture of ceramic inks for digital decoration,
reducing the problems derived from grinding that currently occur.
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