
Citation: Schmitz, M.; Menz, F.;

Grunau, R.; Mandischer, N.;

Hüsing, M.; Corves, B. Robot

Cooking—Transferring Observations

into a Planning Language: An

Automated Approach in the Field of

Cooking. Eng 2023, 4, 2514–2524.

https://doi.org/10.3390/

eng4040143

Academic Editor: Antonio Gil Bravo

Received: 3 August 2023

Revised: 21 September 2023

Accepted: 22 September 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Robot Cooking—Transferring Observations into a Planning
Language: An Automated Approach in the Field of Cooking
Markus Schmitz * , Florian Menz , Ruben Grunau , Nils Mandischer , Mathias Hüsing
and Burkhard Corves

Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University,
52062 Aachen, Germany; mandischer@igmr.rwth-aachen.de (N.M.); huesing@igmr.rwth-aachen.de (M.H.);
corves@igmr.rwth-aachen.de (B.C.)
* Correspondence: schmitzm@igmr.rwth-aachen.de

Abstract: The recognition of human activities from video sequences and their transformation into
a machine-readable form is a challenging task, which is the subject of many studies. The goal of
this project is to develop an automated method for analyzing, identifying and processing motion
capture data into a planning language. This is performed in a cooking scenario by recording the
pose of the acting hand. First, predefined side actions are detected in the dataset using classification.
The remaining frames are then clustered into main actions. Using this information, the known
initial positions and virtual object tracking, a machine-readable planning domain definition language
(PDDL) is generated.

Keywords: human activity recognition; learning from demonstration; PDDL; robot cooking; task
planning; motion tracking

1. Introduction

The automation of cooking processes is currently still subject to some limitations. A
vision of extracting recipe and process data using only tracked motion data, making this
information available to the robot in machine-readable form, and thus enabling automated
cooking by a robot or even in a human-robot collaboration, is presented in this paper. In
a cooperation between human and machine, it is essential that the machine can correctly
interpret and categorize the actions of the human. This is especially relevant in a situation
where the human is supposed to teach the machine specific work processes. In passive
observation, a method of learning from demonstration (LfD), the machine learns only by ob-
serving the human performing a task [1]. One important aspect of this method is to enable
non-experts to teach robots or automated systems specific work processes. Traditionally,
robot programming has been a complex and technical task, requiring specialized knowl-
edge. However, with LfD approaches, even individuals without programming expertise
can instruct machines effectively [2].

The increasing demand for automation in cooking processes is evident both in the
rising sales of multipurpose kitchen appliances (e.g., Vorwerk’s Thermomix [3]) and in
the expected growth of the global market for smart kitchens [4]. Although multipurpose
kitchen appliances offer some degree of automation, there is still significant room for
improvement. Integrating robot arms into the cooking process could enhance the level
of automation and streamline various tasks. While there have been some concepts and
prototypes exploring the use of robot arms in cooking tasks [5,6], none have yet made
it to the mainstream commercial market. This indicates that there are still challenges
and complexities, such as the high price and the necessity of preprocessing ingredients,
to overcome before such systems become widely available and accessible to the general
public [7].
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Several studies show that, in principle, robotic hardware is already capable of pro-
viding all the necessary functions for household and cooking processes [8,9]. The more
challenging part is designing and enabling the grippers to grasp tools and selecting in-
gredients of the cooking process of varying texture, shape and solidity [10,11]. Another
important aspect is safety when using robots in open workspaces in the household envi-
ronment. Dangers arise particularly from collisions between humans and robots [12] and
especially when tools such as knives are used in the context of the cooking scenario [13].
In addition to safety, ethical considerations such as acceptance must also be taken into
account. From today’s point of view, people would rather let a robot serve food or do
the cleaning than let it cook food for them [14]. Cognition has an important role in the
field of cooking processes and includes the recognition of cooking states, ingredients, and
the composition of dishes obtained from motion data [15]. However, the use of sensing
technology is expensive and the development of robust algorithms is challenging to realize
the recognition of cooking states, ingredients, and the overall composition of cooked dishes,
as well as the learning of subjective taste preferences [16].

Motion planning is a challenging task, since collision-free motion has to be achieved
in a complex 3D environment, while also taking into account required contact with objects,
including controlled intrusion (e.g., when cutting) [13,17]. In addition to motion planning,
there must be efficient task planning that can divide the given recipe into individual tasks
and orchestrate their execution [18,19]. Ideally, the tasks can be divided between different
actors, such as multiple robots and/or humans, to prepare a tasty dish together [8].

In this context, the primary objective of this paper is to observe and analyze human
activities in the domain of cooking processes. To achieve this goal, an automated method
is developed to enable LfD through passive observation of human hand posture. By
combining this information with the known objects and their positions, a machine-readable
planning domain definition language (PDDL) is created. PDDL is a formal language,
commonly used in the field of artificial intelligence and robotics, for representing and
describing planning problems and actions [20]. It provides a structured and unambiguous
way to model the actions, consisting of preconditions and effects, involved in a task, making
it an ideal choice for translating human actions into machine-readable instructions. The
PDDL representation will facilitate the machine’s understanding and interpretation of
human actions, thereby allowing it to effectively learn and perform cooking tasks and even
collaborate with a human actor.

2. Concept

The challenge to be solved in cooking scenarios is that the actions and their effects
and preconditions are largely unknown and vary greatly depending on the recipe. First, a
cooking process is recorded. This is carried out using passive markers and a motion capture
system. The question arises of how the recorded motion data can be analyzed. Motion data
contains the position and orientation of the hand for each frame. These can naturally be
supplemented with descriptive statistics, describing, for instance, positions, orientations,
velocities, and accelerations within a time window. The basic idea and challenge for this
research is exemplified in Figure 1: The progression from the recording of the cooking
process to the execution of the resulting plan by robots.

To create this plan, the executed actions have to be identified from the motion data.
A distinction is made between two different types of actions: “processing” and “mov-
ing/changing position”. While there can be an infinite number and variety of actions
related to processing, there are only a few actions (e.g., pick, move, place) that change an
object’s position. It is also essential to closely examine the effects and preconditions of
each action type. The processing actions can have very different effects and variations,
whereas the change in position is the central effect of the “moving/changing position”
action. Conversely, it is necessary to uniquely identify position-changing effects as they
contribute to causality and enable process interpretation based on motion data. In this
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way, the emerging plan can subsequently be decomposed into a PDDL (planning domain
definition language).

Figure 1. (a) The recording of the cooking process for this project; (b) a simplified conceptual
rendering of the execution of the resulting plan.

These requirements align with the selection criteria of supervised and unsupervised
learning. Classification is suitable when there is a finite number of classes. However, this
requires training data that behave similarly for different individuals performing actions
like pick, place, and move, for example. For the case of an unknown number of actions and
a still unknown structure, clustering is a method of unsupervised learning to discover data
patterns and correlations in the motion data.

After the motion data has been analyzed, it has to be transferred into a PDDL. In the
context of our study, the machine-readable PDDL generated from the observed human
activities and their combination with known positions of objects will serve as the bridge
between the human demonstrator and the robot or automated system. The PDDL represen-
tation allows the machine to interpret and understand the sequence of actions performed
by the human during the cooking process. By leveraging this formal representation, the
machine can efficiently plan and execute the same task or collaborate with the human
actor seamlessly. An overview of the complete process, including recording, classification,
clustering, and transfer into PDDL, which are subject of the research in this paper, is pro-
vided by Figure 2. The goal of our approach is to provide a general solution, independent of
the specific actors involved in the execution of the resulting plan. Therefore, the execution
aspect is excluded from the scope of this paper.

Figure 2. Schematic representation of the concept.
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3. Recording

First, the cooking process is recorded by a motion capture system consisting of seven
PrimeX13 cameras, sourced from OptiTrack (Corvallis, OR, USA). The schematic repre-
sentation of the workspace is given in Figure 3. During the recording, the cook wears a
glove with three passive markers placed on the back of the hand in a defined fixed position
relative to each other. The position of each marker is determined by triangulation. These
three points provide enough information to derive a pose. Specifically, the back of the hand
is considered as a rigid body with 6 degrees of freedom. The recording was captured at 120
frames per second.

Figure 3. Schematic view of the workspace. Cameras (top left and right), hand with passive markers
(bottom right) and used tools and ingredients.

In addition to the continuous recording of the trajectory, all objects in the workspace
are identified once before the cooking process, as well as their initial positions. In the
productive scenario, this is to be automated by an additional camera and image recognition.
As previously mentioned, all recorded data are basically poses with time stamps. Other
variables such as velocity, acceleration and angle in relation to the tabletop were derived
from this. A look into this raw data already reveals some characteristics which are to be
worked out as illustrated in Figure 4.

Figure 4. Illustration of the absolute speed within the space using Matlab R2021b.
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4. Classification

When analyzing this cooking process, it is noticeable that some short actions occur
repeatedly, which are called side actions in the following. These actions are part of the
distinct actions “moving/changing position” that are important to track the positions of
objects, as presented in the concept section. These are:

• Pick
• Move
• Place

Assuming that these actions are very consistent in their execution and occur in every
cooking process, a classifier is trained to find these actions in the dataset. This ensures
the generality of the procedure, since no main actions are anticipated, which are very
individual. To train the classifier, a separate dataset is first recorded. In the training dataset,
an action is assigned manually to each frame, with a numerical value assigned to it. There
is a wide range of classification methods, from simple decision trees to weighted decision
forests and neural networks. For our purposes, the RUS Boosted Trees method was chosen
based on some preliminary research. RUS Boosted Trees is an algorithm that combines
random under-sampling (RUS) with Boosted Trees to address the issue of imbalanced
datasets. By applying RUS, the algorithm removes samples from majority classes randomly,
thereby achieving a balanced class distribution. This approach improves the training
process, mitigating runtime and storage problems [21].

A large number of parameters are available for the classification. Since these are
partially dependent on each other and under the assumption that more parameters are
not equivalent to a better classification, a parameter analysis is performed. With the
classification method and parameters now selected, the classifier is trained and applied
to the original dataset. Assuming that an action takes significantly longer than a single
frame (recording at 120 frames per second), the classification results are smoothed. This
is achieved by performing a check for each frame using a sliding window. Within this
window, the number of times each action occurs is counted. Then the most frequent action
within the window is selected for this frame. Classification provides a basic structure to the
dataset, allowing the analysis of the remaining actions to continue with reduced complexity.

5. Clustering

The remaining frames are then to be categorized. This is the aim of the clustering. In
this step, only those frames are considered which have not already been assigned by the
classification, as shown in Figure 5.

Figure 5. Graph of the absolute speed of the hand above the table surface within the cooking process.
The frames with a white background have already been identified by the classification.

In contrast to classification, there is no search for a defined number of predefined
classes. This approach makes it possible to analyze the cooking process despite a high
degree of variation in the execution. Without this dynamic approach, there would always
be limitations—a classification with its training dataset can only in a limited way represent
the diversity of a cooking process in a non-standardized environment. The downside is
that, in contrast to classification, the results are only clusters, without any description. A
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stirring action, for example, is only recognized as “cluster2”. The approach to this problem
will be considered later on.

The selection of suitable parameters for clustering includes the absolute speed of the
hand above the table surface and the angular changes of the hand. In contrast to the absolute
speed in space, the values of the absolute speed above the table surface reveal significant
variations between actions, for example, low velocities during cutting, medium velocities
during stirring, and high velocities during tilting. With respect to angle, the variation
in hand rotation is considered, not the absolute values. Here, the angle changes show
low values for cutting, larger values for tilting, and very high values for stirring. Before
the actual clustering analysis, the dataset goes through pr-processing where the standard
deviation of the angle is calculated for each frame within a defined window width and
then smoothed. Using both parameters simultaneously allows for clearer discrimination of
values and leads to improved clustering results (see Figure 6) compared to using a single
parameter. The characteristics of other parameters are less significant and are not taken
into account in the analysis.

Figure 6. Three found clusters identified by analyzing the absolute speed of the hand above the table
surface and the angle of the hand to the table surface. Tilt is marked as purple, stir is green and slice
is blue.

In order to obtain a clustering result that is as accurate as possible, the different
clustering approaches are evaluated in terms of their quality. For this purpose, the training
dataset is used, where the actions have already been assigned to the frames manually. An
intuitive approach could be to determine the percentage of frames correctly assigned by
clustering. However, this would lead to an overvaluing of long-lasting actions. In addition,
it should also be evaluated how accurately all existing individual actions were recognized.
Clustering alone does not provide any information on which actions are covered by a
specific cluster. Therefore, each individual cluster had to be evaluated with respect to each
individual action. The combination of the two evaluation approaches presented below
turned out to be the most suitable solution to establish these associations and to evaluate
how accurately the clusters represent different actions:

• Determining the percentage of frames in the cluster that belong to the specific action.
To do this, the number of frames associated with this action within the cluster is
divided by the total number of frames in the cluster.
For example: “90 percent of the cluster belongs to the slice action”.

score(cluster, action) =
nFrames(cluster, action)

nFrames(cluster)
(1)
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However, this alone is not meaningful because a high score does not necessarily mean
that the majority of the action was detected. Therefore, a second approach was used.

• Determining which percentage of a specific action is covered by this cluster. To do
this, the number of frames associated with that action within the cluster is divided by
the total number of frames associated with that action within the entire recording.
For example: “70 percent of the slice frames are present in this cluster”.

score(cluster, action) =
nFrames(cluster, action)

nFrames(recording, action)
(2)

Combining these two approaches by multiplying Formulas (1) and (2), a result is
obtained that answers the following questions: How consistent and complete is the cluster
regarding a specific action?

score(cluster, action) =
nFrames(cluster, action)2

nFrames(recording, action) ∗ nFrames(cluster)
(3)

An algorithm then uses these ratings to determine the most reasonable combinations of
cluster and action. The corresponding scores are combined into an arithmetic mean, which
is the overall score of the clustering. This automated evaluation makes it possible to
quantitatively compare the approaches found. The parameters thus found are then used to
apply clustering to the main dataset. In our study, a unique fingerprint is found for each
action, consisting of the orientation of the back of the hand and its absolute speed of the
hand above the table surface. The raw data of these two parameters are processed in such a
way that the characteristics lead to the formation of the required clusters.

6. Transfer into PDDL

The motion data and the combined classification and clustering results, as well as the
locations, are used to create sequences that summarize specific sections of the frames. The
sequences, which can be assigned to actions known from the classification, are directly
named accordingly. Location information is added for each sequence—both the location at
the beginning and at the end of the action. Numeric values are transferred directly to the
known locations, assuming the location with the least distance. Objects are divided into
different subtypes. For example, a container like a bowl can contain ingredients. Objects
such as knives and spoons are assigned to the tools subtype, while cuke and dressing
are considered ingredients. The positions and states of the objects at the beginning of the
scenario are known.

The schedule, which consists of the individual sequences, is now analyzed. For each
action, it is recorded which object is at the active position. A “pick” action causes this object
to be in the hand afterwards. Only one object can be in the hand, but, if this is a container,
it can contain another object. For example, the dressing can be in the bottle. A “move”
action with an object in hand changes the status of that object to be “on hand”. A “place”
action sets the new position of the object. Thus, virtual object tracking is implemented. If
an unknown action is performed, all available information is used to describe the action.
The objects at the active position, the object in the hand, and the active position itself are
used. For example, it could be:

Cuke is processed by knife on cuttingboard.

The analyzed schedule is transferred to PDDL, where the domain name and require-
ments are defined statically. Then the types are defined following the structure in Figure 7,
representing the different objects, actors, locations and actions. The subtypes of objects
mentioned before are defined as movables. Furthermore, under the type hand, the possible
actors, robot and human, are defined. The specific locations are listed in the subtype
location. All unknown actions detected in the analysis of the schedule are summarized
under treatment.
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Then, the predicates are statically defined to describe the relationships and states of
the objects and actors. Five predicates are used:

• on describes the location of a moveable or hand
• in describes that an ingredient is in a container
• is describes the treatment of an ingredient
• holding describes which movable a hand is holding
• hand-empty describes that the hand of an actor is empty (or not)

These predicates are already used in object tracking. The information is prepared
during object tracking in such a way that the predicates can be read out after each sequence.
This allows the start and end situations to be read directly from the predicates in the
PDDL. Furthermore, this allows the observation of changes in the predicates in the case of
unknown actions. The known standard actions are also defined statically.

Figure 7. The structure of the types in the PDDL.

Unknown actions are now generated. Here a loop runs through all sequences of
the analyzed schedule, whereby the distinction between ToolOnHand, IngredientOnHand
and ContainerOnHand provides the general structure. This allows unknown actions to be
captured and described. The problem and the associated domain are defined statically
to define the specific task. The objects are named concretely and both the objects and the
involved actors (hands) are specified.

The initial state is defined, with the hands empty and the objects at their initial
locations. The target state is also defined to capture the intended result of the actions and,
thus, describe the goal of the task. Some examples of the resulting PDDL and the plan are
given in Figure 8.
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Figure 8. Snippets of the resulting PDDL: (a) The side task pick; (b) the unknown task cut; (c) The
described goal state; (d) Extract from the final plan.

7. Conclusions

The presented approach stands out in the landscape of LfD methods due to its exten-
sive flexibility in converting human-guided demonstrations into executable task plans using
a PDDL, making it suitable as a versatile solution that can be used for various applications.

After the three side tasks are classified once, the presented approach enables one-shot
robot teaching. In this way, our approach addresses a common limitation of many existing
LfD methods, which is their struggle to adapt to new application areas. In addition, the
transfer to a PDDL offers great agility in the creation of task schedules depending on the
robotic or human actors involved.

While we highlight the potential of our approach, it is worth mentioning that this
research is likely to face some challenges and limitations. Variability in human actions,
changes in kitchen layouts, and handling unforeseen situations are some of the issues that
require further research and development. These challenges are not unique to our approach
but represent inherent difficulties in the automation of complex tasks.

As the focus of this paper is limited to the creation of task planning based on LfD,
its execution requires overcoming corresponding challenges, such as mechanical imple-
mentation, robot programming, and trajectory planning. Solving these challenges requires
future research.

Moreover, as household robotics advance, we must consider the ethical implications of
increased automation and collaboration with machines in daily life. Ethical considerations
should include privacy, safety, and the impact on human employment and society. Ad-
dressing these concerns, including transparency and accountability, should be integrated
into the development and deployment of such technologies.

In conclusion, the proposed method of using passive observation to teach machines
through LfD in the context of the cooking process shows great promise in enhancing
automation and making it accessible to non-experts. As technology advances and more
research is conducted in this area, we can expect significant strides towards achieving
seamless human–machine cooperation in various real-world applications.
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