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Abstract: Tight reservoirs around the world contain a significant volume of hydrocarbons; however,
the heterogeneity of these reservoirs limits the recovery of the original oil in place to less than 20%.
Accurate characterization is therefore needed to understand variations in reservoir properties and
their effects on production. Water saturation (Sw) has always been challenging to estimate in ultra-
tight reservoirs such as the Bakken Formation due to the inaccuracy of resistivity-based methods.
While machine learning (ML) has proven to be a powerful tool for predicting rock properties in
many tight formations, few studies have been conducted in reservoirs of similar complexity to
the Bakken Formation, which is an ultra-tight, multimineral, low-resistivity reservoir. This study
presents a workflow for Sw prediction using well logs, core data, and ML algorithms. Logs and
core data were gathered from 29 wells drilled in the Bakken Formation. Due to the inaccuracy
and lack of robustness of the tried and tested regression models (e.g., linear regression, random
forest regression) in predicting Sw as a continuous variable, the problem was reformulated as
a classification task. Instead of exact values, the Sw predictions were made in intervals of 10%
increments representing 10 classes from 0% to 100%. Gradient boosting and random forest classifiers
scored the best classification accuracy, and these two models were used to construct a voting classifier
that achieved the best accuracy of 85.53%. The ML model achieved much better accuracy than
conventional resistivity-based methods. By conducting this study, we aim to develop a new workflow
to improve the prediction of Sw in reservoirs where conventional methods have poor performance.

Keywords: petrophysical analysis; Bakken Formation; reserve estimation; tight reservoirs

1. Introduction

Tight reservoirs hold significant oil and gas reserves; however, their complex rock and
fluid properties present production challenges [1]. Despite the application of multistage
hydraulic fracturing, less than 20% of the original oil in place can be technically and econom-
ically producible [2]. Reservoir simulation results tend to overestimate production from
unconventional reservoirs due to uncertainties in characterizing rock and fluid properties
variation. Therefore, accurate characterization of these reservoirs is crucial for production
forecasting, gas storage, and enhanced oil recovery [3]. One of the significant challenges in
estimating Sw in tight reservoirs is the reliance on resistivity-based methods that depend
on formation-dependent variables known as Archie parameters [4]. These parameters can
be difficult to estimate due to the high variation in the cementing minerals and volumes
and to the presence of conductive minerals and high-salinity formation water [5,6]. To
address this challenge, ML models have been widely applied in various conventional and
complex sandstone and carbonate reservoirs to predict petrophysical properties when
conventional methods fail to accurately estimate these properties, as studied by [7,8]. Some
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ML algorithms have shown promise in accurately predicting Sw from well logs in tight
reservoirs. However, the accuracy of the results is highly dependent on the quality of the
well logs used and the complexity of the studied reservoir [9].

Due to the potential to improve the estimation of Sw in complex reservoirs using
data-driven models, the application of ML has been the subject of several extensive studies
over the past two decades. One of the very first studies on fluid saturation prediction
using ML algorithms was conducted by Amiri et al. [10], who compared the Sw results of
conventional models, such as the Indonesian and improved Indonesian models, with the
Sw predicted from the imperialist competitive algorithm (ICA) artificial neural network
(ANN) and backpropagation (BP) ANN models in the tight gas sand of the Mesaverde
group located in various basins such as the upper Great River Basin, Piceance Basin, Uinta
Basin, and Washakie Basin. Both ANN models scored a correlation coefficient (R2) of more
than 0.92 in their study, which was much higher than the R2 of the conventional methods.
Boualam [9], on the other hand, conducted a detailed petrophysical analysis of the Three
Forks Formation, Williston Basin, which is a thin-bedded carbonate formation, and found
that the estimation of Sw using resistivity-based methods was challenging. The author
applied two ML modes (support vector regression (SVR) and ANN). Both models achieved
correlation coefficients of approximately 0.78, demonstrating higher accuracy compared to
the Sw estimates obtained from resistivity-based methods. Miah et al. [11] addressed the
problem of predicting fluid saturations in low-resistivity, shaly sand formations using two
ANN models, achieving a correlation coefficient of 0.9968. Hodavimoghaddam et al. [12]
tested a total of four ML algorithms, XGBoost, LightGBM, CatBoost, and AdaBoost, without
relying on the resistivity log. The study was conducted in a tight sandstone reservoir in
Russia using triple combo logs from 11 wells. Most of the models provided a very good
prediction of Sw.

Despite the promising results found in these studies, most were conducted in either
conventional reservoirs with relatively simple lithologies or tight reservoirs with relatively
simple mineralogy, pore size distribution, and constant volume of cementing minerals.
Additionally, these studies relied on data from a limited number of wells to develop
their predictive models, sometimes as low as data from two wells [13], which is not a
good starting point for developing a data-driven model capable of generalization and
performing predictions on new unseen data from new wells that can potentially have
different petrophysical properties.

This study aimed to accurately predict Sw in the MBM using seven classification
ML algorithms. It was motivated by poor correlation coefficient results from regression
ML algorithms and resistivity-based methods tested on the same sample set. We col-
lected 378 diverse samples from 29 wells in the Bakken Formation across six counties in
North Dakota, USA. The dataset included gamma ray, deep resistivity, neutron porosity,
bulk density, and Dean–Stark Sw measurements. The aim was to develop a robust ML
model capable of capturing maximum variance and mapping the input variables to Sw
accurately. This study discusses the results of the implemented ML models and their
potential for predicting other petrophysical properties in highly heterogeneous reservoirs
and outlines future work to enhance accuracy and generate a Sw map of the MBM. These
findings benefit petrophysicists and petroleum engineers, improving the prediction of
petrophysical properties and enabling accurate reservoir characterization and simulation
in unconventional reservoirs.

2. Geological Settings

The Middle Bakken Member (MBM), as a member of the Bakken Petroleum System, is
the main producing unit in the Williston Basin and the second oil-producing formation in
the United States [14,15]. The formation is located between the Upper and Lower Bakken
shale members, with a thickness ranging from 20 to 50 feet in most areas [16]. The geology
of the MBM is complex and heterogeneous, with variability in mineralogy, pore types and
distribution, and permeability along the formation [17]. The thin layers, bioturbations,
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and the variation in lithofacies (which can be up to eight lithofacies) of the MBM result in
low reservoir quality despite the high volume of hydrocarbons. This presents a significant
challenge for extracting oil and gas [18]. Besides the tightness and the geologic complexity
of the formation, the MBM has a low resistivity reading despite the presence of a high
volume of oil. Unfortunately, well logs cannot depict the variation observed in Figure 1 due
to the low resolution of the logging tools and the high heterogeneity of the petrophysical
and geological properties, which vary from one lithofacies to another [18,19]. Mineralogy
also plays a substantial role in the characterization challenges [20–22] as the MBM has up
to eight minerals, which consist of quartz, calcite, dolomite, illite, kaolinite, K-Feldspar,
Muscovite, and plagioclase, where illite, kaolinite, dolomite, and calcite play the role of
the cementing materials. This makes the characterization of the mineralogy along with the
Sw challenging and the use of conventional methods inaccurate due to the linear models
used for mineralogy estimation and the dependence of the Archie equation on the lithology
variation [21]. Figure 1 shows the geological feature variation of the five lithofacies of the
studied well in the MBM [23].
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Figure 1. Pictures of cores taken from different Middle Bakken facies. L1, L2, L3, L4, and L5 represent
the MBM lithofacies [23].

3. Materials and Methods

In this study, a total of 378 data points were collected from 29 wells drilled in the
MBM. The datasets used to predict Sw consist of conventional logs (gamma ray, depth
resistivity, bulk density, and neutron porosity), and Sw was calculated using the modified
Simandoux equation, while the Dean–Stark Sw was used as the dependent variable in the
dataset. These data were split into 80% training and 20% testing sets and used to train
and evaluate the accuracy of different ML models. The best-performing model was then
compared to conventional resistivity-based Sw estimation methods.

3.1. Petrophysical Data Processing

To accurately predict Sw using ML models, we selected well log values at the same
depth as core data, as core plugs provide point values while well logs are continuous. Before
conducting this study, petrophysical pre-processing of the dataset were performed. This
involves three key steps, environmental correction, depth shifting, and log normalization.
The objective of this phase was to generate a comprehensive and coherent set of continuous
log and core data curves.

Firstly, environmental corrections were performed to correct resistivity, bulk density,
and neutron logs for factors such as borehole properties, mud characteristics, temperature,
pressure, and salinity. Secondly, block-shifting was applied to preserve core data integrity.
Finally, log normalization ensured consistent analysis results across the selected wells,
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avoiding significant deviations in calculations such as clay volume from gamma ray logs.
This comprehensive processing approach lays the foundation for an accurate prediction of
Sw in the MBM.

3.2. Machine Learning Model Description

Seven classification ML models were selected, tested, and compared. The initial aim
of this study was to formulate a regression problem and attempt to predict the exact values
of Sw. However, after trying several models, refining them, and optimizing the parameters,
the models gave poor results, with the best performer, the random forest regressor, only
giving an R2 score of 0.53. Instead of a regression problem, the continuous saturation
data were converted into 10 classes of 10% saturation intervals, and classification models
were used instead. This approach takes into account the uncertainty of the Dean–Stark Sw
measurement, accounting for potential over/underestimation caused by salt precipitation
or incomplete solvent drying [24]. It is, therefore, a tradeoff between accuracy and precision;
using classes with 10% saturation intervals indeed yielded good prediction accuracy, but
we traded off the precision of these predictions.

3.2.1. Logistic Regression

Logistic regression is a supervised classification model that uses a linear combination
of the input variables followed by a logistic function (i.e., sigmoid). Logistic regression is a
binary classification model, with the dependent variable being binary (i.e., either 0 or 1).
Nevertheless, it can be extended to K cases to support multiclass classification [25].

3.2.2. Support Vector Classifier

The support vector classifier (SVC), or support vector machine (SVM) classifier, is
another supervised learning classification algorithm. SVC works by finding an optimal
hyperplane in a hyperdimensional space that separates the different classes of our clas-
sification problem. This hyperplane is found by maximizing the distance between this
hyperplane and its closest point from each class [26].

3.2.3. Random Forest Classifier

The random forest classifier is an ensemble model that uses predictions from multiple
trained decision trees to develop more robust and accurate predictions. The decision trees
that make up the random forest classifier are each trained on a random subset of the data,
then used to predict the classes of new data. The aggregate of the trees’ predictions is the
outcome of the random forest [27,28].

3.2.4. AdaBoost

AdaBoost, or adaptive boosting, is another type of ensemble model that iteratively
combines weak learners to achieve a stronger learner. After each iteration, wrongly pre-
dicted samples are weighted stronger than the rest (i.e., it modifies the sample distribution)
to emphasize them more. Although AdaBoost also uses decision trees (like random forest),
the different decision trees have different weights on the final prediction, with the weights
assigned based on their performance, and they are not treated equally like in random
forest [29,30].

3.2.5. Gradient Boosting Classifier

Gradient boosting is yet another type of ensemble method. It is different from Ad-
aBoost in the way it adds and trains the weak learners; it does not change the distribution of
the sample and instead trains the weak learner on the residual error of the previous learner.
Gradient boosting also employs a gradient-based optimization scheme for a differentiable
loss function [31].
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3.2.6. Artificial Neural Networks

Artificial neural networks are types of models inspired by the structure of biological
neurons. They consist of several layers: (1) input, (2) hidden, and (3) output layers. Each
layer contains a specific number of nodes or neurons. Data are fed into the model through
the input layer and move forward in the network, where each layer performs matrix
multiplication followed by a nonlinear activation function and passes the output to the next
layer until the output layer is reached, as shown by [32]. The matrices used for computation
contain the parameters of the network or weights. The whole process of moving forward
in the network from input to output is termed forward propagation. During the learning
phase, the weights are initialized randomly, and the network output is calculated. A loss
function is used to measure the prediction error; then, the backpropagation algorithm
is used to perform auto differentiation on the loss function with respect to the model’s
weights. Gradient descent is used to optimize these weights to reduce the model’s error.
This process goes on until a minimal loss is achieved [33,34].

For this study, we used a neural network with 8 inputs (i.e., well logs and calculated
inputs), a hidden layer with 32 neurons, and an output layer with 1 output and Softmax
activation function (i.e., multiclass classification).

3.2.7. Voting Classifier

The voting classifier is an ensemble ML model that takes the predictions made by
several separately trained estimators (e.g., SVC, random forests) and aggregates these
predictions using two types of voting systems:

• Hard voting: the final prediction is based on the majority vote of the estimators.
• Soft voting: the final prediction is the average of the class probabilities predicted by

each model.

The voting classifier does not perform classification but draws on the combined
predictions of several models to obtain a more accurate estimate [35].

3.3. Data Scaling

Data scaling is an important step prior to feeding data into ML models [36]. Scaling
the input variables affects the model performance and interpretability in several ways:

• Improved model performance by reducing the effect of variables’ differences in scale.
• Faster model convergence, especially for neural networks with gradient descent

optimization.
• Better interpretability by making it easier to compare the different coefficients head-to-

head rather than being scaled.

Data were scaled and standardized by removing the mean from each variable and
scaling it to unit variance. To scale a variable x, we use

z =
(x − µ)

s
(1)

where µ is the mean of the samples and s is the standard deviation. The scaler used for the
training set should be the same scaler used for testing because the test set will necessarily
have different means and standard deviations.

The flowchart in Figure 2 summarizes the data and methods used to estimate Sw in
the MBM.
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4. Results and Discussion

In this section, we present and discuss the results of seven ML models used to predict
Sw in the MBM. ML models were applied due to the limitations of resistivity-based methods
in such complex and heterogeneous reservoirs. Classification ML models were used
over regression models due to their low performance and the inherent uncertainty of Sw
measured in the tight core samples of the MBM. The measurements could be either over-
or underestimated.

The selected ML models were processed, trained, and tested with the objectives to:

• Investigate the potential linear relationship between well logs, Sw calculated using
the modified Simandoux method, and Dean–Stark Sw.

• Assess the performance of the Sw prediction models and compare their accuracy with
that of conventional methods.

• Determine the well logs that have the highest feature importance among the applied
ML models.
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In the following subsections, we conducted a petrophysical analysis, followed by an
analysis of the data used for prediction, to finally apply and test the performance of the ML
models. The results were compared with regression ML models and resistivity-based methods.

4.1. Petrophysical Analysis

Before training the selected ML models, we conducted a petrophysical analysis to cal-
culate Sw using the Archie, Simandoux, modified Simandoux, Indonesian, Waxman–Smits,
and dual-water methods (Figure 3). We evaluated the accuracy of the models using Sw
measured with the Dean–Stark method. Before estimating Sw using resistivity-based
methods, we calculated the clay volume (Vsh) and calibrated the results with the Vsh
measured from the X-ray diffraction analysis. Effective porosity was also calculated and
calibrated with porosity measured from cores, and Archie parameters (a, n, and m) were
defined. From the petrophysical analysis and among all the models used to calculate Sw,
the modified Simandoux method provided the most accurate estimation. The results of the
model were then used as input to train and test the ML models. Figure 3 shows the results
of Sw calculated using the resistivity-based methods and calibrated with core data.
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Figure 3. Petrophysical analysis of the Middle Bakken Formation. Tracks from left to right: track 1:
reference depth, track 2: Thickness of the MBM, track 3: clay volume calibrated with XRD measured
clay volume, track 4: effective porosity calibrated with core measured porosity, tracks 5 to 10: Sw
calibrated with core measured Sw, oil saturation (green color), water saturation (blue color).
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4.2. Exploratory Data Analysis

To investigate the relative importance of the input variables with the output variable,
exploratory data analysis of the constructed dataset was conducted. This analysis enabled
us to understand the dataset’s patterns, linearity, and potential relationships. By examining
measures of mean, standard deviation, and the Pearson correlation coefficient, we were
able to identify outliers, discern trends, and establish a solid foundation for subsequent
modeling and analysis techniques. Table 1 shows the different statistics of the predictive
variables (i.e., well logs) and predicted variables (i.e., water saturation).

Table 1. Statistical summary of the predictive and predicted variables.

GR R RHO NPOR PE Vsh Por SwSimandoux Swcore

mean 80.79 11.02 2.62 0.0865 3.59 0.1101 0.0818 0.3016 0.3836
std 16.56 18.84 0.03 0.0263 0.39 0.0393 0.0221 0.1248 0.1466
min 26.86 2.11 2.51 0.0108 2.61 0.0133 0.0278 0.0200 0.0540
25% 73.25 4.59 2.60 0.750 3.33 0.0890 0.0675 0.2022 0.2593
50% 80.89 6.44 2.62 0.0851 3.55 0.1063 0.0800 0.3151 0.3695
75% 90.88 11.0 2.64 0.0993 3.83 0.1315 0.0958 0.3883 0.4690
max 124.47 254.43 2.69 0.1550 5.66 0.2435 0.1518 0.6682 0.7490

Figure 4 shows the distributions of the various variables and their distributions’ kernel
density estimates. Most of the variables show a normal distribution, with some exceptions.
The photoelectric factor, modified Simandaux saturation, and core saturation exhibit a
bimodal distribution, while resistivity demonstrates significant positive skewness with
extreme values. These extreme values, located near the upper and lower Bakken members
within the Middle Bakken, should not be considered outliers.
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to predict Sw.

Figure 5 displays the correlation matrix, providing insights into the relationships
between the predictive variables (well logs) and the target variable. Notably, none of the
predictive variables exhibit a strong linear correlation with the target variable. However, the
Sw calculated from the modified Simandoux emerges as the variable with the highest linear
correlation coefficient of 0.44, followed by bulk density at 0.36. While a high correlation
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coefficient indicates a potentially robust and accurate ML model, the lack thereof only
implies the absence of a direct linear relationship between the predictive and predicted
variables. Nonetheless, there still can be nonlinear relationships that can be found and
exploited by ML models.
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4.3. Machine Learning Model Performance

Figure 6 shows the accuracy scores of the various models on the test set. Among
them, gradient boosting and random forest achieved the highest classification accuracy,
82.89% and 77.62%, respectively. The model parameters are summarized in Table 2. Using
a soft voting scheme, these two models were subsequently combined into a voting classifier.
This approach sums the predicted probabilities for each class and selects the class with the
highest probability.
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Table 2. Modeling parameters of gradient boosting and random forest classifiers.

Loss Learning
Rate

Num. of
Estimators Criterion Max

Depth
Minimum

Sample Split

Gradient
boosting
classifier

log_loss 0.1 100 friedman_mse 3 2

Random forest
classifier N/A N/A 100 Gini None 2

The voting classifier yielded the best accuracy among all models, reaching a score
of 85.53%. However, the ANN achieved a modest accuracy of 48.76% despite attempting
various network architectures and hyperparameter tuning. This lower performance can
be attributed to the relatively small dataset, which consisted of only 378 samples. The
limited data may have hindered the network’s training process and its ability to generalize
to unseen data. Data collection was limited by the publicly available core analysis reports;
if a large enough dataset is to be collected in future work, the artificial neural network
should be able to have a better generalization, consequently achieving higher accuracy.
Additionally, the modified Simandoux Sw, calculated for the entire dataset rather than just
the testing subset, exhibited a low accuracy of only 28.57%.

4.4. Model Evaluation

The confusion matrices shown in Figure 7 present the results obtained from two
methods for predicting Sw: the voting classifier and the modified Simandoux equation.
The voting classifier exhibits high prediction accuracy, proving its efficiency in estimating
Sw in the selected wells drilled in the MBM. The equation mostly overestimates the Sw,
yielding significantly higher values than the Dean–Stark Sw.
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Despite its inaccurate estimation, modified Simandoux equation Sw calculations had
the highest feature importance (measured by the mean decrease in impurity) for the ML
model, followed by the resistivity log (Figure 8). The remaining logs had very similar
feature importance scores. This indicates that the modified Simandoux calculations set the
starting point for the ML models, which then used the well logs to refine the estimations
and provide much more accurate predictions.
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Table 3 lists Sw prediction scores of various ML models from recently published
studies using conventional well logs as input variables. The input variables used by these
studies are identified with the R2 values achieved between predicted and measured Sw
values. Note that all ML methods display a narrow range of high R2 values (ranging from
0.78 to 0.99; Table 2), but the SVM method achieved a lower R2 value (R2 = 0.78).

Table 3. Results from published studies that have used conventional well logs to predict Sw from ML
models. The comparison was made with R2 values achieved by the models with the test subsets.

Author Samples and
Wells Number ML Model Formation Results

Ibrahim et al. [36] 782 samples,
2 wells ANN, ANFIS Tight gas

sandstone R2 = 0.93

Hadavimoghaddam
et al. [12] 11 wells XGBoost Sandstone R2 = 0.999

Miah et al. [10] 182 samples ANN and SVM N/A (Bengal
Basin) R2 = 0.999

Khan et al. [37] 150 samples ANN and ANFIS N/A (South
Asian field) R2 = 0.94

Hamada et al. [38] 269 samples ANN Shaly sandstone MSE = 0.012
Gholanlo et al. [39] 564 samples, 1 well ANN Carbonate R2 = 0.87
Boualam et al. [9] 2509 samples SVM and ANN Tight carbonate R2 = 0.78

This study 378 samples,
29 wells Voting classifier

Ultra tight and
multimineral
formation

Accuracy = 85.53%

In this study, the classification approach outperformed both the initially proposed
regression approach and resistivity-based methods, resulting in higher accuracy. The
limitations faced by the initially proposed methods in accurately predicting Sw can be
attributed to the following challenges:

• High heterogeneity of the MBM, including the presence of extremely thin laminations
and significant variation in the volume of cement minerals.

• The low resolution of logging tools cannot accurately represent the high variation of
physical properties (bulk density, neutron porosity, photoelectric factor, and resistivity)
of such formations, which are used as inputs for Sw prediction.

• The uncertainty associated with laboratory measurement of Sw in tight cores using
the Dean–Stark method, which undermines the accuracy of Sw prediction using ML
regression algorithms, even when models show a high correlation coefficient.

Considering these challenges, the application of ML classification models has proved
to provide the most accurate estimation of Sw. The proposed workflow introduces a
methodology aimed at improving the estimation of Sw in unconventional reservoirs. No-
tably, this approach takes into consideration the inherent heterogeneity of the formation
and the limitations posed by logging measurements and the Dean–Stark method.
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The application of classification models yields prediction results as classes representing
ranges of Sw, rather than continuous values. The robustness of the applied models relies
on using data from wells distributed across the MBM to capture the reservoir heterogeneity.
To the best of our knowledge, this is the first attempt to predict Sw using classification ML
models in reservoirs where regression ML models and resistivity-based methods fail to
accurately estimate Sw.

To improve this workflow, it is essential to quantify the effect of the uncertainty associ-
ated with logging and laboratory core measurements on the predicted Sw. This will lead to
more accurate classes for a representative Sw classification. Overcoming these limitations
will yield a more precise and dependable Sw prediction in heterogeneous reservoirs.

In conclusion, this study offers an effective solution for estimating Sw in reservoirs
where resistivity-based methods and ML regression models are underperforming. It also
establishes a basis for future research, enabling validation and improvement of the proposed
workflow. Additionally, the suggested workflow can be extended to predict other rock
properties, such as absolute permeability in the Bakken, by integrating it with the approach
developed by Aimen et al., 2022 [19]. Future research should replicate this workflow in
diverse fields, including the Bakken Formation and other complex reservoirs. Moreover,
exploring alternative classification ML models could further refine the prediction process
and enhance the overall outcomes.

5. Conclusions

In this study, we assessed the performance of seven classification ML models in
predicting the Sw of the MBM as a tight, low-resistivity, and multimineral reservoir. Well
logs, Sw calculated using the modified Simandoux method, and Dean–Stark Sw data were
used to train and test the models. The performance results were then compared with the
accuracy of the regression ML models and resistivity-based methods. The results of the ML
models led to the following conclusions:

• The voting classifier model, based on gradient boosting and random forest, displays
the highest accuracy of Sw in the MBM.

• The Sw calculated using the modified Simandoux method tends to be overestimated
in the MBM. However, using it as input to train and test the classification ML models
improved result accuracy.

• Petrophysical data processing, which consists of depth shifting, environmental correc-
tion, and log normalization, is crucial for accurate prediction of Sw.

• The voting classifier model, based on gradient boosting and random forest, can accu-
rately match the Dean–Stark Sw within a specific range. Therefore, it can be a viable
alternative to expensive laboratory tests.

• We propose applying classification ML models to predict other rock properties, such
as permeability and shale volume. This suggestion stems from the recognition that
these properties share similar limitations as water saturation.
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