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Abstract: The accurate determination of key parameters, including the CO2-hydrocarbon solubility
ratio (Rs), interfacial tension (IFT), and minimum miscibility pressure (MMP), is vital for the success
of CO2-enhanced oil recovery (CO2-EOR) projects. This study presents a robust machine learning
framework that leverages deep neural networks (MLP-Adam), support vector regression (SVR-RBF)
and extreme gradient boosting (XGBoost) algorithms to obtained accurate predictions of these critical
parameters. The models are developed and validated using a comprehensive database compiled
from previously published studies. Additionally, an in-depth analysis of various factors influencing
the Rs, IFT, and MMP is conducted to enhance our understanding of their impacts. Compared to
existing correlations and alternative machine learning models, our proposed framework not only
exhibits lower calculation errors but also provides enhanced insights into the relationships among the
influencing factors. The performance evaluation of the models using statistical indicators revealed
impressive coefficients of determination of unseen data (0.9807 for dead oil solubility, 0.9835 for live oil
solubility, 0.9931 for CO2-n-Alkane interfacial tension, and 0.9648 for minimum miscibility pressure).
One notable advantage of our models is their ability to predict values while accommodating a wide
range of inputs swiftly and accurately beyond the limitations of common correlations. The dataset
employed in our study encompasses diverse data, spanning from heptane (C7) to eicosane (C20) in
the IFT dataset, and MMP values ranging from 870 psi to 5500 psi, covering the entire application
range of CO2-EOR. This innovative and robust approach presents a powerful tool for predicting
crucial parameters in CO2-EOR projects, delivering superior accuracy, speed, and data diversity
compared to those of the existing methods.
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1. Introduction

As our modern society continues to hinge on oil for energy and a wide range of
petrochemical products, ranging from everyday household goods to essential medicines,
the management of oil resources has become increasingly critical [1]. Of particular concern
are the diminishing recovery rates seen in oil fields worldwide, indicating that our current
extraction techniques may not be sufficient to satisfy global demand [2]. Estimates suggest
that more than half (about 2/3) of the original oil in place (OOIP) remains untapped after
primary and secondary recovery methods are applied [3]. For instance, the Rhourde El
Baguel (REB) field in Algeria has only managed to recover roughly 21% of the OOIP in over
30 years of production [4]. This points toward an urgent need for enhanced oil recovery
(EOR) methods to retrieve substantial quantities of trapped oil [5].
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The application of EOR is not just a matter of resource efficiency; it also plays a
significant role in environmental preservation. As the oil and gas industry moves towards
decarbonization in alignment with global efforts to mitigate climate change, the role of CO2-
EOR becomes even more crucial as part of carbon capture, utilization, and storage (CCUS)
strategies [6]. This approach aligns with the industry’s goal to remain a leading energy
system while addressing environmental concerns. By effectively managing and utilizing
CO2 emissions for oil recovery, the industry not only enhances its resource efficiency but
also makes significant strides toward sustainability [7].

Among various EOR techniques, miscible CO2 gas injection has emerged as the most
widely implemented approach in numerous countries, particularly for light oil reservoirs [8].
With nearly 80% of global reservoirs suited for some form of CO2 injection [9], this method’s
growing prevalence can be attributed to the economic attractiveness of naturally sourced
CO2, which provides a cost-effective supply [10].

The success of a CO2-EOR project heavily relies on key parameters such as minimum
miscibility pressure (MMP), interfacial tension (IFT), and solubility (Rs) [11]. When CO2 is
injected into oil reservoirs, it dissolves in the oil, causing the oil to swell and reducing its
viscosity. This process also lowers the interfacial tension between fluid phases, aiding in
the retrieval of trapped oil. Optimal conditions are achieved when the interfacial tension
between fluid phases reaches zero, which signifies that CO2 has become fully miscible with
the oil, thereby facilitating the most efficient oil displacement [12].

The oil and gas industry is currently undergoing a significant digital transformation,
with advancements in artificial intelligence (AI) and machine learning reshaping traditional
practices [13]. Machine learning is being leveraged for tasks such as analysis and modeling,
drilling and subsurface characterization, forecasting maintenance requirements, optimizing
supply chains, and financial resource management [14]. The integration of these technolo-
gies has seen a surge in recent years, and as the industry recognizes the value they add,
innovative applications continue to multiply [15].

A substantial number of studies have sought to understand the EOR process via misci-
ble CO2 injection, employing both experimental and numerical simulation techniques [16].
In recent times, machine learning methods have been increasingly used to gain valuable
insights into EOR projects [15]. This study aims to further contribute to this burgeoning
field by applying various supervised machine learning techniques to accurately predict
key parameters including solubility (Rs), interfacial tension (IFT), and minimum miscibility
pressure (MMP) required for effective CO2-EOR design.

2. Literature Review

The design of a CO2 miscible injection requires the prediction of key parameters such
as the minimum miscibility pressure (MMP), CO2 solubility, and phase behavior of the
CO2–oil system.

The minimum miscibility pressure (MMP) is a crucial parameter in CO2 miscible
injection, as it indicates the pressure at which the injected CO2 and the oil become com-
pletely miscible [17]. Accurate prediction of the MMP is necessary to optimize the design
of the CO2 injection process and increase oil recovery [18]. Several models and methods
have been proposed to predict the MMP in CO2 miscible injection. These models can be
categorized into equation of state (EOS) models and empirical models [19]. EOS models
are based on the principle of thermodynamics and can predict the phase behavior of the
CO2–oil system as a function of pressure and temperature. Empirical models, on the other
hand, use statistical methods to fit experimental data and predict the MMP [20].

One of the most widely used EOS models for predicting the MMP is the Peng–
Robinson (PR) equation of state. This model considers the interactions between the CO2
and oil molecules and it can predict the phase behavior of the CO2–oil system [21]. Several
modifications have been proposed to improve the accuracy of the PR model for predicting
the MMP. For instance, Kiani et al. [22] developed a new PR model that accounts for the
impact of asphaltene on MMP prediction. This model was validated using experimental
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data and demonstrated superior accuracy compared to that of existing models. Addition-
ally, Tahsin Ahmed [23] utilized a modified version of the PR EOS, along with a newly
introduced “Miscibility Function”, to estimate the injection pressure required for miscible
gas injection. Meanwhile, Alshuaibi et al. [24] developed a novel formula for the Abu
Dhabi reservoir, which incorporates parameters such as temperature, saturation pressure,
and reservoir fluid composition to determine the MMP. Rajak and Ashutosh [25] used
multiple EOS models, despite the limited laboratory data, to develop a novel approach for
estimating the appropriate MMP value. These methods offer potential ways to optimize
the design of CO2 injection and enhance oil recovery.

Machine learning algorithms are another approach for predicting the MMP. Sinha et al. [26]
developed an analytical correlation for calculating the MMP and tuned the correlation
coefficients using linear SVM. They also used a hybrid approach that combined random
forest (RF) regression and analytical correlation. Shakeel et al. [27] focused on artificial
neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques
to predict MMP for CO2 miscible flooding. The results showed that the ANN prediction
was overall better than the ANFIS technique. Li et al. [28] evaluated the reliability of
four machine learning-based prediction models including neural network analysis (NNA),
genetic function approximation (GFA), multiple linear regression (MLR), and partial least
squares (PLS) using 136 sets of data. Other machine learning models have also been
developed for MMP prediction, such as those developed by the authors of [18,29–32].

The prediction of CO2 solubility in oil is another important parameter that affects the
design of CO2 miscible injection. Various models have been developed to accurately predict
CO2 solubility in crude oil. Zhang et al. [33] developed a novel method using artificial
neural networks to predict CO2 solubility in heavy oil, which was found to be accurate and
more efficient than traditional simulation methods. Dadan et al. [34] provided a reliable
model to predict CO2 solubility in formation brines using ion-specific parameters and a
binary interaction parameter between ions and CO2. The solubility of CO2 in aqueous
electrolyte solutions was also described using the electrolyte perturbed hard-sphere chain
equation of state (e-PHSC) by Dadan et al. [34]. Zhen et al. [35] employed an artificial
neural network (ANN) and support vector machine (SVM) to develop GC models based on
10,116 CO2 solubility data measured in various ionic liquids (ILs) at different temperatures
and pressures. These models can significantly aid in the design of a CO2 miscible injection.

The phase behavior of the CO2–oil system is another critical parameter that affects
the design of a CO2 miscible injection. Cheng et al. [36] investigated the effect of phase
behavior on the design of a CO2 miscible injection. The study showed that the CO2–oil
system can exhibit different phase behaviors depending on the pressure and temperature
conditions. Therefore, it is important to consider the phase behavior when designing CO2
miscible injection. Zhao et al. [37] developed a new model to predict the CO2–oil phase
behavior using the Grayson–Streed method. The model was validated using experimental
data and was found to be more accurate than existing models.

3. Data Collection

Data collection stands as the cornerstone in resolving any supervised machine learning
problem. The efficacy of predictive models hinges largely on the quality of the data they are
derived from. As such, meticulous data collection practices have become an indispensable
component in crafting highly effective models. The collected data need to be free from
errors and brimming with pertinent information directly relevant to the task at hand.

Before embarking on the journey of model development, we must subject our collected
data to rigorous statistical analysis. This preliminary step ensures that we gauge the
quality of data distribution, isolate and eliminate any outliers, and verify the presence of
relationships among our parameters. This data-driven examination lays a solid groundwork
for our subsequent machine learning endeavors, facilitating more accurate, reliable, and
effective predictive modeling.
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3.1. Solubility (Rs)

Our dataset for this study was gathered from various published research articles [38–42].
We used laboratory measurements of the solubility of carbon dioxide (CO2) in oil, taken
with the experimental apparatus.

The primary inputs to our dataset were saturation pressure (Ps, MPa), bubble point
pressure (Pb, MPa), temperature (T, ◦C), molecular weight (MW, gr/mol), and specific
gravity (γ). We selected these parameters because they are critical to describing CO2
solubility. Furthermore, these properties are frequently utilized in artificial intelligence
projects focusing on solubility.

By focusing on these parameters, we could accurately characterize CO2 solubility,
ensuring that our dataset was relevant and precise. This selection also facilitated the effec-
tive development and execution of our machine learning models, allowing a meaningful
analysis of the collected data. Table 1 shows a statistical description of the data.

Table 1. A brief description of the experimental data used for the two solubility models (dead oil and
live oil).

Oil State Experimental Data No. of
Samples Mean Std Min 25% 50% 75% Max

Dead Oil

MW (gr/mole) 105 350.6415 92.0752 196 246 358 424 490
γ 105 0.9257 0.0481 0.8382 0.8654 0.9452 0.9677 0.9867

T (◦C) 105 53.8450 35.75 18.33 26.17 48.89 69.0275 140
Ps (MPa) 105 6.9716 4.5963 0.5 3.5475 6.02 9.5725 27.38

Rs (Mole fraction) 105 0.4575 0.1725 0.1 0.313 0.4789 0.6048 0.847

Live Oil

MW (gr/mole) 74 152.8364 61.9598 80.7 115.7 133.2 173.575 391.6
γ 74 0.8371 0.0617 0.6748 0.8348 0.8498 0.8789 0.9663

T (◦C) 74 65.9297 19.122 28 59 64.7 67 123.9
Pb (MPa) 74 8.5052 5.8059 2.15 3.05 6.2 11.91 18.52
Ps (MPa) 74 13.6241 7.1675 3.23 8.3075 12.33 17.24 32.76

Rs (Mole fraction) 74 0.4103 0.1677 0.1083 0.2716 0.4182 0.5381 0.7201

A pair plot was executed for both datasets to visually represent the distribution and
approximate density of each variable. It also enables us to observe the interrelation between
these variables. The variations within each graph can be observed in Figure 1 displayed
below.

The graphs are arranged in a matrix format, where the rows represent the y-axis and
the columns represent the x-axis. The diagonal subplots display the individual distributions
of each attribute. For instance, when examining the molecular weight distribution in dead
oil, it is observed that the values are well-distributed and mostly fall within a range
from 200 to approximately 490 gr/mol. The distribution density is higher between 350
and 375 gr/mol. Conversely, in live oil, the molecular weight values are relatively lower
compared to those of dead oil, ranging between 13 and about 300 gr/mol. The distribution
density is higher between 110 and 170 gr/mol. These molecular weight ranges align with
the physical properties of the oils; live oil contains volatile components, resulting in a
higher distribution density in the lower molecular weight range. On the other hand, dead
oil is a heavier oil or residue that has lost its volatile components, leading to a higher
distribution density in the higher molecular weight range.
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Furthermore, the graphs reveal a significant correlation between saturation pressure
(Ps) and the solubility of CO2 (Rs) in both models. As the saturation pressure increases, the
solubility also increases.

Figure 2 depicts a graph with linear curves, providing a clearer illustration of the
strong relationship between these variables.
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The Pearson correlation coefficient was employed to quantify the degree of associ-
ation between the input variables and solubility, further validating the aforementioned
observations. Table 2 and the heat maps in Figure 3 presented below depict the correlation
coefficients for each parameter.

Table 2. Correlation coefficients between solubility and other parameters.

Oil State Experimental
Data

MW
(gr/mole) γ T (◦C) Pb

(MPa) Ps (MPa)

Dead Oil Rs (Mole fraction) −0.0713 −0.0934 −0.1696 - 0.7813
Live Oil Rs (Mole fraction) 0.0231 0.0181 0.0774 −0.0132 0.3844
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The heatmaps clearly indicate that certain input variables exhibit a weak linear rela-
tionship with solubility. This implies that a linear model may not be suitable for capturing
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these relationships effectively. Consequently, a nonlinear implementation is required to
accurately identify and model these relationships.

3.2. Interfacial Tension (IFT)

Data regarding CO2–n-alkane interfacial tension (IFT, mN/m) were gathered from
various research sources, including works by Zolghadr et al. [43], Philip T. Jaeger [44],
and Georgiadis et al. [45]. It is important to note that the sessile drop technique at high
pressures was the primary method used for experimentally determining the interfacial
tension in most of these sources. The histogram displayed below (Figure 4) illustrates the
data distribution for each component.
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The parameters that characterize the interfacial tension include pressure (P, MPa),
temperature (T, K), molecular weight (MW, g/mol), critical temperature (Tc, K), critical
pressure (Pc, MPa), and the acentric factor (ω) of the n-alkane. Table 3 provides a statistical
description of the dataset. These properties were chosen because of their significant impact
on interfacial tension, making them crucial inputs to our dataset. This careful selection of
features ensured that our machine learning models were informed by relevant and precise
data, leading to accurate and meaningful results.

Table 3. A brief description of the data used for the interfacial tension model.

Experimental
Data

No. Of
Samples Mean Std Min 25% 50% 75% Max

MW (g/mol) 1071 175.6069 64.6520 96 134 175 222 275
P (MPa) 1071 6.3848 4.1064 0.097 3.025 6 9.085 17.1

T (K) 1071 350.6999 31.6949 297.85 323.175 344.3 373.1 443.05
IFT (mN/m) 1071 9.8366 5.8556 0.001 5.225 9.37 14.15 27.05

By examining the histograms presented in Figure 5, it is evident that the data for
each parameter are distributed effectively within their minimum and maximum ranges.
Taking molecular weight and pressure as examples, we observe a high-density distribution
between 210 and 230 g/mol, particularly peaking at 222 g/mol, which corresponds to
hexadecane. As for pressure, there is a notable concentration of values below 10 MPa.
This is of particular interest because, for economic reasons, it is desirable to achieve low
interfacial tension (IFT) values at the lowest possible pressure.
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To gain deeper insights into the impact of pressure on interfacial tension, a scatter plot
(Figure 6) was created to visualize the relationship between pressure and interfacial tension
at different temperature values. The first graph demonstrates a uniform distribution of
pressure for each temperature, reflecting the experimental principle outlined by the authors
in the literature. The experimental method, known as the sessile drop technique, involves
gradually increasing pressure to observe the behavior of interfacial tension across multiple
temperature values (in this case, 11 values). The experiment was repeated with diverse
compositions, and the results were recorded. In the second graph, a prominent association
between interfacial tension (IFT) and pressure is evident. As pressure rises, there is a
noticeable reduction in interfacial tension. This correlation holds true for all compositions
tested, indicating the consistent influence of pressure on interfacial tension.

Eng 2023, 4, FOR PEER REVIEW 
 9 
 

 

 
Figure 6. Pressure–interfacial tension relationship. 

The correlation coefficients displayed in Table 4 and Figure 7 below reveal notable 
relationships between the variables. Pressure exhibits a strong negative correlation with 
interfacial tension, indicated by a coefficient of −0.8577. Similarly, temperature shows a 
negative correlation, albeit weaker, with a coefficient of −0.2042. Conversely, molecular 
weight displays a positive linear relationship with interfacial tension, reflected by a coef-
ficient of 0.2918. 

Table 4. Correlation coefficients between interfacial tension and the other parameters. 

Experimental Data MW (gr/mole) P (MPa) T (K) 
IFT (mN/m) 0.2918 −0.8577 −0.2042 

 
Figure 7. The heatmap of correlation coefficients between interfacial tension and the other parame-
ters. 

3.3. Minimum Miscibility Pressure (MMP) 
The data utilized for the model’s development were obtained from various literature 

sources, notably Cronquist [46], Metcalfe [47], Alston et al. [48], Yuan et al. [49], and Zhang 
et al. [50]. Multiple slim tube tests were conducted under varying conditions, and the min-
imum miscibility pressure (MMP, MPa) values were recorded in each instance. 

The key factors that influence the MMP are reservoir temperature, oil composition, 
and the components of the injected gas. Accordingly, the inputs chosen for our model 
included reservoir temperature (TR, K), the critical temperature of the injected gas (TC, 

Figure 6. Pressure–interfacial tension relationship.



Eng 2023, 4 1913

The correlation coefficients displayed in Table 4 and Figure 7 below reveal notable
relationships between the variables. Pressure exhibits a strong negative correlation with
interfacial tension, indicated by a coefficient of −0.8577. Similarly, temperature shows
a negative correlation, albeit weaker, with a coefficient of −0.2042. Conversely, molecu-
lar weight displays a positive linear relationship with interfacial tension, reflected by a
coefficient of 0.2918.

Table 4. Correlation coefficients between interfacial tension and the other parameters.

Experimental Data MW (gr/mole) P (MPa) T (K)

IFT (mN/m) 0.2918 −0.8577 −0.2042
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3.3. Minimum Miscibility Pressure (MMP)

The data utilized for the model’s development were obtained from various literature
sources, notably Cronquist [46], Metcalfe [47], Alston et al. [48], Yuan et al. [49], and
Zhang et al. [50]. Multiple slim tube tests were conducted under varying conditions, and
the minimum miscibility pressure (MMP, MPa) values were recorded in each instance.

The key factors that influence the MMP are reservoir temperature, oil composition,
and the components of the injected gas. Accordingly, the inputs chosen for our model
included reservoir temperature (TR, K), the critical temperature of the injected gas (TC, K),
an oil composition represented by a molecular weight of C5 and heavier (MWC5+, g/mol),
and the ratio of volatile to intermediate components (xvol/xint). This selection of inputs
ensured that our model was guided by factors directly influencing the MMP, providing a
reliable basis for accurate predictions.

The histograms displayed in Figure 8 effectively visualize the distribution of the data,
and Table 5 provides a statistical description of the MMP dataset.

The histograms provide visual evidence that although the dataset covers a wide range
of values, there are certain variables that are not well-distributed and may not be statisti-
cally significant. Taking MMP (minimum miscibility pressure) values as an example, we
observe that the 75th percentile of the data is 19.12 MPa, while the maximum value reaches
38.52 MPa. Upon closer examination of the MMP histogram, it becomes apparent that
only a small number of samples (six samples) fall above the 30 MPa threshold. To further
validate and identify these values as outliers, boxplots serve as excellent visualization tools.
They enable the identification of abnormal and outlier data points, which can aid in making
informed decisions about their inclusion or exclusion from the dataset.
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Table 5. A brief description of the data used for the minimum miscibility pressure model.

Experimental
Data

No. of
Samples Mean Std Min 25% 50% 75% Max

TR (K) 201 345.4395 24.3101 307.55 327.59 338.71 362.040 410.37
Tc (K) 201 302.7178 8.3058 281.45 295.29 304.19 304.190 338.77

MWC5+ (g/mol) 201 194.6348 40.1033 136.26 171.1 187.80 211.213 391
xvol/xint 201 1.5955 2.0928 0 0.51 0.74 1.5 13.6067

MMP (MPa) 201 16.0235 6.1184 6.50 11.138 14.80 19.12 38.52

The box plot operates by identifying outliers as values that fall below the limit on the
left (Q1 − 1.5 ∗ IQR) and above the limit on the right (Q3 + 1.5 ∗ IQR), where Q1 represents
the first quartile (25th percentile), Q3 denotes the third quartile (75th percentile), and IQR
corresponds to the interquartile range (the width of the box being from the 25th to 75th
percentile). In Figure 9, the box plot reveals the presence of six outliers (represented by
diamonds) that surpass the 30 MPa threshold, indicating the need for their removal from
the dataset.
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It is crucial to perform this step prior to model development to ensure optimal results,
as retaining these outliers would likely lead to higher error values and a lower correlation
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coefficient. Attempting to train the model effectively with only six values above 30 MPa
would be challenging. Figure 10 demonstrates the updated box plot visualizations and data
distribution histogram after removing the outliers, enabling a more accurate representation
of the dataset.
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As depicted in Table 6 and Figure 11 below, a clear pattern emerges regarding the
influence of various parameters on MMP variation. Reservoir temperature stands out as
the most influential factor, displaying a strong positive correlation with a coefficient of 0.68.
This indicates that as the temperature rises, the MMP tends to increase as well. Additionally,
the molecular weight exhibits a moderate positive relationship with MMP, evident from its
correlation coefficient of 0.47. Similarly, volatile to intermediate components show a modest
positive correlation with a coefficient of 0.31. On the other hand, the critical temperature
demonstrates a small negative linear relationship with the other parameters. Although this
negative correlation is relatively weak, it still provides valuable insights and adds value to
our predictive model.

Table 6. Correlation coefficients between MMP and the other parameters.

Experimental Data TR (K) Tc (K) MWC5+ (g/mol) xvol/xint

MMP (MPa) 0.6845 −0.1829 0.4657 0.3133
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4. Model Implementation

In the process of training machine learning models, it is often observed that the
models might start to overfit or memorize the training data. While this might lead to
good performance on the training set, it could also result in poor predictive accuracy for
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unseen data. To counteract overfitting and ensure the model’s generalization, the dataset
is commonly partitioned. Thus, the datasets in this study were randomly divided into
distinct subsets:

• Dead oil solubility model: the training and validation set comprised 85% of the dataset
(90 samples), and a test set formed 15% of the dataset (15 samples).

• Live oil solubility model: the training set contained 80% of the dataset (60 samples),
and a test set held 20% of the dataset (14 samples).

• Interfacial tension model: the training set included 80% of the dataset (856 samples),
a cross-validation set made up 1/8 of the training set (107 samples), and a test set
represented 20% of the dataset (215 samples).

• Minimum miscibility pressure model: the training set consisted of 84% of the dataset
(162 samples), and a test set incorporated 16% of the dataset (31 samples).

In addition, normalization of data was conducted before inputting them into machine
learning models to ensure consistent ranges. For example, in the case of solubility, the
molecular weight values extended up to 490 gr/mol, while specific gravity values remained
as less than 1. To balance this, z-score normalization was applied.

It should also be noted that Python 3.8 and its associated libraries were utilized for the
development of all models.

4.1. Dead Oil Solubility

Initially, a multilayer perceptron (MLP) model was constructed, owing to its robust
nonlinear representation capability, and its foundational unit being a neuron. The configu-
ration of varying numbers of neurons and layers enables the characterization of mapping
relationships of differing complexity levels. The inputs for this model were saturation
pressure (Ps, MPa), temperature (T, ◦C), molecular weight (MW, gr/mol), and density (γ).
As a result, a four-layer structure was established, with the input layer, two hidden layers,
and an output layer, respectively containing 4, 12, and 1 neuron, as illustrated in Figure 12.
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Figure 12. Architecture of the MLP-Adam solubility model for dead oil.

The flowchart presented in Figure 13 outlines the primary steps involved in construct-
ing the MLP-Adam model and determining the optimal parameters that yield the lowest
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possible error. Appendix B provides a comprehensive overview of the feed forward equa-
tion in its general form, along with the corresponding weight and bias values. Additionally,
it includes a detailed example illustrating the calculations using these specific weight and
bias values. Table 7 provides details on the structure of the MLP-Adam model.
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Figure 13. Flowchart of the multilayer perceptron using the Adam optimization algorithm for the
proposed model.

Table 7. Structure of the proposed MLP-Adam model.

Number of hidden layers 2

Number of neurons in the hidden layers 12

Number of epochs 1000

Optimization algorithm Adam

Activation function Relu

Performance Indicator MSE, MAE

Validation dataset 16 Samples
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In order to evaluate the accuracy and predictive ability of the MLP-Adam model for
Rs in dead oil, the average absolute relative deviation (AARD (%)), root mean square error
(RMSE), and coefficient of determination (R2) were computed (please refer to Appendix A
for the definition and mathematical formulation of these metrics). The outcomes of these
calculations are presented in Table 8. For visual validation, the predicted values versus the
actual values for both the training and test data are depicted in Figure 14.

Table 8. Statistical analysis of MLP-Adam performance.

Model Training Data Test Data All Data

AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2

MLP-
Adam 2.0161 0.0123 0.9948 3.9629 0.0234 0.9807 2.3099 0.0145 0.9928
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Figure 14. Comparative plot of predicted and experimental dead solubility values: an analysis of
training data, test data, and the complete dataset.

The efficacy of the model was eventually benchmarked against some of the most
commonly employed correlations in the field. The selected models from the literature
include the Chung et al. [51] correlation, the Rostami et al. [52] correlation, and the genetic
algorithm-based correlations of Emera and Sarma [53]. The comparative analysis was
conducted utilizing the statistical parameters AARD (%), RMSE, and R2 (check Table 9)and
supplemented with an error histogram plot of the different correlations as depicted in
Figure 15 below. Upon examination, the histogram of Chung et al. showcases a significant
error in comparison to the other models. While the model by Emera and Sarma holds a
considerable number of zero-error values, its distribution is skewed to the right with a
somewhat wide error range. The model from Rostami et al. [52] presents a favorable error
distribution with minimal values; nevertheless, the MLP-Adam model is still considered
superior in comparison to those outlined in the literature.

Table 9. The comparison between the statistical parameters of MLP-Adam and the different correla-
tions found in the literature.

Model AARD (%) RMSE R2

MLP-Adam 2.3099 0.0145 0.9928
Chung et al., 1988 [51] 99.4213 0.5138 0.0083

GA—Emera and Sarma, 2011 [53] 6.1521 0.0546 0.8987
Rostami et al., 2017 [52] 3.8709 0.02045 0.9858
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4.2. Live Oil Solubility

In the instance of live oil, a support vector regression (SVR) model was constructed,
with the radial basis function (RBF) being selected as the kernel function in the SVR
configuration. The selection of RBF over other kernel functions can be attributed to its
lower number of parameters requiring optimization and reduced computational cost [54].
Of the 74 available samples, 60 were utilized for model construction, while the remaining
data served to assess model performance. In this section, an additional input, bubble
point pressure (Pb, MPa), was included alongside those employed in the dead oil model.
To produce a model of high accuracy, it is crucial to ascertain the optimal values of the
SVR-RBF hyperparameters. In this study, the grid search method was employed to identify
these optimal values in a comprehensive manner. The search range for epsilon, gamma, and
C, along with the corresponding optimal values yielded via the global search, are detailed
in Table 10. In total, 30 support vectors were used to construct the decision function.

Table 10. Search interval and optimal values of the SVR-RBF parameters.

Hyperparameter C Epsilon Gamma

Range 0.1–50,000 0.0001–0.1 0.001–10
Optimal value 950 0.039 0.01035

The solubility values forecasted by the SVR-RBF model are plotted with the empirically
determined solubility values, encompassing the training data, test data, and the complete
dataset, in Figure 16. Subsequently, the statistical parameters AARD (%), RMSE, and R2

were computed, with the corresponding results presented in Table 11.
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Table 11. Statistical analysis of SVR-RBF performance.

Model Training Data Test Data All Data

AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2

SVR-RBF 2.4618 0.0088 0.9972 4.2742 0.0209 0.9835 2.8047 0.0120 0.9948

Finally, the process implemented for the dead oil model was replicated. The perfor-
mance of the SVR-RBF model was benchmarked against the most prevalent correlations
in the literature, with the comparison based on previously described statistical parame-
ters, as shown in Table 12. To bolster this comparison, an error histogram was produced,
visualizing the different correlations, as depicted in Figure 17.

Table 12. The comparison between the statistical parameters of SVR-RBF and the different correlations
found in the literature.

Model AARD (%) RMSE R2

SVR-RBF 2.8047 0.0120 0.9948
Chung et al. [51] 99.9250 0.4425 0.0097

GA—Emera and Sarma [53] 4.9734 0.0295 0.9686
Rostami et al. [52] 3.7642 0.0203 0.9851
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Figure 17. Error histogram of the different correlations [51–53].

Upon scrutinizing the table along with the distributions and ranges of the histograms,
it becomes apparent that the SVR-RBF model outperformed the processed correlations,
considering its error range and the amount of values with exceedingly low error. Nonethe-
less, the model proposed by Rostami et al. [52] demonstrated satisfactory accuracy when
compared to the models of Chung et al. [51] and Emera and Sarma [53].

4.3. Interfacial Tension

To construct a robust model adept at handling extensive datasets, an XGBoost model
was employed, based on the decision tree approach. An 8-fold cross-validation scheme was
utilized on the input set to evade the selection bias associated with training and testing data.
The hyperparameters of XGBoost that delivered optimal performance are listed in Table 13.
The main procedures in the construction of the model are outlined in the accompanying
flowchart of Figure 18.
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Table 13. Selection of hyperparameters for the proposed XGBoost model of IFT.

Model Hyperparameter Range Optimal Value

XGBoost

Number of trees 100, 200, 400, 800, 1000, 2000 1000
Regularization parameter λ 0.0001, 0.001, 0.1, 0.3, 10, 100 0.001
Regularization parameter α 0.01, 0.04, 0.09, 0.1 0.09

Gamma γ 0, 0,1, 1, 10 0
Max. depth 2, 4, 6, 8 4

Learning rate 0.001, 0.01, 0.1 0.1
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To obtain an understanding of the model’s decision-making process, and to discern
which parameters held the most and least significance during prediction, the XGBoost
model offers a remarkable feature that enables the visualization of parameter importance.
This feature is demonstrated in Figure 19 below.
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Figure 19. Importance of inputs in the prediction of IFT.

The interfacial tension values, predicted by the XGBoost model, are plotted against
the corresponding experimentally measured values for the training set, the test set, and the
entire dataset in Figure 20. The associated average absolute relative deviation (AARD (%)),
root mean square error (RMSE), and coefficient of determination (R2) were computed and
the resulting performance are provided in Table 14.
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Table 14. Statistical analysis of XGBoost performance on IFT data.

Model Training Data Test Data All Data

AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2

XGBoost 1.9386 0.0952 0.9997 8.6422 0.4698 0.9931 3.2844 0.2271 0.9985

Ultimately, the reliability of the model was evaluated through a comparison of its
predictive accuracy with the Peng–Robinson equation of state (PR EOS) and the GEP model
put forward by Mirzaie et al. [55]. This comparative analysis was performed using the
statistical parameters AARD (%), RMSE, and R2 (refer to Table 15), as well as through the
construction of scatter plots that juxtapose the experimental IFT values with the respective
predictions made by each model (see Figure 21).

Table 15. Statistical comparison of XGBoost and literature-based correlations for the IFT dataset.

Model AARD (%) RMSE R2

XGBoost 3.2844 0.2271 0.9984
PR EOS 60.5471 2.6261 0.7949

GEP 219.1053 1.4437 0.9391
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The equation-of-state model delivered satisfactory results for IFT < 15 mN/m, and
the GEP model demonstrated its predictive efficacy across all data with an accuracy of
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94%. However, the XGBoost model ultimately emerged as superior, boasting outstanding
statistical parameters in comparison to the models currently available in the literature.
Figure 22 depicts the absolute discrepancy between the experimental and predicted IFT
values for the XGBoost, GEP, and EOS models. It’s evident that the XGBoost model displays
the most minimal error values among the three, ranging from −2 to 2 with most values
hovering around zero. On the other hand, the other models exhibit error values reaching
up to 12.5 and lack a normal distribution of errors centered around zero.
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4.4. Minimum Miscibility Pressure

XGBoost is used again on the MMP data, and it gave excellent prediction performance.
The hyperparameters that fit the model best are shown in Table 16.

Table 16. Selection of hyperparameters for our XGBoost model of MMP.

Model Hyperparameters Range Optimal Value

XGBoost

Number of trees 100, 1000, 4000, 5000, 8000 8000
Regularization parameter λ 0.0001, 0.001, 0.1, 0.3, 15, 100 15
Regularization parameter α 0.01, 0.02, 0.09, 0.1 0.02

Gamma γ 0, 0,1, 01, 10 0
Maximum depth 2, 4, 6, 8 2

Learning rate 0.001, 0.01, 0.1 0.1

The XGBoost model’s predicted minimum miscibility pressure values are graphed
against the experimentally determined values for the training data, the test data, and
the complete dataset in Figure 24. Statistical metrics-average absolute relative deviation
(AARD (%)), root mean square error (RMSE), and coefficient of determination (R2)-were
computed, and the results are presented in Table 17.

Following the approach adopted for the preceding IFT model, the significance of pa-
rameters for the MMP model is assessed, pinpointing those of utmost and least importance,
as depicted in Figure 23. It’s readily apparent that the molecular weight of C5 plus stands
out as the most significant variable, contributing 37.76%, followed by reservoir temperature
at 32.93%, the ratio of intermediate to volatile components at 16.36%, and finally the critical
temperature with 12.95%.
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Table 17. Statistical analysis of XGBoost performance on MMP data.

Model Training Data Test Data All Data

AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2

XGBoost 0.9326 0.1893 0.9986 4.0043 0.941 0.9648 1.4262 0.4151 0.9934

Upon completion of the evaluation process, the proposed model was compared to the
most prevalent correlations in existing literature. Given the existence of specific correlations
for pure CO2 (100% CO2) and others for impure CO2 (CO2 containing percentages of
C1, N2, H2S, etc.), the data was bifurcated into ‘pure’ and ‘impure’ based on the critical
temperature. For pure CO2, the correlations of Alston et al. (pure) [48], Lee [56], and Emera-
Sarma [57] were used, while for impure CO2, the correlations of Alston et al. (impure) [48]
and Fathinasab-Ayatollahi [58] were utilized. Table 18 summarizes the results of the
comparison.
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Table 18. Statistical comparison of XGBoost and literature-based correlations for the MMP dataset.

Model AARD (%) RMSE R2

Pure CO2

XGBoost (Pure) 0.9161 0.1936 0.9988
Lee [56] 18.781 5.1538 0.5146

Alston et al. (Pure) [48] 18.177 5.5472 0.7063
Emera-Sarma [57] 13.2203 3.7385 0.6161

Impure CO2

XGBoost (Impure) 1.9525 0.558 0.9856
Alston et al. (Impure) [48] 34.5324 6.4668 0.5967
Fathinasab-Ayatollahi [58] 15.0134 2.702 0.7019

As can be seen in the aforementioned table, both the pure and impure XGBoost models
exhibit the lowest AARD (%) and RMSE values, along with the highest coefficient of
determination in comparison to the other models. Upon scrutinizing the error histograms
for the pure CO2 case (Figure 25), it becomes apparent that while all correlations reasonably
predict an acceptable quantity of values (roughly 20), they are subject to extensive error
ranges and less satisfactory distributions when compared to the XGBoost model. The
XGBoost model stands out with more than 50 values concentrated around 0, and an error
range restricted to −1 to 0.5. This stark contrast emphasizes the superior performance and
reliability of the XGBoost model when handling pure data.
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In the scenario involving impure CO2 (Figure 26), the Fathinasab-Ayatollahi [58]
correlation delivered a relatively low error margin and a fairly decent distribution compared
to that of Alston et al. [48]. However, it still could not rival the predictive efficiency of
the XGBoost model, which exhibited a minimal error margin ranging from −2 to 2 and
recorded over 60 values clustered around 0. This further emphasizes the robustness and
precision of the XGBoost model in estimating impure CO2 data.
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5. Conclusions

This study introduces efficient and reliable models for estimating key parameters in
CO2-enhanced oil recovery (CO2-EOR) operations: the solubility of CO2 in both dead and
live oil, the interfacial tension, and the minimum miscibility pressure. These parameters
are critical as they play a significant role in the planning and implementation of CO2-EOR
projects. For instance, accurate estimation of the CO2 solubility in oil can inform on oil
displacement efficiency, while a precise calculation of interfacial tension aids in assessing
the mobility of the injected CO2, and understanding the minimum miscibility pressure is
essential for the economic feasibility of the operation.

Our models, based on advanced machine learning algorithms—MLP, SVR, and
XGBoost—and Adam’s optimization algorithm, present an innovative approach to es-
timate these parameters. They not only offer a high degree of precision and reliability but
also showed a promising improvement over the existing correlations in the tests conducted.

However, it is worth mentioning that the real-world validation of these models in CO2-
EOR projects remains an area for future exploration. Potential variability in the underlying
data is another factor that could influence the models’ performance.

We recommend future work to focus on validating these models under diverse real-
world conditions, and to explore emerging machine learning algorithms and optimization
techniques for potential improvements. Such research directions can further enhance the
planning and implementation of CO2-EOR projects, contributing to the advancements in
the field of petroleum reservoir studies.
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Appendix A

In this section, we present the definitions and mathematical formulas of the three
metrics used to evaluate the models in this work.

Appendix A.1. Average Absolute Relative Deviation (AARD (%))

This is a measure of prediction accuracy in statistical modeling and forecasting. The
AARD is expressed as a percentage, and lower values generally indicate better predictive
accuracy. It is calculated as the average of absolute errors relative to the actual values.

The formula to calculate AARD is as follows:

AARD (%) =

(
1
n

)
∑

(|Actual − Predicted|)
Actual

∗ 100 (A1)

where

• n is the total number of observations;
• Actual refers to the actual value;
• Predicted refers to the predicted value.

Appendix A.2. Root Mean Square Error (RMSE)

This is a standard way to measure the error of a model in predicting quantitative
data. RMSE is essentially the standard deviation of the residuals (prediction errors). Lower
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values of RMSE indicate a better fit of the data. The formula for calculating RMSE is as
follows:

RMSE =

√[(
1
n

)
∑(Actual − Predicted)2

]
(A2)

where:

• n is the total number of observations;
• Actual refers to the actual value;
• Predicted refers to the predicted value.

Appendix A.3. Coefficient of Determination (R2)

This is a statistical measure that represents the proportion of the variance for a de-
pendent variable that is explained by an independent variable or variables in a regression
model. So, if the R2 of a model is 0.50, then approximately half of the observed variation
can be explained by the model’s inputs.

The formula for calculating R2 is as follows:

R2 = 1−
(

SSres
SStot

)
(A3)

where:

• SSres is the sum of squares of the residual errors.
• SStot is the total sum of squares.

Appendix B

In this section, we present the derivation of the feed forward equation for our proposed
MLP-Adam model. The feed forward equation describes the mathematical relationship
between the input features, hidden layers, and output prediction. Additionally, we provide
tables of the weight and bias values for each layer, as well as an example calculation for a
specific set of input features.

Appendix B.1. Feed Forward Equation of our MLP-Adam Model

Below is the step-by-step process of forwarding the input data through the layers of
the network to generate the final output.

1. Initialize the input data. Let us denote the input vector as X.
2. Calculate the activations of the neurons in the first hidden layer by applying the ReLU

activation function (this function computes the maximum value between 0 and the
input x. If x is positive, the output is equal to x, and if x is negative, the output is
set to 0) to the resulting sum to introduce non-linearity. This is carried out using the
following equation:

a1j = f
(
z1j
)
= ReLU

(
n

∑
i=1

wji·Xi + bj

)
(A4)

where wji is the interconnection weight between the input vector Xi and the hidden
layer neurons, j, z1j is the sum of the weighted inputs and the bias, bj, and n is the
number of neurons in the input layer. a1j represents the resulting activation value.

3. The same process is repeated for the second hidden layer. The output of the second
hidden layer is denoted as a2.

a2k = f (z2k) = ReLU

(
p

∑
k=1

wjk·a1j + bk

)
(A5)
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where wjk represents the weights connecting the first hidden layer neurons j to the
second hidden layer neurons k, z2k Represents the weighted sum of inputs for the
neurons in the second hidden layer, and bk is the bias term. a2k represents the
activation values for this second hidden layer.

4. Finally, the output of our MLP-Adam model can be calculated by applying the purelin
function to the output of the ReLU function as shown below:

YP =
p

∑
k=1

wkl ·a2k + bl (A6)

where YP is the predicted output value, wkl represents the weights connecting the
second hidden layer neurons, k, to the output layer neurons, l, bl is the bias term, and
p is the number of neurons in the hidden layer.

The combination of Equations (A4)–(A6) yields the following general form of the
proposed neural network model:

RS =
p

∑
k=1

wkl ·ReLU

(
p

∑
k=1

wjk ReLU
(
wj,1·MW + wj,2·γ + wj,3·T + wj,4·Ps + bj

)
+ bk

)
+ bl (A7)

The values of the weights and biases are listed in Tables A1 and A2 below.

Appendix B.2. Example Calculations using MLP-Adam Model

The example calculation uses the following values for the four input variables:
MW = 490 gr/mol, γ = 0.967786, T = 140 ◦C, and Ps = 10.48 MPa. These values are
utilized in the MLP-Adam model to derive the corresponding output prediction. The val-
ues were normalized using z-score normalization, which involved applying the following
formula to each value:

Xistd =
Xi − µ

σ
(A8)

where Xistd represents the standardized value of a specific data point, Xi denotes the
original value of that data point, µ is the mean of the input data points, and σ is the
standard deviation of the input data points. The normalized values of MW, γ, T, and Ps are
1.54606763, 0.90499909, 2.66878506, and 0.76176893, respectively.

By applying Equations (A4)–(A6), the predicted output is computed. The step-by-step
calculations are outlined in Table A3, providing a comprehensive overview of the process.

Table A1. Weights and biases of the first hidden layer of the proposed MLP-Adam model.

wj, MW wj, γ wj, T wj, Ps bj

0.423479229 −0.518270671 0.088841140 0.164605036 −0.182387754
−0.316850155 0.578180193 −0.627018213 −0.370452255 −0.037461437
−0.260930061 0.121095933 0.302609562 0.177341118 0.035739433
0.153113961 −0.273656278 0.023316100 −0.014185284 −0.152793422
0.326721847 0.163599714 0.017112899 0.437370806 −0.370236605
0.467836350 −0.183758318 −0.116376496 0.173847764 0.190825283
0.207402825 −0.402902960 0.277075022 0.077882327 −0.256408870
0.430666834 0.488847017 0.382416307 0.316209614 −0.437328159
−0.378489106 −0.191637143 −0.586777627 0.073175244 −0.207403078
−0.280519455 −0.169934719 −0.038683220 0.464787781 0.129119664
−0.012112551 −0.279909700 0.314301490 −0.553606331 0.127572730
0.203990727 0.348036944 0.120888933 −0.571946859 −0.362548828
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Table A2. Weights and biases of the second hidden layer and the output layer of the proposed
MLP-Adam model.

w1,k w2,k w3,k w4,k w5,k w6,k w7,k w8,k

0.144444540 0.227294683 −0.281868785 −0.386379957 −0.244969561 0.250844776 −0.042056944 0.090741582
−1.246394872 −0.613879323 −0.806254267 0.332979083 0.174128487 −0.160888448 −0.905039012 0.223389938
0.158317938 0.136602625 0.250266492 −0.048559281 −0.043032091 −0.009495512 0.364784896 −0.316569924
−0.292102873 0.049241617 0.113946393 0.185241475 −0.189562544 0.473260581 0.171075671 −0.035240747
−0.311310201 −1.128083109 −0.132358402 −0.147601380 0.150322437 −0.051223963 −0.059710107 0.302232533
−0.527317762 0.004510418 −0.090777598 0.033773034 0.003524607 0.325446367 −0.200799241 −1.144739747
0.641047120 −0.064388409 0.391169577 −0.684768438 −0.434764891 0.371954649 −0.063837923 −0.090706437
−0.190623462 0.257651656 0.394092589 0.200460493 −0.200868785 0.064583137 0.155178993 0.315470844
0.193483933 −0.301786810 0.255001187 −0.513664782 −0.427212923 −0.234824061 −0.042243052 0.111917041
−1.080619454 0.096860095 0.129510939 0.049882758 0.238265812 −1.272954463 0.236488863 −0.735467910
−0.364739000 −0.515439033 −0.178362324 −0.179078683 −0.595661461 −0.054487861 −0.096768409 −0.003158351
−0.499953687 0.379382699 −0.177857115 −0.423149019 −0.938039004 0.343048214 −0.956486344 0.245499372

w9,k w10,k w11,k w12,k bk wk,l bl

−0.792608916 −0.343328714 −0.205415770 −0.539200484 0.158580690 0.079246789 0.300516456
0.365020424 −0.149115592 −0.426100313 0.130489438 0.123922713 0.187488675
0.137588575 0.520926713 −0.278029352 −0.333180844 −0.322128087 −0.186551764
0.191870614 0.492062687 −0.308154106 −0.205118045 0.259233176 0.440697550
−0.230481609 −0.726262688 0.058385573 −0.124779440 −0.023145271 0.217374727
0.379300296 0.162133157 0.567164421 0.756009399 −0.201348185 −0.275265455
−0.633766531 0.062475737 0.018612951 −0.710203170 0.197099491 0.088092155
0.158039510 −0.123929366 0.011550034 0.471806019 −0.221232160 −0.171224877
0.196399033 −0.388778716 −0.568655312 0.230788096 −0.103322580 −0.453178435
0.274261921 −0.640708744 0.155315384 0.250834226 0.017402615 −0.166323795
0.512196242 −0.019978577 −0.330687165 0.177631750 0.079844228 0.371093213
−0.256439089 0.436899453 −0.405297756 0.383212924 −0.086818188 0.109248526

Table A3. Example calculation using the proposed MLP-Adam Model.

MW γ T Ps z1 a1 z2 a2 Rs-Pred Rs-Exp

1.54606763 0.90499909 2.66878506 0.76176893 0.3657942
−1.9596565
0.68460845
−0.1123078
0.6618012
0.56967878
0.49840513
1.93238358
−2.4762450
−0.2075494
0.2726109
0.15474298

0.3657942
0

0.68460845
0

0.6618012
0.56967878
0.49840513
1.93238358

0
0

0.2726109
0.15474298

0.01417779
−0.9757543
−0.6840449
0.2759657
0.39354511
−2.3092059
0.31163391
0.64580446
−0.1985719
−2.0788913
−0.7179282
−0.8703367

0.01417779
0
0

0.2759657
0.39354511

0
0.31163391
0.64580446

0
0
0
0

0.4256788 0.42
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