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Abstract: Visual map-based robot navigation is a strategy that only uses the robot vision system,
involving four fundamental stages: learning or mapping, localization, planning, and navigation.
Therefore, it is paramount to model the environment optimally to perform the aforementioned
stages. In this paper, we propose a novel framework to generate a visual map for environments both
indoors and outdoors. The visual map comprises key images sharing visual information between
consecutive key images. This learning stage employs a pre-trained local feature transformer (LoFTR)
constrained with a 3D projective transformation (a fundamental matrix) between two consecutive
key images. Outliers are efficiently detected using marginalizing sample consensus (MAGSAC) while
estimating the fundamental matrix. We conducted extensive experiments to validate our approach in
six different datasets and compare its performance against hand-crafted methods.

Keywords: deep learning; local feature matching; mobile robot; monocular vision; visual map

1. Introduction

Humans can observe their environment and extract, describe, and store high-consistency
areas of what they see, which can be understood as compositions of objects forming
structures. This process, which has a spatial and relational component, is known as the
visual memory scheme. It refers to an image’s mental representations stored in the human
brain’s memory cells. This ability to remember reference images of previous locations
allows humans to locate themselves and move in the environment.

In mobile robotics, autonomous navigation is crucial, as it allows robots to navigate and
adapt to complex and dynamic environments. There are three main types of navigation [1].
The first is reactive navigation, where the robot has no information about the environment
and is limited to avoiding obstacles. The second requires an a priori representation of
the environment, such as a map. The third scenario involves the robot building a map
as it moves through the environment. Typically, map-building algorithms use landmarks
or features extracted by a sensor on the robot, such as measurements obtained by a laser
sensor or visual features extracted from images captured by a camera.

A robot navigation strategy that uses a vision system as the only sensor is based on a
map of images (visual map) scheme similar to human visual memory [2]. The representation
used in this strategy can be seen as a topological map, where each node of the environment
is represented through the use of images called key images. Recent works have used visual
maps for localization, route planning, and navigation [3–7].

Visual map-based navigation systems involve four fundamental stages [2,8]:

1. Learning stage: The visual map is constructed using key images from an unknown environ-
ment. The images are taken during human-guided navigation or autonomous exploration.
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2. Localization stage: Recognition algorithms attempt to find correspondence between
the current image of the robot and the most similar image in the visual map.

3. Visual route planning stage: The route allows the robot to reach a desired position
through landmarks and image comparison within the visual map.

4. Autonomous navigation stage: During this phase, the robot should theoretically reach
the desired position by following the visual path defined in the previous stages.

In this work, we will focus on the learning stage to obtain an optimal visual map
from the environment to allow visual localization and autonomous navigation. Figure 1
illustrates this visual map representation.

Figure 1. The visual mapM comprises a set of key images that model an environment where the
robot can be localized and navigated.

We propose a novel framework based on a detector-free deep neural network that
enables the generation of feature-reach visual maps for indoor and outdoor environments.
Our deep learning approach relies on pre-trained LoFTR (local feature transformer), in-
cluding a geometry constraint to ensure that two consecutive key images share features to
generate a visual control policy between them. We performed exhaustive experiments and
made numerical and visual comparisons between the local hand-crafted feature extraction
and matching of Oriented FAST and Rotated BRIEF (ORB).

The paper is organized as follows. First, the related work is presented in Section 2. Sub-
sequently, the theoretical background and the proposed method are described in Section 3.
The numerical results are shown and interpreted in Section 4, and finally, the conclusions
are given in Section 5.

2. Related Work

Our work is related to visual map schemes for robotics navigation and deep learning-
based methods to build a compact representation of the environment using only images.
Our work proposes a framework based on a detector-free deep neural network to generate
feature-reach visual maps for multiple environments.

Reference [9] presents the construction of a visual map suited for humanoid robot
navigation. It proposes a genetic algorithm that estimates the epipolar geometry to dive
into the image-matching problem in the construction process of a visual map.

The work of [10] proposes VLMaps. This spatial map representation fuses pre-trained
visual-language features with a 3D reconstruction of the physical world to enable natural
language indexing of the map without additional effort.

In [11], a memory construction module that builds a topological graph is proposed,
based on supervised learning and a graph attention module that extracts guided attention
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features. The deep reinforcement learning-based control module makes decisions based on
visual observations and guided attention features.

In [12], the authors present a survey of the use of semantic knowledge in robot
navigation. The article discusses the use of behavioral mechanisms based on human
psychology and the processes associated with thinking. The authors explore how semantic
knowledge has opened new paths in robot navigation, allowing a higher level of abstraction
in the representation of information.

The scheme presented in [6] integrates humanoid localization in the visual map for
autonomous navigation. A pure vision-based localization algorithm is used to find the key
image that best fits the current image. The visual map is updated when a new obstacle
is detected.

In the framework of [13], a graph-based unsupervised semantic clustering method and
cluster matching create a multilayer semantic visual memory map robust to illumination
changes. They use a community detection algorithm (CDA) to test the visual data obtained
from an unmanned aerial robot and public datasets. Then, metric information is obtained
by a hierarchical agglomerative clustering algorithm to refine the extracted communities.

A wide diversity of methods have been proposed for image-matching tasks, which
are based on deep learning techniques to be implemented. In [14], a full review and
analysis are developed to compare the classical and the latest techniques, taking into count
the feature detection, description, and matching techniques from hand-crafted methods,
and introducing the reader to typical image matching-base applications. Recent works
use LoFTR, a detector-free deep learning matching model, and a matching process with
MAGSAC++ estimator to propose a transformer-based feature matching approach to find
the same key points from two images with different perspectives of the shot [15].

3. Methodology
3.1. Fundamental Matrix

Visual constraints relate two views from monocular images that share some part of
their field of view. They can be estimated from the images when there are correspondences
between visual features identified in both images. Visual constraints can be used for the
autonomous navigation of mobile robots through a model-based predictive feedback con-
trol (MPC) scheme [3]. Two visual constraints exist between two images: the homography
matrix and the fundamental matrix [16]. The homography matrix can be estimated if points
of the image are detected in a plane of a scene. To estimate the fundamental matrix, it is
necessary to find points in different depths of a scene. The fundamental matrix is proposed
since it can be estimated from points detected at different depths, which is the case in real
environments. The visual map must be chosen to estimate the fundamental matrix between
each pair of images in the map.

The fundamental matrix F encodes the epipolar geometry (see Figure 2) and relates
corresponding image points x1, x2 between views through the epipolar constraint:

xT
1 Fx2 = 0. (1)

The fundamental matrix can be computed from the current and target images (images
captured on the final position) with at least 7-point correspondences [16].

Methods for feature matching can give bad matches (outliers), and a wrong fundamen-
tal matrix can be found. One strategy to remove outliers when estimating a fundamental
matrix is to use the random sampling consensus (RANSAC) [17] technique. The idea be-
hind RANSAC is that the probability of selecting only inliers in a random sample increases
as the sample size increases. By repeating the process multiple times, RANSAC can find a
fundamental matrix that is robust to outliers.

Another robust and efficient algorithm for estimating a fundamental matrix from
corresponding points in two images, even in the presence of outliers, is the marginalizing
sample consensus (MAGSAC) [18]. The MAGSAC algorithm works by first randomly
selecting a minimal set of points and estimating the fundamental matrix using the normal-
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ized eight-point algorithm [16]. Next, the algorithm evaluates the quality of the estimated
fundamental matrix by counting the number of points that satisfy the epipolar constraint
defined by the fundamental matrix (inliers). The MAGSAC algorithm repeats this process
multiple times, each time selecting a new random set of points and estimating a new
fundamental matrix. The algorithm then selects the fundamental matrix with the largest
number of inliers as the final estimate.

Figure 2. The fundamental matrix: two-view geometry in the case of non-planar scenes. An X point
in 3D is shown in two images, x1 in the first and x2 in the second. The camera centers (C1 and C2),
the point X, and its projections x1 and x2 lie in a common plane π. e1 and e2 are the epipolar points.
The epipole is the point of intersection of the line joining the camera centers with the image plane.
The fundamental matrix is the algebraic representation of epipolar geometry.

3.2. Local Descriptors: ORB and LOFTR

Deep learning methods are now the de facto starting point for wide computer vi-
sion tasks. However, many renowned works with traditional hand-crafted local features
have achieved good performance with low computational costs for feature extraction and
matching. Moreover, it is desired that local features be robust against variations in scale,
orientation, lighting, occlusions, and viewpoint changes regarding the locations of the
features and terms of the local descriptors. In such a way, from the existing local detec-
tors/descriptors, we found two outstanding methods: Oriented FAST and Rotated BRIEF
(ORB) [19], and LOFTR (local feature transformer) [20].

ORB is a feature detection and description algorithm that improves FAST (features
from accelerated segment test) [21] and BRIEF (binary robust independent elementary
features) [22] algorithms. The ORB algorithm has two main steps: feature detection and
feature description. In the feature detection step, it involves detecting distinctive features
(key points) in the image. As a key point detector, ORB uses FAST points by comparing the
gray levels along a circle of radius three to the gray level of the circle center. In the feature
description, a descriptor is generated for each key point once the key points are detected.
The ORB descriptor is a binary vector (di ∈ R256), where each bit results from an intensity
comparison between some pairs of pixels within a patch around the detected key points
that compute a dominant orientation between the center of the key point and the intensity
centroid of its patch. Notice that the ORB descriptors represent image features by binary



Eng 2023, 4 1620

strings. Thus, the extracted information is very compact, occupies less memory, and can be
compared faster.

The brute force matcher is a simple feature-matching algorithm in computer vision
and image processing. It takes the descriptor of one feature in the first set and matches
it with all other features in the second set using some distance calculation. The closest
match is returned as a result. This process is repeated for all the features in the first set.
The algorithm is called “brute force” because it compares all possible matches between the
two groups of features. The brute force matcher is used to match the features of one image
with another.

On the other hand, LoFTR (local feature transformer) [20] is a detector-free deep
neural network architecture that performs local feature matching end-to-end. It comprises
four main components: patch embedding, multi-scale transformer network, local feature
descriptor, and geometric verification. Firstly, the patch embedding component takes
an image patch and computes a multi-level feature vector representation of it. Secondly,
the multi-scale transformer network processes the feature vector of image patches to
capture local feature information at different scales. Then, the local feature descriptor takes
the transformer network output as input and maps it to a fixed-length feature descriptor
(di ∈ R1024) that captures the local geometry and appearance information of the i-th image
patch. Finally, geometric verification estimates a homography matrix that aligns two images
based on the matched features after extracting feature descriptors from both images. The
pre-trained model has 11.56 million parameters and the inference runs at 116 milliseconds
to process a 640× 480 image pair on an NVIDIA RTX2080Ti with 11 GB of GPU memory.

Regardless of the framework used (hand crafted or deep learning based), the process
for matching two images remains the same: feature detection, feature description, feature
matching, and geometry verification. This is illustrated in Figure 3.

Detection Description Matching Geometry

Figure 3. Image matching general pipeline. Both hand-crafted and deep learning-based approaches
use feature detection, description, matching, and geometry verification.

3.3. Visual Map Generation

A visual mapM encodes a set of Ii key images, representing an unknown environ-
ment taken by the robot during previous human-guided navigation. During this learning
stage, the robot stores a video V of n frames taken with a pre-defined video rate and image
size, such as

V = {Ij | j = 1, 2, · · · , n}. (2)

Formally, the visual map is defined as

M = {Ii | i = 1, 2, · · · , m}. (3)

There is a double objective in the visual map generation process. It is wanted to mini-
mize the number of key images selected (separating them as much as possible). However,
at the same time, consecutive key images continue to share enough visual information
that connects them i.e., a fundamental matrix can be computed. Figure 4 shows the visual
constraint between consecutive key images.
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Figure 4. Matching process between two consecutive key images. The matches that meet the
fundamental matrix constraint are shown in green lines and in blue points otherwise.

We need to determine whether a pair of images share visual information to select each
key image. Local descriptors are used to encode an image Ii with a set of Di descriptors,
represented as

Di = {dk|k = 1, · · · , K}, (4)

where dk ∈ Rd is the k-th descriptor of the image. Therefore, we consider two images Ii
and Ij to be similar if at least M ≤ K descriptors match between Di and Dj. In this way, we
define a similarity measure ratio given by

S(Ii, Ij) =
fmatch(Di ,Dj)

max(Di, Dj)
, (5)

where fmatch(·, ·) is a match selection function, i.e., mutual nearest neighbor (MNN) to
establishing coarse-level matches in LoFTR or brute force in ORB, and max(·) retrieves
the maximum number of descriptors between Di and Dj. It is noteworthy that the match
selection function passes through a geometry verification process; thus, the matching is
refined by the fundamental matrix.

By construction, we select the first frame of the input video sequence (I1) as the first
key image Ii, i = 1; therefore, we choose a new key image Ii+1 if the similarity ratio
between I0 and the current frame Ij, j = 2, · · · , n is below a threshold τ. This is defined as

Ii+1 = Ij−1 if S(Ii, Ij) < τ. (6)

Notice that feature matching will fail if there are not enough features to match and
satisfy the fundamental matrix constraint. In this scenario, we also select as a new key
image Ii+1 the previous frame Ij−1. Algorithm 1 summarizes the visual map framework.

Algorithm 1: Visual map generation.
Input:
A video sequence V of n frames
Similarity threshold τ
Output:
A visual mapM of m key images

1 M← I1;
2 i← 1;
3 for j← 2 to n do
4 if S(Ii, Ij)] < τ then
5 M← Ij;
6 i← i + 1;
7 end
8 end
9 returnM;
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We propose a quality metric that calculates the harmonic mean of two components:
the key images ratio, which measures the proportion of images selected as key images out
of the total number of frames, and the mean similarity of the key images. Mathematically,
this can be expressed as follows:

Q(M) =
1
2

(
(1− m

n
) + (

1
m

m−1

∑
i=0

S(Ii, Ii+1))

)
∈ [0, 1], (7)

where m is the total of key images and n is the video sequence length (number of frames).
The quality metric combines these two factors to provide a comprehensive evaluation of
the visual map generation approach. We want to maximize the quality of the visual map;
thus, in the expression, the first term penalizes keeping more key images, encouraging
a more selective approach. This helps to ensure that only the most relevant images are
selected as key images. On the other hand, the second term penalizes low similarity
ratios between consecutive key images, emphasizing the importance of maintaining high
similarity (matches) within the visual map.

4. Experimental Results and Discussion

We evaluated the visual map generation framework mentioned in Section 3.3 on six
distinct datasets. Three of these datasets correspond to indoor environments (D1, D3,
and D4), and three to outdoor environments (D2, D5, and D6). We compared our deep
learning approach with ORB, using RANSAC and MAGSAC as outlier detectors for the
fundamental matrix. Moreover, we employed different similarity thresholds for the key
image selection decision.

4.1. Experimental Setup

The datasets were acquired in human-guided navigation using an open-source JetBot
AI (artificial intelligence) robot powered by the Jetson Nano Developer Kit. This robot,
along with relevant components for experimentation, can be seen in Figure 5.

Figure 5. Relevant JetBot components.

After pondering on all the available pre-designed development kits, we settled on the
Professional Version ROS (robotics operating system) AI Kit B, offered by WaveShare [23].
Relevant specifications for this version of JetBot can be seen in Table 1:

Table 1. JetBot professional ROS AI Kit characteristics.

Software DevKit Linux Distribution ROS Distribution Microcontroller

Jetpack 4.5 Ubuntu 18.04 Melodic Morenia [24] Raspberry Pi RP2040



Eng 2023, 4 1623

While multiple models can oversee complex operations, such as the visual processing
methods employed throughout our research, the chosen kit provides multiple advantages,
such as better mechanical components, preinstalled libraries, wheel odometry data avail-
ability right after assembly, and a Jetson Nano with 4 GB of GPU. Employed datasets are
captured using an eight-megapixel, 160◦ field-of-view IMX219-160 CSI camera.

4.2. Description of the Datasets

Images used in the datasets for the visual map were obtained using the aforementioned
camera. Test images were obtained and processed with a Python script and OpenCV [25] at
a 640× 480 resolution at thirty frames per second (FPS); a live video feed to verify that the
developed algorithm that generates the visual map worked as intended. A sample image
of the datasets can be seen in Figure 6, and Table 2 summarizes the main characteristics of
each dataset.

(a) Dataset D1 (b) Dataset D2 (c) Dataset D3

(d) Dataset D4 (e) Dataset D5 (f) Dataset D6

Figure 6. Samples of images taken from the robot camera for each dataset.

Table 2. Datasets used for the visual map generation.

Dataset Environment Number of Frames Image Size
(px × px) Description

D1 Indoor 3703 640× 480 Room
D2 Outdoor 3525 640× 480 Backyard
D3 Indoor 3477 640× 480 Corridor
D4 Indoor 3004 640× 480 Traveling between two rooms
D5 Outdoor 3238 640× 480 Roof
D6 Outdoor 3330 640× 480 Courtyard

Dataset D1 was acquired indoors within a room using JetBot. This dataset contains
good-quality images, blurred images, and others affected by lighting changes. Dataset
D2 was captured in an outdoor setting in a backyard. Images within this dataset are of
good quality, some with different lighting conditions and a few blurred images. Dataset
D3 was captured within the corridors of the Engineering Department of Universidad
Iberoamericana León. This indoors dataset has good-quality images and some blurry
images. Dataset D4 was also obtained from an indoor environment, where the robot
traveled between two rooms. In general, it contains images with constant illumination,
but some images have blur effects. Dataset D5, another outdoor environment, was acquired
from a house rooftop on its second floor. It presents blur effects due to the wrinkled concrete
affecting the movement of the robot. Finally, Dataset D6 presents a courtyard in an outdoor
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environment. This dataset in particular shows the same blurring as dataset D5, derived
from similar wrinkles in the concrete where the robot navigates.

4.3. Visual Map Evaluation

After completing the human-guided navigation to capture images of each environ-
ment, we proceeded to the learning stage for building the visual map. In this stage, we
compare the visual map generation using hand-crafted feature extraction and matching
using ORB and the deep learning approach within LoFTR. Since this first exploratory
navigation and the learning stage were not performed simultaneously, the experiments
were implemented in Python using Kornia [26], an Open Source Computer Vision Library
for PyTorch, and executed in Google Colaboratory [27]. Geometric validation utilized the
fundamental matrix with RANSAC and MAGSAC as feature-matching refinement (outlier
detection). Moreover, we used different similarity threshold values from 0.1 to 0.9 to study
the effect of the feature matching ratio between the last key image and a current frame.
Thus, the lower the similarity, the fewer key images are selected; on the other hand, the
higher the thresholds, the greater the number of key images.

We conducted extensive experiments using six datasets, combining ORB and LoFRT
algorithms with varying similarity thresholds, for both ORB and LoFTR detectors. Table 3
presents the results for ORB with MAGSAC, specifically for dataset D1. It can be seen that
for thresholds 0.1 to 0.5, the algorithm yields 1303 key images, that is, 33% of the total
images, with similar average match values. For the threshold of 0.9, there are more key
images, maintaining 66% of the images; hence, there are more matched points (an average
of 244), as expected. The maximum quality was obtained with a threshold of 0.8; thus,
1434 key images were selected, which is 39% of the images. A mean of 43 matches was
computed between consecutive key images.

Table 3. Visual map generation with ORB+MAGSAC for Dataset D1.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 1303 14 56 29.8 0.71
0.2 1303 14 56 29.8 0.71
0.3 1303 14 56 29.8 0.71
0.4 1303 14 56 29.8 0.71
0.5 1303 14 56 29.8 0.71
0.6 1305 14 79 29.9 0.71
0.7 1322 14 314 19.8 0.70
0.8 1434 14 576 43.0 0.74
0.9 2505 17 501 244.8 0.62

We evaluated the ORB and LoFTR descriptors. Figure 7 illustrates examples of only 50 matches
between consecutive key images for the best quality visual map. The LoFTR+MAGSAC has more
and better-distributed points than ORB+MAGSAC.

Table 4 exhibits the experiment conducted using LoFTR and MAGSAC for dataset
D1. This table shows a better distribution of the key images selected by the algorithm.
Specifically, at a threshold of 0.7, the algorithm identifies the best-quality visual map, with
269 key images, that is, 7% of the total images. This threshold gives a mean of matched
points of 2180 instead of 19 achieved with ORB. Thus, a reliable fundamental matrix can
be estimated.
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Figure 7. Examples of matched points between key images for Dataset D1. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

Table 4. Visual map generation with LoFTR+MAGSAC for Dataset D1.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 15 11 34 17.7 0.77
0.2 15 12 122 40.0 0.71
0.3 22 11 450 178.1 0.69
0.4 33 90 886 446.4 0.71
0.5 60 247 1413 892.8 0.76
0.6 122 460 2491 1551.7 0.81
0.7 269 979 2942 2180.9 0.84
0.8 2177 15 3587 1493.1 0.63
0.9 3566 2970 4041 3416.3 0.48

Figure 8 shows three consecutive key images obtained with LoFTR+MAGSAC.

(a) key image 49 (b) key image 50 (c) key image 51

Figure 8. Examples of key images obtained with LoFTR+MAGSAC for Dataset D1.

Now, we evaluate our framework using the RANSAC algorithm as an outlier detector.
Table 5 presents the results of ORB with RANSAC for Dataset D1. This combination yielded
the best quality at the threshold of 0.7, where 1533 key images were obtained. The execution
time of the algorithms was faster with MAGSAC.

Executing the algorithms using Jetbot’s GPU and RAM yields similar results. Tests
were conducted within a virtual environment using Python 3.10, along with Jupyter Note-
book. Dataset D1 was employed to obtain the average execution time per video frame.
To keep the Google Colaboraty time factors consistent, we kept the original Notebook in
the web server and established a local runtime WebSocket connection to use the available
resources of the robot. An average time of 1.62 min per frame was obtained for MAGSAC,
with a slightly slower time of 1.72 min per frame for RANSAC.On the other hand, executing
our algorithm in the Cloud GPU resulted in an average time of 1.4 s per frame for the
LoFTR and 0.05 s for ORB. Thus, all experiments were conducted in the offline mode.

Table 6 shows the results of LoFTR with RANSAC, which select more key images than
LoFTR with MAGSAC. For instance, the optimal threshold is 0.5, at which we retrieved
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152 key images; thus, 4% of the images were selected against the 7% selected with MAGSAC.
Additionally, the mean matches were reduced with RANSAC, with 1356 vs. 2180 with the
MAGSAC configuration.

It is worth noting that MAGSAC is more restrictive than RANSAC with higher thresh-
olds, making it more convenient to create a visual map, in which fewer key images are
selected but with higher similarity ratios. Based on these results, MAGSAC was chosen for
subsequent experiments.

Table 5. Visual map generation with ORB+RANSAC for Dataset D1.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 1303 12 49 29.7 0.71
0.2 1303 12 49 29.7 0.71
0.3 1303 12 49 29.7 0.71
0.4 1303 12 49 29.7 0.71
0.5 1303 12 49 29.7 0.71
0.6 1330 12 214 18.0 0.70
0.7 1533 14 383 38.2 0.73
0.8 2781 14 507 204.6 0.53
0.9 3598 39 607 359.6 0.47

Table 6. Visual map generation with LoFTR+RANSAC for Dataset D1.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 15 10 27 16.0 0.74
0.2 21 11 344 118.4 0.65
0.3 43 153 662 428.7 0.65
0.4 77 303 1274 863.3 0.70
0.5 152 803 1843 1356.2 0.75
0.6 995 12 2988 2030.6 0.69
0.7 2192 12 3552 1597.7 0.57
0.8 3597 24 3327 2447.8 0.46
0.9 3625 3377 3823 3822.9 0.48

In the case of Dataset D2, Tables 7 and 8 show the comparative study between ORB
and LoFTR, respectively. With the ORB+MAGSAC combination, the number of key images
remains constant at 454 for similarity thresholds ranging from 0.1 to 0.7. The average
number of matches is around 20. The best memory quality, with a score of 0.86, was
achieved using a threshold of 0.9. In this case, the memory map comprises 796 key images
with a mean of 441 matches. When using LoFTR+MAGSAC, the number of key images
increases as the threshold value grows. For instance, for the threshold of 0.6 that maximizes
the quality, 45 key images were selected with 1122 mean matches, three times more matches
than the best mean matches obtained with ORB. This corresponds to approximately only
1.2% of the total images comprising the visual map.

Table 7. Visual map generation with ORB+MAGSAC for Dataset D2.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 454 12 42 21.7 0.85
0.2 454 12 42 21.7 0.85
0.3 454 12 42 21.7 0.85
0.4 454 12 42 21.7 0.85
0.5 454 12 42 21.7 0.85
0.6 454 12 42 21.7 0.85
0.7 468 13 65 22.7 0.84
0.8 624 16 407 75.6 0.84
0.9 796 17 950 441.6 0.86
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Table 8. Visual map generation with LoFTR+MAGSAC for Dataset D2.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 10 26 44 37.2 0.62
0.2 10 26 44 37.2 0.62
0.3 13 36 103 66.2 0.67
0.4 15 55 458 157.6 0.72
0.5 21 164 784 396.9 0.77
0.6 45 199 1894 1122.3 0.82
0.7 604 728 2583 1771.0 0.77
0.8 723 1319 3414 2716.7 0.82
0.9 3236 2382 3628 3240.0 0.52

Figure 9 displays four examples of the first 50 matched points in consecutive key
images employing the best visual map obtained with LoFTR+MAGSAC, and Figure 10
presents three examples of three consecutive key images from Dataset D2.

Figure 9. Examples of matched points between key images for Dataset D2. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

(a) key image 01 (b) key image 02 (c) key image 03

Figure 10. Examples of key images obtained with LoFTR+MAGSAC for Dataset D2.

Evaluating our approach for Dataset D3, we observe a similar behavior to the previ-
ous datasets, where the ORB+MAGSAC was only available to match around 30 features.
Meanwhile, the LoFTR+MAGSAC matches more than 500 features for threshold values
higher than 0.5. This can be seen in Tables 9 and 10, respectively. Additionally, the number
of key images in the LoFTR+MAGSAC is lower than in the ORB+MAGSAC. Particularly,
the best-quality memory of 0.53 for ORB+MAGSAC was obtained with a threshold of 0.9,
obtaining 3000 key images. In total, 86% of the images were selected. On the other hand,
LoFTR+MAGSAC with a similarity threshold of 0.2 obtained a quality of 0.77, around
49 mean matches, and only 32 key images (0.9% of the total images). Figure 11 shows four
examples of matched points in key images from the best-quality visual maps, and Figure 12
presents three examples of consecutive key images from the D3 dataset.
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Table 9. Visual map generation with ORB+MAGSAC for Dataset D3.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 2866 13 126 28.1 0.48
0.2 2866 13 126 28.1 0.48
0.3 2866 13 126 28.1 0.48
0.4 2866 13 126 28.1 0.48
0.5 2866 13 126 28.1 0.48
0.6 2866 13 126 28.1 0.48
0.7 2865 15 275 102.7 0.49
0.8 2894 15 310 36.7 0.50
0.9 3000 23 469 200.4 0.53

Table 10. Visual map generation with LoFTR+MAGSAC for Dataset D3.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 31 10 231 49.1 0.76
0.2 32 10 231 49.4 0.77
0.3 50 9 360 122.9 0.71
0.4 108 12 894 345.0 0.72
0.5 386 12 1953 919.6 0.74
0.6 955 12 2491 971.9 0.69
0.7 3006 12 2771 1266.5 0.43
0.8 3423 14 3857 1450.7 0.43
0.9 3465 2840 2840 2840.0 0.47

Figure 11. Examples of matched points between key images for Dataset D1. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

(a) key image 03 (b) key image 04 (c) key image 05

Figure 12. Examples of key images obtained with LoFTR+MAGSAC for Dataset D3.

Table 11 shows the experiment results with LoFTR and MAGSAC with Dataset D4.
This table shows a better distribution of the key images selected by the algorithm. At the
threshold of 0.5, the best quality was obtained; it returned 63 key images. This threshold
gives a mean of matched points of 1030 compared to ORB, whose mean of matched points
is 28 with a threshold range of 0.1 to 0.5. At these thresholds, the number of key images
was 2372, that is, 37 times more key images than LoFTR (see Table 12).
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Table 11. Visual map generation with LoFTR+MAGSAC for Dataset D4.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 11 12 65 27.0 0.73
0.2 12 11 57 30.5 0.70
0.3 17 13 545 144.5 0.70
0.4 24 16 3053 502.0 0.74
0.5 63 59 1963 1030.0 0.78
0.6 396 14 3053 1443.0 0.76
0.7 1983 12 3729 2860.1 0.60
0.8 2834 15 3909 2655.3 0.45
0.9 2984 3376 4175 3399.3 0.46

Table 12. Visual map generation with ORB+MAGSAC for Dataset D4.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 2372 13 228 28.2 0.56
0.2 2372 13 228 28.2 0.56
0.3 2372 13 228 28.2 0.56
0.4 2372 13 228 28.2 0.56
0.5 2372 13 228 28.2 0.56
0.6 2373 13 228 28.2 0.55
0.7 2378 15 228 24.6 0.49
0.8 2395 16 257 26.4 0.54
0.9 2466 30 600 136.4 0.54

Figure 13 shows examples of matches between consecutive key images for the best
threshold for both detectors. Additionally, Figure 14 shows three consecutive key images
obtained with LoFTR+MAGSAC.

Table 13 shows the experiment results with LoFTR and MAGSAC with Dataset D5. A
top quality of 0.77 was obtained with the 0.5 threshold value, selecting 54 key images with
a mean matches of 640. The number of key images represents the 1.6% of the total images.
On the scheme that used ORB (see Table 14, the best achieved quality was 0.96 but with
only 20 matches in the 39 key images selected.

Figure 13. Examples of matched points between key images for Dataset D4. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

(a) key image 1028 (b) key image 1029 (c) key image 1030

Figure 14. Examples of key images obtained with LoFTR+MAGSAC for Dataset D4 .
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Table 13. Visual map generation with LoFTR+MAGSAC for Dataset D5.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 7 24 34 28.7 0.58
0.2 9 37 120 68.4 0.63
0.3 12 59 440 151.7 0.70
0.4 20 121 556 286.1 0.74
0.5 54 176 2002 640.2 0.77
0.6 1083 275 3020 913.4 0.65
0.7 2987 1182 3204 2095.4 0.40
0.8 3034 2307 3012 2572.5 0.44
0.9 3039 2901 3568 3567.6 0.49

Table 14. Visual map generation with ORB+MAGSAC for Dataset D5.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 39 14 39 20.9 0.96
0.2 39 14 39 20.9 0.96
0.3 39 14 39 20.9 0.96
0.4 39 14 39 20.9 0.96
0.5 39 14 39 20.9 0.96
0.6 39 14 39 20.9 0.96
0.7 39 14 39 20.9 0.96
0.8 53 15 192 53.6 0.94
0.9 246 16 530 185.8 0.93

Figure 15 shows some images with the matches between consecutive key images
for the optimal threshold of 0.7 and 0.5 for ORB and LoFTR, respectively. Additionally,
Figure 16 depicts three successive key images obtained with LoFTR+MAGSAC.

Figure 15. Examples of matched points between key images for Dataset D5. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

Table 15 shows the experiment results with LoFTR and MAGSAC with Dataset D6. In
particular, using a threshold of 0.4, it achieved the best memory quality (0.75) and returned
32 key images, a mean of matched points of 319. For ORB, in comparison, whose results
can be seen in Table 16, the optimal threshold of 0.7 obtained a mean of matched points of
18 and 3023 key images from 3330. Only seven images were discarded.

(a) key image 1535 (b) key image 1536 (c) key image 1537

Figure 16. Examples of key images obtained with LoFTR+MAGSAC for Dataset D5.
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Table 15. Visual map generation with LoFTR+MAGSAC for Dataset D6.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 4 18 31 23.3 0.57
0.2 19 39 182 95.9 0.64
0.3 27 65 488 174.7 0.69
0.4 32 135 1672 319.9 0.75
0.5 3023 521 1442 1170.0 0.42
0.6 2367 224 2987 1628.3 0.52
0.7 3104 1042 2274 2199.0 0.43
0.8 3145 2432 2432 2432.0 0.48
0.9 3147 2725 3188 2725.1 0.50

Table 16. Visual map generation with ORB+MAGSAC for Dataset D6.

Threshold Number of Key Images Min. Matches Max. Matches Mean
Matches Quality

0.1 3023 17 18 18.0 0.55
0.2 3023 17 18 18.0 0.55
0.3 3023 17 18 18.0 0.55
0.4 3023 17 18 18.0 0.55
0.5 3023 17 18 18.0 0.55
0.6 3023 17 18 18.0 0.55
0.7 3023 17 18 18.0 0.55
0.8 3023 16 19 16.0 0.49
0.9 3037 19 201 29.4 0.50

Figure 17 shows the images with the matches between consecutive key images for
the best ORB and LoFTR detectors. Figure 18 presents an example of three key images
obtained with LoFTR+MAGSAC.

Figure 17. Examples of matched points between key images for Dataset D6. (Top row): ORB+MAGSAC.
(Bottom row): LoFTR+MAGSAC.

(a) key image 545 (b) key image 546 (c) key image 547

Figure 18. Examples of key images obtained with LoFTR+MAGSAC for Dataset D6.
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4.4. Discussion

First, an ablation study was presented in the indoor Dataset D1 to select the best
outlier algorithm between RANSAC and MAGSAC. We observed that MAGSAC was more
restrictive with higher similarity thresholds, allowing us to create the visual map with fewer
key images and higher similarity ratios. In general, with the datasets presented for indoor
environments (D1, D3, and D4) and outdoor environments (D2, D5, and D6), we present
extensive visual memory comparisons for ORB+MAGSAC and LoFTR+MAGSAC. The
LoFTR+MAGSAC scheme presents the best results for the visual map quality. Additionally,
LoFTR+MAGSAC reached the visual memory aim to obtain fewer key images with more
matches between consecutive key images.

The LoFTR descriptors perform better under various conditions, such as lighting
changes, viewpoint changes, and weather conditions. ORB uses variants of FAST as a
detector, i.e., they detect key points by comparing gray levels along a circle of radius 3
to the gray level of the circle center. ORB uses oriented FAST key points, an improved
version of FAST, including an adequate orientation component. The ORB descriptor is a
binary vector of user-choice length. Each bit results from an intensity comparison between
some pixels within a patch around the detected key points. The patches are previously
smoothed with a Gaussian kernel to reduce noise. ORB computes a dominant orientation
between the center of the key point and the intensity centroid of its patch to be robust
to orientation changes. The key points are not robust to lighting changes present in the
outdoor scenarios. On the other hand, LoFTR was trained with a large dataset, including
images under different lighting conditions, view changes, stopovers, and hours of the day.
For such a reason, LoFTR is more robust than ORB in these scenarios.

It is possible to extend the framework to any type of robot, for this is necessary to
adapt the design of movement controllers to move the robot from an initial configuration to
the final configuration keeping the key points on the images of the visual map. According
to the kinematics model of the robot and the controller design, it is necessary to change the
camera position on different parts of the robot to maintain specific parts of the environment
in the camera field of view (fov) or avoid singularities with the controller. We planned to
use an MPC; with this scheme, the camera location is not relevant. Using other sensors
can help to deal with obstacles that lie out of the fov or the visual map generated and
problems related to circumstances of the environment, such as the lighting or reflective or
transparent surfaces.

5. Conclusions

We proposed a novel framework for generating a visual map to both indoor and
outdoor environments. Our approach involves selecting key images sharing visual infor-
mation between consecutive key images. Moreover, we introduced a quality measure to
identify the optimal similarity threshold. This will allow visual localization and model
predictive control for the localization and autonomous navigation stages. We employed
a pre-trained LoFTR, constrained with a fundamental matrix between two consecutive
key images; also, the MAGSAC algorithm effectively detects outliers during fundamental
matrix estimation, improving the key image selection. Our proposed approach outper-
forms traditional hand-crafted methods, demonstrating the effectiveness of our visual
map generation process, minimizing the number of key images selected, maximizing the
memory quality, and ensuring that key images share enough visual information between
them. For instance, from the ORB+MAGSAC approach, more than 30% of the images were
selected as key images, with qualities around 0.5 to 0.7 with fewer than 100 mean matching
features. For the LoFTR+MAGSAC, we obtained more than 1000 mean matching features
and qualities greater than 0.7. Additionally, the key images only represent, at most, 8%
of the total images. This improvement was also noticeable not only in indoor but also
in outdoor environments, where ORB+MAGSAC obtained more key images and fewer
matching features than LoFTR+MAGSAC.
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Future work will include the evaluation of other deep learning-based approaches and
the implementation of more efficient models in order to perform simultaneous localization
and mapping in the onboard Jetson Nano of the Jetbot.
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AI Artificial Intelligence
BRIEF Binary Robust Independent Elementary Features
FAST Features from Accelerated Segment Test
FPS Frames per Second
LOFTR Detector-Free Local Feature Matching with Transformers
MAGSAC Marginalizing Sample Consensus
MNN Mutual Nearest Neighbor
MPC Model Predictive Control
ORB Oriented FAST and rotated BRIEF
RANSAC Random Sample Consensus
ROS Robot Operating System
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