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Abstract: While some studies have investigated the particle trajectories and stagnation points beneath
solitary waves with constant vorticity, little is known about the pressure beneath such waves. To
address this gap, we investigate numerically the pressure beneath solitary waves in flows with
constant vorticity. Through a conformal mapping that flats the physical domain, we develop a
numerical approach that allows us to compute the pressure and the velocity field in the fluid domain.
Our experiments indicate that there exists a threshold vorticity such that pressure anomalies and
stagnation points occur when the intensity of the vorticity is greater than this threshold. Above
this threshold, the pressure on the bottom boundary has two points of local maxima and there are
three stagnation points in the flow, and below it the pressure has one local maximum and there is no
stagnation point.

Keywords: constant vorticity; solitary water waves; Euler equations; pressure anomalies; stagna-
tion points

1. Introduction

The study of water waves and their interactions with underline currents is a topic
of research that has piqued the curiosity of engineers, mathematicians, physicists and
oceanographers over the centuries. Although many advances have already been achieved,
there are a number of basic questions that are still open.

Currents are caused mainly by density differences in the water, tidal forces and by
wind [1]. Mathematically, wave-current interaction has been widely investigated under
the assumption that the current is linearly sheared, i.e., it flows with constant vorticity.
Physically, this can be representative of a realistic flow when waves are long compared
with the depth or when waves are short compared with the length scale of the vorticity
distribution [2].

Flows with constant vorticity are mainly characterized by the existence of overhanging
waves, the appearance of stagnation points and the emergence of pressure anomalies.

Overhanging waves are free surface waves that are not a graph of a function. Among
the numerical studies in this direction, the works of Vanden-Broeck [3,4] stand out, in which
the author finds periodic and solitary overhanging waves, and more recently, the works
of Dyachenko and Hur [5,6]. The existence of overhanging waves is proved rigorously by
Constantin et al. [7] for periodic waves with constant vorticity, and more recently by Hur
and Wheeler [8] for large or infinite depths. Although some theoretical works have already
allowed overhanging solitary wave profiles in their approach [9], the rigorous proof of such
wave types is still an open problem.

Stagnation points can be understood as fluid particles that are stationary in the wave
moving frame. For irrotational flows, they occur at a sharp crest [10], and in flows with
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constant vorticity they can emerge within the bulk of the fluid, forming a recirculation
zone whose profile resembles Kelvin’s cat’s eye flow. The literature on stagnation points is
extensive, starting with the work of Teles da Silva and Peregrine [2], the reader is referred
to Ribeiro-Jr et al. for a detailed study on the appearance of stagnation points beneath
periodic waves with constant vorticity. An overview of the works on stagnation point is
given by Flamarion and Ribeiro-Jr [11]. More recently, Ige and Kalisch [12] investigated
the particle trajectories associated with the propagation of periodic waves with constant
vorticity in the framework of a new Benjamin-Bona-Mahony equation.

In irrotational flows, the pressure exerted in the bulk of the fluid beneath a Stokes wave
(a periodic travelling wave with a monotone profile from the crest to the trough) attains
its maximum on the bottom of the channel and below the crest. Moreover, the pressure
strictly increases with the depth and strictly decreases horizontally away from a crest to
a trough [13]. Notable exceptions to these features arise in rotational flows with constant
vorticity: (i) the maxima and minima of the pressure may occur within the bulk of the fluid
and (ii) the pressure on the bottom can be out of phase with the surface elevation [2,14-17].
The characteristics (i) and (ii) of the pressure are defined as pressure anomalies.

Although many advances have been accomplished in understanding the flow structure
beneath waves with constant vorticity, it is unknown whether the pressure anomalies
known for periodic waves with constant vorticity also occur for solitary waves. Strauss
and Wheeler [16] proved that overhanging periodic or solitary waves must have a pressure
sink, i.e., the pressure achieves its minimum within the bulk of the fluid and not on the
free surface. However, this is still an open question for free surface waves that are graph
of a function. This issue was raised recently by Kozlov et al. [18]. In their words, the
following question was raised: “Is the pressure beneath a solitary wave in a flow with
constant vorticity different from the one in the irrotational case?”

In this work, we address the question above. The novelty is twofold: (i) we find nu-
merically that, when the vorticity crosses a threshold, the pressure on the bottom boundary
caused by a solitary wave on the free surface can have two points of local maxima; (ii) we
analyse in detail the appearance of stagnation points beneath solitary waves. Thus, the
paper at hand responds to the question raised by Kozlov et al. [18]. Moreover, it comple-
ments the studies carried out by Vasan and Oliveras [17] and Ribeiro-Jr et al. [15], who
have showed numerically the occurrence of pressure anomalies beneath periodic waves
with constant vorticity and analysed the appearance of stagnation points beneath such
waves. The approach used to compute the pressure and the stagnation points consists of
determining a conformal mapping under which the physical domain is the image of a strip
(canonical domain), then all calculations are performed through pseudo-spectral methods.

In summary, the results presented in this work are of interest to theorists and ex-
perimentalists. For a theorist, it can provide physical insights on a rigorous proof of the
pressure anomalies. Likewise, it may inspire more experimental studies on this topic, since
the phenomenon can be observed by manipulating the intensity of the underlying current.

For reference, this article is organized as follows: The governing equations of water
waves in flows with constant vorticity are presented in Section 2. In Section 3, we describe
the conformal mapping and the numerical method. Then, we present the results in Section 4
and proceed to our final considerations.

2. Governing Equations

We consider an incompressible flow of an inviscid fluid with constant density (p) in a
two-dimensional channel with finite depth (d) under the force of gravity (g). Moreover, we
assume that the flow is in the presence of a linearly sheared current (constant vorticity). De-
noting the velocity field in the bulk of the fluid by u (x,y,t) = (u(x,y,t),v(x,y,t)),and the
free surface by {(x, t), this free boundary problem can be described by the Euler equations
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ﬁﬁ(ﬁ-V)ﬁ——Z”-ﬂ’ in —d<y<{(xt), (1)
V-U=0 in —d<y<l(xt) @)
p = Pam aty={(x,t), 3)
0= Giule aty={(x1), @
v=0 aty=—d, (5)

e . . .
where j is the unitary vector (0,1) and Py, is the atmospheric pressure.
The assumption of constant vorticity enables us to write the velocity field as

U = Uy+ Vg, (6)

where _
o= (ay+£,0), feR,

is a linear shear flow solution of (1)—(5) characterized by the flat surface { = 0 and constant
vorticity —a. Here, ¢ is the velocity potential of an irrotational perturbation of the shear flow.
Equations (1)—(5) are written in terms of ¢, then non-dimensionalised via transforma-

tion (7)
d
x—dx,  {=dr, ="
y =dy, ¢ =d\/dgp,  p=Py+pgdp, @)

t=\/3,  §=d/igy, F= \/f@.

Dropping the prime notation, this gives us the dimensionless version of the governing

equations

Ap=0in —1 <y <{(x,1t), (8)

G+ (O +F+3,)0x = §,aty = {(x, 1), ©)

_ 1 — _ _

Git 5 (@ +6,) + QL+ F)f, +7 — QP = B(t) aty = {(x,1), (10)

¢,=0aty=-1, (11)
where —() is the dimensionless vorticity, F is the Froude number and the pressure in the
fluid body is given by

— ]_ -2 -2 — —
p=— (Bt 3@ T+ (L EP 4T BO) ). 12)

For the study of traveling wave solutions, it is convenient to eliminate time from the
problem by passing to a moving frame

X=x—ct and Y=y,
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where c is the wave speed, to be determined a posteriori. In this new moving reference
frame, the wave is stationary and the flow is steady. Taking this new frame of reference
into account, Equations (8)—(12) are written as

Ap=0 in —1<Y<(X), (13)
—clx + (F+OQ0+¢x)ix = ¢y atY ={(X), (14)
Pyt F) H(OL - OF =B atY={(X), (9
$Y =0 atY=-1, (16)

and .
p=—(—c$x+§(¢i+$§>+<QC+P)%+€—Q¢—B>- (17)

We assume that {(X) is a solitary wave whose crest is located at X = 0 and satisfies
I(X) =0 as |X|— oo. (18)

In the following, we present a numerical scheme to compute the solutions of the
system (13)—(16) and to calculate the pressure in the fluid body via Formula (17).

3. Conformal Mapping and the Numerical Method

Since {(X) decays to zero as | X| — oo, we can truncate its infinite domain to a finite
one [—A/2,A/2] with A > 0, and approximate the boundary conditions by periodic condi-
tions. Then, we can solve Equations (13)—(16) through the conformal mapping technique
introduced by Dyachenko et al. [19], which has been widely applied in free boundary
problems [15,20,21]. This strategy consists of using conformal mapping from a strip of
length L and width D (canonical domain) onto the flow domain of the solitary wave
{(X,Y) € R?,-A/2 < X < A/2and —1 < Y < {(X)}. This map is such that in the
canonical domain, the free boundary problem (13)-(16) can be solved numerically by the
use of a spectral collocation method and Newton’s method.

3.1. Conformal Mapping

Consider the conformal mapping

Z(gr 77) = X(C! 77) + iY(gr 77)/ (19)

under which the strip {(&,7) € R%; —L/2 < ¢ < L/2and — D < < 0} is mapped onto
the flow domain, as in Figure 1. The constant D will be determined so that the canonical
and the physical domain have the same length. Since Z is taken to be conformal, thus
analytical, X and Y are actually conjugate harmonic functions, whereas the mapping’s
Jacobian is given by

J=Xz+YE (20)

X(&m),Y (&)

Figure 1. Illustrative depiction of the conformal mapping. The free surface is flattened out in the
canonical domain.
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A central characteristic of this mapping is given by the way that the boundary curves
from each domain are related

{Y(C, 0) = ¢(X(¢,0)), 1)

Y(é, _D) = _1r

which serves as Dirichlet data for the Laplace equation for Y (&, 7). By denoting Y(¢) = Y(¢,0)
and X(¢) = X(¢,0), the traces of the respective harmonic functions along # = 0, we have

Vi) = 7 [ |+ MR kzo,

where k = k(j) = (rr/L)j, for j € Z, F is the Fourier transform in {-variable given by

FE@) =i =1 [ foeia,

L/2
FHUfK) = f(0) = 1 fk)e™,
jez
and (- ) denotes the average defined by
-L/2
=7 [ Y@

By differentiating Equation (22) with respect to # and integrating the Cauchy—Riemann
equation Xz = Y}, we obtain

X = (S e - | eI r ), k2o 23)

The canonical depth D can be fixed if we require that both canonical and physical
domains have the same length. Let L and A be the respective lengths, thus

X(E=L/2)—-X(=—-L/2)=A.
It follows from (23) that this restriction leads to the relation
D=1+(Y). (24)

A reader interested in further details on the conformal mapping presented here should
consult Flamarion and Ribeiro-Jr [22] for conformal mapping in the context of uneven
topographies and its accuracy.

By denoting ¢(¢,17) = ¢(X(¢, ), Y(Z, 1)) and 9(¢, ) = p(X(¢,7n),Y(E, 1)), the gov-
erning Equations (13)—(16) can be written in the canonical coordinate system. Subsequently,
by combining Equations (14) and (15), a single equation for the free surface wave can be
obtained, namely,

2 2 2
_%+%+Y+ (C[(QY;]F)Y@‘D B C[(QY;rF)Yd (c— (QY+F)X;)
(QY+F)?Y;  c(QY + F)Xg =

QY
— — F Q| — +F|)Y+OM =
2] i + Fc+ (2 + ) + QM = B,

where C is the periodic Hilbert transform on a strip whose Fourier symbol is icoth(kD) and

- (8
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Details of the derivation of this equation are given in the Appendix B.

Observe that Xz = 1 — Cp[Y¢] and | = Xé + Yé are given in terms of Y(§). Conse-
quently, Equation (25) has as unknowns Y(¢), ¢, D and B. It is the aim of the next section to
describe a numerical approach for computing solitary waves.

3.2. Numerical Method

Up to this point, we have transformed the free boundary problem (13)-(16) into a
nonlinear system of two equations ((24) and (25)) and four unknowns Y(¢), ¢, D and
B. In order to obtain a system that can be handled by Newton’s method, we add two
extra equations.

We fix the amplitude A of the wave through

Y(0)—Y(—-L/2) = A, (26)
and based on the limit (18), we impose that
Y(—L/2) =0. (27)

Consider a discrete version of Equations (24)—(27) as follows. Let us take an evenly
spaced grid in the ¢-axis in the canonical domain, say

§i=-L/2+(—-1)A;, j=1,.,N, whereAl=L/N, (28)

with N being even. We impose symmetry about { = 0 so that Y; = Yy_j», where
Y= Y((;‘j). Fixing () and F, we have N/2 + 4 unknowns: Yi,- - -, Yn/241, ¢, D and B. We
satisfy Equation (25) at the grid points (28). The Fourier modes are computed by the Fast
Fourier Transform (FFT) and derivatives in the ¢-variable are performed spectrally [23].
This yields a system with N /2 + 1 equations

g](Yl, ,YN/2+1,C,D,B) =0 ]:1, ,N/2+1

Equation (24) is discretized using the trapezoidal rule, which leads to the equation

Yi+Ynon N2
gN/2+2(Y1/”'/YN/2+1/C1D/B): B +ZY]+1_D:0
=

Finally, we satisfy Equations (26) and (27), resulting in a system of N /2 + 4 equations
and N /2 + 4 unknowns,

Onyae3(Y1, - YNj241,6,D,B) = Yy o1 — Y1 — A =0,

gN/2+4<Yl/ T /YN/2+1,C, D,B) =Y =0.

The system is solved by Newton’s method, where our initial guess is taken to be
the well-known solitary wave solution for the classical (irrotational) Korteweg—de Vries
equation, that is

Y(¢) = Aosechz(\/mg), c=1+ %,

where A is chosen to be small. From there, the idea is to make use of the continuation
technique in A and (), where the prior converged solution is fed as an initial guess to a
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new solution. The Jacobian matrix of the system is computed by finite difference and the
stopping criterion for the Newton’s method is

N/2+4
Ej:/1+ |g/|

10~10,
N/2+4

In all experiments performed we used L = 1500, which is important to make sure that
the method indeed converges to a solitary wave solution.

4. Results

In Section 4.1, we present some solitary waves computed through our numerical
method. A comparison between such waves with a weakly nonlinear KdV equation is
performed in order to provide a validation of our numerical procedure. Then, the main
results of the paper are discussed in Section 4.2.

4.1. Steady Waves

Several numerical computations are available and provide a detailed characterization
of the shape of the free surface wave in flows with constant vorticity. More specifically, it is
known that the crests of the waves become rounder as () decreases. This has been shown
for periodic travelling waves [2,3,6,15,24] and for solitary waves [4].

Figure 2 displays various wave profiles for different vorticity values. As can be seen,
the numerical method captures the well-known characteristics of waves with vorticity:
more rounded or cuspidate profiles depending on the (2 sign. Although the computational
domain used was L = 1500, for visualization purposes the plot window was chosen to be
50 units long. Moreover, for each choice of (), the Froude number was fixed as F = (2/2.
This implies cancelling the average mass flow of the stream Uo = (QY + F,0). The choice
of F has no impact on the shape of wave nor on the location of the stagnation points and
the appearance of pressure anomalies.

0.2 Q=1
——-0=0
| Q=1
015 il |——-a=5
i Q=-30
¢ o1
0.05
0
-0.02
20 10 0 0 20 20 10 0 0 20
X X

Figure 2. Wave profiles with amplitudes A = 0.1 (left) and A = 0.2 (right).

Furthermore, vorticity also has a straightforward and expected effect on the velocity of
the waves: greater vorticity implies greater velocity across the amplitude spectrum, a trend
that matches with the well-known dispersion relation for linear long waves, as depicted
in Figure 3. From that same figure, it is also notable that even though the method captures
waves with negative (), which are considerably large in modulus, convergence stops earlier
in the positive direction. This phenomenon is in a large part explained by the loss of solution
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regularity in a neighbourhood of X = 0 when () becomes more positive, something hinted at
by Figure 2. The closed formula for the velocity shown in dashed lines in Figure 3 is given by

O |02

20

v A=02
—6—A=05

— — - Linear

151 N\ %

10

20 20 10 0 10
Figure 3. The wave speed as function of Q) for different values of A.

Beyond the linear theory, another model that can be used for comparison purposes is
the weakly nonlinear KdV equation. In what follows, we are interested in investigating
how the velocities are influenced by the increase in amplitude for a fixed vorticity. For small
amplitudes, it is expected that the waves computed should be similar to the sechz—type
solution of the KdV equation.

Regarding the analysis of the KdV model in the presence of vorticity, we refer to the
work of Guan [25]. The formulation presented by this author is used as a benchmark for
our numerical solutions.

For a given choice of parameters () and A, Figure 4 indicates the distance between
our solutions and the analytical solution determined by the KdV equation. The dashed
line displays the wave speed from the KdV solution after scaling to the Euler regime. As
expected, we see a very close wave speed whenever A is small, but the overall pattern of
speed/amplitude relation in the case of the Euler solutions present a clear deviation from
the linear distribution found in KdV. In particular, around A = 0.15and A = 0.2 we see
a slight takeoff from the Euler regime in comparison to the KdV, while it is interesting to
observe that the general aspect of this “takeoff curve” remains unchanged when we vary
Q). For the interested reader, a study of the resolution of the numerical method is presented
in Appendix A.

Q=0.5 Q=0
1.25 1.25 ,
s
*  Euler _ *  Euler *
——- s 12| |——-Kdv 7
12 Kdv P . S o
e * ¥ v **
soox* *
s 7 ¥
1.15 ot 1.15 7 +*
c S ¥ /*
/.** /**
£* ¥
11 ({* 11 4*
4-*-
#
o~ -
1.05 * 1.05 A
o &
s
1 . . . l.f . . g
0 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5
A A

Figure 4. Cont.
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Q=1 Q=5
1.45 36T
s
1.4 *  Euler o 7 *  Euler > :**
— — - KdVv o 34 |— — -Kav o
1.35 Zart &
’ v :** /*4‘*
* *
¥ 3.2 ¥
c 13 oH* c &
A% &
&t &
1.25 4% 3 &
*
4*4 4*4
1.2 P <
‘(* 2 8 - '{*
~ B

115 | ¥ rq
1.1( : : : : :

2.6 : '
01 02 03 04 05 01 02 03 04 05
A A

o
o

Figure 4. The wave speed as function of the wave amplitude for different choices of vorticity.
Diamond denotes the linear speed cj;;,.

4.2. Pressure in the Bulk of the Fluid

It is well known in the literature that pressure anomalies beneath nonlinear periodic
waves are connected to the emergence of stagnation points [2,15,17]. Starting from this
point, we first investigated the appearance of stagnation points in terms of the intensity of
the vorticity parameter (€2), then analysed the pressure within the bulk of the fluid. For this
purpose, we fixed solitary waves with amplitude A = 0.2, F = () and let the vorticity vary.
This choice of F leads to a background flow (Q)Y + F,0) with zero velocity at the bottom.

Our first numerical essay consists of computing the phase portrait for different values
of the vorticity parameter—this is depicted in Figure 5. The markers represent the position
of the stagnation points. We find that the stagnation points first appear on the bottom and
below the crest for a critical value ()* ~ —2.4967. For () > (), there are no stagnation
points in the bulk of the fluid. Nonetheless, for (3 < ()*, we obtain a flow with three
stagnation points: two saddles located at the bottom and one centre located within the
bulk of the fluid and below the crest, forming a region with closed streamlines which is
described as a single Kelvin cat’s eye structure. As the vorticity becomes stronger, this
structure becomes wider, i.e, the saddles remain on the bottom moving away from each
other and the centre moves upwards.

Q=-10 Q=4

Depth
Depth

osf 7 S~ f8esf T~ ]

-20 10 0 10 20 20 -10 0 10 20
X
0 =0" Q0 =-2
0.2 0.2
OA 0

Depth
Depth

-0.5 #
7 N S~ ]
1 - : : -1

-20 -10 0 10 20 -20 -10 0 10 20
X X

Figure 5. Phase portraits for different values of the vorticity parameter. Circles correspond to the
location of the stagnation points. (O* ~ —2.4967.
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Figure 6 shows the pressure contours and the pressure on the bottom boundary for the
same waves depicted in Figure 5. We notice that, according to the value of (), the following
anomalies occur: (i) the maximum pressure value may not be attained at the bottom and
below the crest; (ii) the minimum pressure value may be attained within the bulk of the
fluid; and (iii) the pressure on the bottom boundary may have two local maxima. These
anomalies have been observed for nonlinear periodic waves [2,15,17] and for overhanging
solitary waves [16], but to the best of our knowledge this the first time that such results have
been reported for solitary waves that are graph of a function. These results indicate that
the anomalies in the pressure and the stagnation points are somehow related. Moreover,
pressure anomalies and stagnation points occur when a threshold vorticity is achieved.
However, a detailed theoretical study is necessary to explain such a phenomenon.

Pressure contours for = -10 Pressure contours for Q = -4

:

Pressure on the bottom Pressure on the bottom

1.1 A
1
-20 -10 0 10 20 -20 -10 0 10 20
X X
Pressure contours for 2 = Q* Pressure contours for ) = -2
0.2 j - j 0.2 j . j
0 0
-0.5 -0.5
-1 T o T -1 : o
Pressure on the bottom Pressure on the bottom
1.1 A 1.1 —/L
1 1
-20 -10 0 10 20 -20 -10 0 10 20
X X

Figure 6. Pressure beneath the solitary wave with amplitude A = 0.2 and its corresponding pressure
on the bottom boundary. Circle and square markers indicate the location of global minima and
maxima of the pressure, respectively.

5. Conclusions

In the present work, we have studied the pressure beneath solitary waves in flows
with constant vorticity. Our results indicate that there exists a threshold vorticity such
that pressure anomalies and stagnation points occur when the intensity of the vorticity is
greater than the threshold. More specifically, when the vorticity is below this threshold,
the pressure on the bottom boundary has one local maximum and there is no stagnation
point in the flow. Once the vorticity crosses this threshold, the pressure on the bottom
boundary has two local maxima and the flow has three stagnation points (one centre and
two saddles).
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Abbreviations
In this section, we provide a list of the main symbols that have been utilized throughout the text.

Symbol Meaning

B Bernoulli constant

c Wave speed

Cl] The periodic Hilbert transform on a strip of width D

D Width of strip that corresponds to the canonical domain

F Froude number

L Length of the canonical domain

p pressure in fluid body

&n) Coordinate system in the canonical domain

(X(&n),Y(En) Conformal mapping that applies a strip of width D in the physical domain.

(X(£),¥Y(¢)) = (X(£,0),Y(¢,0)) Free surface wave profile written in terms of the conformal mapping

-0 Dimensionless vorticity

(x,y) Laboratory frame of reference

(X) Free surface wave profile in the moving frame X = x —ctand Y =y

¢ Velocity potential for the irrotational part of the velocity field

P Harmonic conjugate function of ¢

$(&n) =¢(X(&n),Y(En)) Potential ¢ written in the coordinate system (¢, 1)

Y&, ) =v(X(E&n), Y1) Function ¥ written in the coordinate system (&, 7)

®(¢) = (¢, 0) Potential ¢ evaluated at7 = 0

Y(&) =y(E0) Function ¢ evaluated atyy = 0

Appendix A. Resolution Study

In what follows, we show that the method is independent of the grid size by calculating
the distance between outputs for different choices of A¢. These experiments were performed
for waves with amplitude A = 0.2. We take the reference grid as AZ* = 0.0458, the finest
resolution computed.

In Table A1, we denote by (s the wave profile and by cas the wave speed obtained
from Newton’s method using a grid with size AZ. In addition, we consider {* and c* as the
wave profile and its speed computed in the finest grid. These experiments were performed
for waves with amplitude A = 0.2. Note that for (3 = 1, the numerical scheme requires
more resolution to approximate the solution with more accuracy. This can be explained
by a combination of two factors: (i) the emergence of cusps and (ii) the issue of crowding
phenomenon present in conformal mappings. For this reason, finer grids are necessary to
accurately compute waves in the presence of currents where () is positive.



Eng 2023, 4

1317

Table Al. Resolution study for waves of amplitude A = 0.2.

0 AZ 1Zag — T*|I2 leaz — c*|
12 |2 |c*|
0.0916 1.6 x 10710 2.5 x 10712
0 0.1831 4.6 x 10710 7.4 x 10712
0.3662 6.7 %108 5.6 x 10710
0.7324 12x 1074 52 x107°
0.0916 54x 10713 2.1 x 104
_q 0.1831 5.7 x 10713 1.0 x 1014
0.3662 15 x 10712 13 x 10714
0.7324 12x 1077 1.8 x 1077
0.0916 6.8 x107° 1.0 x 107°
1 0.1831 0.0027 1.7 x 1074
0.3662 0.0477 0.0015
0.7324 0.1164 0.0102

Finally, to provide an indication of the accuracy of our numerical method, we con-
ducted a comparison between our numerical results and those obtained by Teles da Silva
and Peregrine [2] for the relationship between the wave speed and wave amplitude. Specif-
ically, we set the Froude number F = 0 and compared the graphs of the wave speed as a
function of wave amplitude for flows with (2 = —1,0, 0.5 with Figures 9 and 10 presented
in Teles da Silva and Peregrine’s work. The comparison is illustrated in Figure A1, which

demonstrates a strong agreement between the two methods.

0=-1 Q=0 Q=05
0.95
24 12 0.9
22 c c
0.85
2 11
18 0.8
1.6 1 0.75
0 1 2 0 0.2 0.4 0.6 0 0.1 0.2 0.3
A A A

Figure Al. Comparison between our numerical results and those obtained by Teles da Silva and
Peregrine [2] for the wave speed as a function of wave amplitude. The solid line represents the results
from our numerical method, while the dots correspond to the results computed by Teles da Silva

and Peregrine.

Appendix B. The Free Surface Wave in the Canonical Coordinate System

In this section, we give more details on the derivation of Equation (25). We start by
noticing that the Laplace equation is conformally invariant. So, denoting by ¢(&,1) =
O(X(&n), Y n))and (& 1) = P(X(E 1), Y(E n)) the potential and its harmonic conju-
gate in the canonical coordinates, one can easily obtain the following:

¢ = () atn =0,

¢y =0 aty =-D,
and

Yee +Pyy =0 in —-D<y<0,

P =Y¥(¢) aty =0,

Pp=0Q aty =-D,
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where Q is an arbitrary constant. The formulas for ¢(&, ) and (&, ) can be found in a
similar fashion to that worked out for X(¢,#) and Y (¢, #7), which yields

(e =71 F@),

v =7 [T Fp)| - ol

Using the Cauchy-Riemman equation ¢z = 1, and evaluating along = 0, we
find that

@;(¢) = F ! [—icoth(kD) Fi(¥s)]. (A1)

For simplicity, we make use of the Fourier operator C|[-] defined as follows: given a
function h(g),
CIH(&)] = Col(@)] + lim i coth(KD) (K, (A2)
—

where Cy[ -] = F'HF[ -], with H given by

i coth(kD), k
H(k) = icoth(kD), k #0 (A3)
0, k=0.
For the particular case of C[-] evaluated at /iz(¢), we have
h(0
Clf:(@)] = Colhe(2)] ~ 2, (Ad)
With this notation, we obtain from relations (23), (24) and (A1) that
Xz =1—Co[Y¢] (A5)
(0
d: = —Co [Tg] + % (A6)

Performing straightforward calculations, we obtain that the kinematic condition (14)
and Bernoulli law (15) in canonical coordinates are given by

¥: =Y — (QY + F)Yg, (A7)

®:X: + ¥ Y, 1
—c%+2—](¢§+‘f§)+\{+(ny+m

Then, integrating (A7), we obtain

DX Y:Y,
w_mzo. (A8)

2

QY

where M is an arbitrary constant. In order to simplify the use of the formula (A6), we
choose ¥ so that ¥(0) = 0. This leads naturally to

e (o (F 4r)

®; = —Co[¥z]. (A10)

Hence,
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By substituting Equation (A9) and (A10) into (A8), then Equation (A7) into the resulting
equation, we obtain a single equation for the free surface

> 2 ClQY+F)Y])?  ClLQY+F)Y]
Tty tYE 2 ; (c— (QY + F)X;)
Qy 2
_OYEEYE oY+ RX +Fc+o<m+F>Y+QM= B,
2] ] 2
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