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Abstract: Wire-wrapped screens have been established as one of the primary sand control devices
in Steam-Assisted Gravity Drainage (SAGD) wells due to the high open-to-flow area and superior
plugging attributes. However, their design is still a point of interest for thermal operations. Generally,
existing approaches rely on one or more particular points of reservoir sands’ particle size distribution
(PSD) and rules of thumb inferred from other devices like the slotted liners. This study used Sand
Retention Testing (SRT) to analyze the performance of WWS under various testing conditions,
which were neglected in the current design criteria. The experimental investigation leads to a set of
graphical design criteria that provide an optimum aperture size window. The results show that the
sand retention performance of WWS is highly dependent on the flow velocities of the wetting phase.
Moreover, the testing showed satisfactory plugging performance of WWS even with narrow aperture
sizes, proving a superior performance for low-quality oil sands.
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1. Introduction

SAGD is the primary technology to extract heavy oil from oil sands. The continuous
steam injection from the upper well generates a growing steam chamber that contacts and
transfers heat to the bitumen. Consequently, oil viscosity is reduced, which allows the
gravity-assisted flow of melted bitumen and condensed steam toward the lower production
well [1] (Figure 1a,b).

Oil sands are geologically young formations typically found at shallow depths (up
to 450 m) [2]. The inherent loose characteristic of oil sands requires sand control methods
to avoid damage in surface and downhole facilities [3]. Sand particles are erosive at high
flow velocities [4], and their accumulation in horizontal wells can obstruct the free flow of
production fluids, leading to remedial workover operations and high treatment costs [5].
Over the years, SAGD operators have employed Standalone Screens (SAS) to provide sand
control and mechanical support to the wellbore. Slotted Liner (SL), Wire-Wrapped Screen
(WWS), and Punched Screens (PS) are the most common sand control devices (SCD) in
SAGD wells (Figure 1c,e).

The screen would form sand bridges over the slots, providing retention of sand
grains [6]. The relatively low flow rates in SAGD wells prompted the operators to opt for SL
as a low-cost option with robust mechanical integrity [7,8]. However, SL may exhibit severe
plugging tendencies and corrosion issues, resulting in a gradual shift from SL to higher
OFA screens, such as WWS and PS [9,10]. WWS consists of a continuous profiled wire
wrapped onto a base pipe (Figure 1d). The wires typically have a trapezoid cross-section
and are supported by ribs or rods in direct contact with a perforated pipe. The hole density
on the base pipe affects the integrity and strength of the screen, which is out of the scope of
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the current study. WWS provides a high OFA, from 6% to 15%, compared to 2–3% for SL
and 3–8% for PS [11].
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ture is the crucial parameter in sanding [8,12], whereas OFA dominates the flow response 
of the device [13]. The lower the OFA, the faster a device can achieve severe plugging. 
WWS offers the benefit of high OFA and has proven more effective for low-quality sands 
with active clay components [14]. Increasing the slot density for SL generates a slight in-
crease in OFA, while varying the aperture size in WWS can drastically escalate the OFA. 
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(TLS) method to identify the optimum aperture window for the McMurray Formation 
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into the WWS performance. 
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Over time, several authors have tried to develop criteria for the sand control screen 

aperture selection. Coberly [15] introduced 2D10 as the maximum aperture at which sta-
ble bridges can form. D10 represents the sieve size that retains 10% of the material mass. 
Suman et al. [6] proposed a more conservative criterion (≤D10) but still recognized the 
importance of larger particles on bridge stability. Initial groundwater applications of 
WWS followed a sizing recommendation of D40 [16]. Subsequent criteria continued to 
rely on one single point of the PSD. For instance, Gillespie et al. [17] proposed 2D50 as the 

Figure 1. (a) A schematic of the SAGD process, (b) steam chamber, (c–e) the depiction of sand
control devices and their respective slot geometry, (c) Slotted Liner, (d) Wire-Wrapped Screens, and
(e) Punched Screens.

A sand control screen optimization effort minimizes sand production while keeping
an acceptable flow performance throughout wellbore life [7]. Generally, the screen aperture
is the crucial parameter in sanding [8,12], whereas OFA dominates the flow response of
the device [13]. The lower the OFA, the faster a device can achieve severe plugging. WWS
offers the benefit of high OFA and has proven more effective for low-quality sands with
active clay components [14]. Increasing the slot density for SL generates a slight increase in
OFA, while varying the aperture size in WWS can drastically escalate the OFA.

This study aims to elaborate a new set of criteria using the “Traffic Light System”
(TLS) method to identify the optimum aperture window for the McMurray Formation
PSD classes. The criteria employ the experimental data to discretize the performance
into different production scenarios, accounting for sanding and flow performance. The
operational procedure incorporates various flow velocities and fluid phases to gain an
insight into the WWS performance.

2. Existing Aperture Design Criteria

Over time, several authors have tried to develop criteria for the sand control screen
aperture selection. Coberly [15] introduced 2D10 as the maximum aperture at which stable
bridges can form. D10 represents the sieve size that retains 10% of the material mass.
Suman et al. [6] proposed a more conservative criterion (≤D10) but still recognized the
importance of larger particles on bridge stability. Initial groundwater applications of WWS
followed a sizing recommendation of D40 [16]. Subsequent criteria continued to rely on
one single point of the PSD. For instance, Gillespie et al. [17] proposed 2D50 as the upper
limit for WWS aperture size based on slurry SRT for different sand classes. Ballard and
Beare [18] combined pre-packed and slurry SRT results to suggest aperture sizing on the
D30 and stated that it provides better results than the D10 criteria. Likewise, Weatherford
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guidelines recommend D25 for WWS. Fattahpour et al. [8] presented a rule of thumb for
SAGD wells after comparing experimental data with field applications, selecting WWS
with apertures 0.004 to 0.008 inches less than the equivalent SL selection for the same sand.
The existing aperture design criteria for WWS do not consider operational conditions, fluid
properties, stress levels, or PSD shape.

3. Experimental Setup and Procedure

The investigation employs a pre-packed SRT that emulates the high-porosity zone
formed around the sand control screen after borehole collapse. The experiment mimics the
conditions around SAGD production wells using reasonable flow rates, fluid ratios, and
production scenarios. All tests were conducted with 60 psi of axial stress to replicate the
early stages of the near-wellbore region with relatively low effective stresses [19].

3.1. Experimental Apparatus

The pre-packed SRT equipment (Figure 2a) encompasses five units: (1) cell and acces-
sories, (2) fluids injection unit, (3) data acquisition system, (4) collection and back-pressure
units, and (5) load frame.
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(a) (b) 

Figure 2. (a) Pre-packed SRT, schematic, (b) sand-pack sections. Lb, Lm, and Lt represent the length
of near-screen, middle, and top intervals.

The core holder, 6 inches in diameter and 18.5 inches in length, accommodates the
sand pack sitting over the sand control screen samples. Three connection points along
the cell allow recording pressure drop evolution (Figure 2b) (differential transducers with
0.25% accuracy). The near-screen zone is defined as the 2-inch interval of sand above the
screen. The other points are located 7 and 12 inches above the screen. Flow is injected
from the top to the bottom of the sand pack and is then directed toward the back-pressure
column, which provides 3 psi pressure at the sample bottom. Produced particles at each
step are captured and accumulated in the sand trap.

3.2. Testing Materials

Several tests were performed on three representative PSD classes from the McMur-
ray formation (DC-I to DC-III) to evaluate the response of WWS under different sand
characteristics. DC-III is considered medium-coarse sand, while DC-II and DC-I are fine
and very fine sands, respectively. The porosity of sand samples is about 35%. Synthetic
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sand mixtures using commercial sands, silts, and clays are employed to replicate the PSDs
categorized by Abram and Cain [20]. Figure 3 compares commercial and actual formation
sands. Table 1 describes each sample’s detailed D-values and shape factors (uniformity
coefficient and sorting coefficient). Mahmoudi et al. [21] showed that commercial mixtures
also display similar strength properties and shape factors as the formation sands. Kaolinite
was used as the clay mineral in the samples as it is the dominant clay in the McMurray
Formation [21].
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Figure 3. PSD of formation sands and corresponding synthetic samples; (a) DC-III, (b) DC-II, (c) DC-I.

Table 1. PSD Characteristics of the McMurray Formation Sands.

Sand D90 D70 D50 D40 D10 Uniformity
Coefficient

Sorting
Coefficient

DC-I 25 80 135 147 232 5.9 9.3
DC-II 76 118 175 205 260 2.7 3.4
DC-III 110 187 215 264 341 2.4 3.1

Uniformity Coefficient (UC = D40/D90), Sorting Coefficient (SC = D10/D90

Figure 4a introduces the test matrix that covers existing criteria to incorporate both
sanding and plugging conditions. Figure 4b shows a schematic with the design parameters
of WWS coupons with 6 inches diameter. WWS coupons correspond to 6-inch-diameter
disks cut from the screen. The performance of each sand is evaluated for different aperture
sizes.

Haftani et al. [22] summarized the reported pH values of produced water from several
SAGD projects, indicating the pH range from 7.3 to 8.8 with a wide range of salinity values.
In this study, 7.9 is selected as the pH of the brine phase in all tests. Na+ and Cl− are the
dominant ions encountered in produced water from SAGD wells, and 400 ppm was found
to be the lowest value in SAGD wells [22], representing the worst-case scenario for fines
migration.

Mineral oil with 8-cp viscosity is used to emulate bitumen at downhole temperature
conditions [7]. Nitrogen is the gas phase used to represent steam-breakthrough episodes.
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Figure 4. (a) Testing program and (b) schematic of WWS coupons with design specifications.

3.3. Testing Procedure

Sand preparation starts with the dry mixing of commercial sands, silts, and clay. Brine
at 10% weight of the sand is then added and thoroughly mixed with the dry sand. The wet
sand is packed inside the test cell following a layer-by-layer technique known as the moist
tamping method [23] to ensure a uniform porosity and permeability distribution along the
sand pack. Once the sand-pack reaches the top, the top platen is installed, and the load
piston applies 60 psi of axial stress. Next, the sand pack is saturated from bottom to top at
a low flow rate to avoid permeability damage in the sample.

The absolute permeability of the sample is measured before brine displacement by
oil. Three differential readings across the sample confirm an even permeability. Oil is
injected from the sample top towards the coupon at 1250 cc/h to displace the brine and
reach irreducible water saturation, emulating the reservoir’s initial saturation condition [7].

The test includes the injection of single-, two-, and multi-phase flow stages (Figure 5).
The duration of each stage depends on the distribution of flowing phases and pressure
stabilization to achieve a steady-state flow. Three flow rate levels are designed to account
for scenarios like reservoir heterogeneity, aperture plugging, and non-uniform flow dis-
tribution. The maximum liquid flow rate (7200 cc/h) corresponds to 4000 bbl/day of
liquid production from an 800-m SAGD production well equipped with a 7-inch screen,
where only 15% of the well contributes to the flow. The medium- and minimum-flow rates
correspond to scenarios where 50% and 70% of the well contribute to the flow, respectively.
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The three single-phase oil stages in Figure 5 emulate sections of the well that produce
high oil cuts. Next, the injection of brine and oil captures the changing conditions of SAGD
wells, where different liquid rates and water cuts are experienced throughout the wellbore
life [24]. The flow scheme includes a single-phase brine stage to account for high water cuts,
representing the worst-case scenario for sand production and fines migration [25]. Lastly,
two stages of co-injection gas (N2), brine and oil, resemble the event of steam breakthrough.
Although the precise influx conditions during such episodes are not known, the liquid
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rates are dropped to the initial level (total liquid rate of 2900 cc/h) since it is anticipated
that high steam mobility may restrict liquid inflow.

4. Testing Program and Evaluation Method

Cumulative sand production and retained permeability are the sand retention and
flow performance indicators, respectively. Produced sand is reported in pounds per square
foot (lb/ft2) of the coupon area. Retained permeability is evaluated after the last liquid
stage (100% brine flow) as the ratio of effective permeability at the near-screen zone over
initial effective permeability at irreducible oil conditions. The Wang et al. [26] method was
used in this study to obtain the retained permeability under multi-phase conditions at
residual oil saturation tests (Table 2).

Table 2. Relative permeability at irreducible oil conditions.

Sand Class kabs (md) krel (Fraction) at Sor

DC-I 950 0.48
DC-II 1800 0.52
DC-III 2400 0.54

5. Testing Results
5.1. Sand Retention Performance

WWS’s ability to retain the production of solid particles relies on the stability of
particle bridges, which is mainly controlled by the ratio of the aperture size over the
particle diameter [27], local fluid velocity [28], grain shape [29], water cut [25,30], and
flowing phases [7].

This study established sand production limits at 0.12 lb/ft2 for moderate sanding
and 0.15 lb/ft2 as the upper threshold for cumulative sanding. These limits correspond
to limiting cumulative sand to less than 1% of the liner volume [31]. Similarly, Hodge
et al. [32] correlated laboratory performances with field data and proposed a value of
0.12 lb/ft2.

Figure 6 shows negligible sand production during the oil stages for all sand classes,
which can be attributed to the strong capillarity bonding between grains. Even at high oil
flow rates and wider slots, minimal sanding is observed. After the water breakthrough,
more sand production is expected due to the reduction of the capillary bonding force.
However, for 0.006” and 0.010” coupons in DC-III, there is minimal sanding even after
water breakthrough, indicating stable sand bridges are formed on the small apertures that
could provide a strong capability to prevent sand production. However, wider slots exhibit
transient sanding. In transient sanding, some sanding is observed upon changing the flow
rate or water cut, with the rate eventually declining until stable bridges are formed at
constant flow rates.

Increasing flow rates induce higher pressure gradients through the sand bridges, and
the drag forces can exceed the frictional resistance of the bridge. The impact of flow rate
fluctuations is more substantial for wider slots, since greater aperture size to grain size
results in weaker sand bridges.

Transient sanding was also observed during the co-injection of brine, oil, and gas,
but at more intense levels. Interestingly, gas–liquid flow can destabilize the bridges, even
over narrow apertures such as 0.006”. Wider slots (>0.014”) displayed significant sand
production. In cases like the 0.018” test for DC-I, bridge stability is never achieved, and
particles are continuously produced, known as continuous sanding.
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5.2. Flow Performance

The retained permeability normalizes the final permeability of the near-screen zones
against the initial permeability. This parameter allows for a better comparison of the flow
performance of different sand control designs. Effective retained permeability determi-
nation uses the relative permeability values (krw@Sor) from Table 2 and the pressure drop
reading from the last liquid stage:

kret =
kw,bottom

kabskrw @Sor

kw,bottom =
qwµwLb
∆Pb A

where krw@Sor is the relative permeability to water at residual oil saturation, kw,bottom is the
final effective permeability after the last liquid stage, and kret is the retained permeability.
∆Pb is the pressure drop at the bottom section of the sand-pack. qw and µw represent the
water flow rate and viscosity, respectively.

Burton and Hodge [33] analytically found that a negligible impact on productivity
occurs for retained screen permeability above 20% due to the high permeability of the
screens compared to that of a porous medium. Later, retained permeability of 50% in the
near-wellbore region was proposed to account for other formation damage sources [12,32].
This study considers 50% and 70% for the marginal and acceptable limits of retained
permeability, respectively.

Figure 7 displays the retained permeability as a function of aperture size for the three
sand classes. As expected, the fines can easily be dislodged from the sand-pack for the
wider aperture size, resulting in minimal plugging. Remarkably, WWSs provide retained
permeability values above 50%, even for narrow apertures such as 0.006” in low-quality
sand, i.e., DC-I. In DC-III, increasing the aperture size beyond 0.018” does not further
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improve skin but results in higher sanding levels. Flow performance decreases from DC-III
to DC-I, as narrow pore throats are prone to plugging.
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6. Design Criteria for WWS

Flow and sand production performances obtained with the SRT are combined to
elaborate a set of graphical design criteria for WWS. The proposed criteria specify an
aperture size window that keeps the produced sand within an acceptable limit while
minimizing plugging potentials and maintaining wellbore productivity. Unlike previous
criteria, the criteria introduced here differentiate production scenarios to evaluate their
influence on the safe aperture zone. The optimum aperture window provides an upper
bound and a lower bound. The upper bound is governed by sand production performance,
while the flow performance dominates the lower bound.

6.1. The Traffic Light System (TLS)

The TLS is a graphical approach to rank the performance of different aperture sizes
for specific sand classes proposed by Wang et al. [34] for slotted liners. This paper uses the
same procedure for WWS. The performance is presented on an axial representation of the
PSD (Figure 8) that contains representative D-values along the axis (red lines) as well as
the aperture sizes implemented in the testing (dashed lines). The performance limits are
used to categorize the response of WWS as acceptable, marginal, and unacceptable for sand
retention and flow performance. Table 3 presents the color definitions for each indicator.
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Description
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for Cumulative Sand

Production
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Retained Permeability
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6.2. Design Criteria

The criteria differentiate two production scenarios, including regular and aggressive
SAGD conditions. Experimental results up to the last liquid stage represent a regular SAGD
case where a well exhibits changes in flow rate and water cuts throughout its life. The
aggressive flow, defined as the flow during the three-phase flow condition, represents the
steam breakthrough (see Figure 5). SAGD operators strive to identify “hot spots” and
control these events due to their impact on the steam-chamber growth efficiency and risks
of liner damage.

Figure 9a,b show an example of the axes for sand retention and flow performance for
DC-III, respectively, under regular conditions. Combining both performance indicators
generates the optimum aperture window (Figure 9c). The same method is used to create the
final aperture size window for DC-II and DC-I under regular SAGD conditions (Figure 10).
The safe aperture window narrows down from DC-III to DC-I. Fine sands produce more
solids, requiring the implementation of smaller apertures. However, smaller apertures
promote pore and slot plugging, reducing the range of optimum sizes.
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Figure 11 presents the TLS design criteria for the samples in aggressive conditions
(during steam influx). By comparing the TLS criteria for regular and aggressive flow
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situations, it is evident that the aperture window shrinks for the aggressive condition. The
reason is high levels of sanding due to strong drag forces during gas flow, shifting the
upper bound to the left.
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In summary, the high OFA of WWS results in low pressure gradients and high fines
discharge that reduce pore plugging potential. As a benefit of high OFA, WWS allows the
selection of narrow apertures that can handle a wide range of PSDs. However, for coarser
sands, selecting narrow apertures may diminish the advantages of high OFA. Furthermore,
the TLS shows how the adequacy of current criteria (i.e., D10, 2D50) is highly dependent on
production scenarios, and that such simple criteria do not work consistently for all PSDs.
Therefore, the graphical design criteria are created for each sand class, accounting for the
entire shape of the PSD curve and the operating conditions.

7. Discussion

This paper presents the performance of WWS through an experimental study by
including several key parameters, such as flow rate, water cut, PSD, and aperture size.
Based on the sanding and flow performance, the aperture design criteria are generated
for different SAGD operation conditions, which could provide some guidance to the field
engineers in selecting the proper aperture size.

It should be mentioned here that there are more influential factors in the testing design
that are not investigated in this study, such as temperature, paraffin deposition, etc. [35,36].
Thus, additional testing scenarios and field data are required to validate and calibrate the
proposed aperture design criteria.

8. Conclusions

This research introduces design criteria for WWS in SAGD applications, considering
the role of operational scenarios, flow rate, PSD, and aperture size on the screen perfor-
mance. The results show that production scenarios strongly influence sanding intensity;
wider slots exhibit extreme sanding levels during steam-breakthrough stages but respond
reasonably well during liquid stages. Drag forces play a critical factor in disrupting particle
bridges. A positive conclusion for WWS is that the retained permeability values stay above
acceptable limits (50–70%), even for finer sands. WWS displays a substantial ability to
release fines.
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Sanding and flow performance results are combined to determine optimum-aperture
windows for three sand classes using the TLS approach, incorporating PSD and production
scenarios. Aggressive conditions shrink the safe-aperture window compared to normal
SAGD conditions, which signifies the influence of operational practices in the performance
of screens. Elevated flow rates and steam production significantly impact sanding and
plugging and must be considered in aperture size design. For instance, for low sub-cool
levels, the risk for the steam influx is more eminent, and the effect of aggressive conditions
would affect the aperture sizing selection.
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Abbreviations

OFA Open-to-Flow Area
PS Punched Screens
PSD Particle Size Distribution
SAGD Steam Assisted Gravity Drainage
SAS Standalone Screens
SCD Sand Control Devices
SL Slotted Liner
SRT Sand Retention Test
TLS Traffic Light System
WWS Wire-Wrapped Screen
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