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Abstract: Hypotrochoidal profile contours have been produced in industrial applications in recent
years using two-spindle processes, and they are considered effective high-quality solutions for form-fit
shaft and hub connections. This study mainly concerns analytical approaches to determine the stresses
and deformations in hypotrochoidal profile shafts due to pure bending loads. The formulation was
developed according to bending principles using the mathematical theory of elasticity and conformal
mappings. The loading was further used to investigate the rotating bending behaviour. The stress
factors for the classical calculation of maximum bending stresses were also determined for all
those profiles presented and compiled in the German standard DIN3689-1 for practical applications.
The results were also compared with the corresponding numerical and experimental results, and
very good agreement was observed. Additionally, based on previous work, the stress factor was
determined for the case of torsional loading to calculate the maximum torsional stresses in the
standardised profiles, and the results are listed in a table. This study contributes to the further
refinement of the current DIN3689 standard.

Keywords: hypotrochoidal profile shafts; DIN3689 H-profiles; bending stress; rotating bending loads
in profiled shafts; flexure; torsional stress in profiled shafts; noncircular shafts; bending stress factor;
torsional stress factor

1. Introduction

In the field of modern drive technology, there is an increasing demand for higher
power transmission in a smaller construction space. A necessary and important component
in drive trains is the form-fit shaft and hub connections. Thereby, a widely used standard
solution is the key-fit connection according to DIN 6885 [1]. However, this technique is
reaching its mechanical limitations, which is why industry focus has been increasingly on
form-fit connections with polygon profiles in the past few years. With the hypotrochoidal
polygonal connection (H-profiles in Figure 1), a polygonal contour has been the new
standard according to DIN 3689-1 [2] since November 2021. The great advantages of H-
profiles via key-fit connections were studied in [3]. These investigations display a significant
reduction of around 50% in the fatigue notch factor.

Additionally, a significant advantage of hypotrochoidal profiles (H-profiles) is their
manufacturability through two-spindle turning [4,5] (Figure 2) and oscillating–turning [6]
processes, as well as roller milling [7] (Figure 3). This allows time-efficient production.

Despite the excellent manufacturability described above and the great mechanical
advantages of H-profiles, there is currently no reliable and cost-effective calculation method
for the dimensioning of such profiles. The determination of the strength limit of H-profiles
is still performed by means of extensive numerical investigations.

DIN 3689-1 refers to geometric specifications for H-profiles. Design guidelines are
compiled in Part 2 of the standard. This paper represents an analytical solution for purely
bending-loaded H-profile shafts in general and specifically for all standardised H-profiles
for the first time. Furthermore, the author uses the analytical solution developed in another
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paper [8] for all standard profiles for torsional stresses and puts them together for practical
and industrial applications.

The results can be used for a reliable and cost-effective calculation method of H-profile
shafts with a simple pocket calculator for pure bending as well as torsional loads.
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Figure 1. Description of exemplary hypotrochoid (H-profile) with four concave sides. A detailed
explanation of the parameters is given below in Section 2.
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Figure 2. Some H-profiles manufactured by two-spindle process, Iprotec GmbH, © Guido Kochsiek,
www.iprotec.de, Zwiesel, Germany [5].
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2. Geometry of H-Profiles

A hypotrochoid (H-profile) is created by rolling a circle with radius rr (called a rolling
circle) on the inside of a guiding circle with radius rg with no slippage (see, for instance, [9]).
The distance between the centre point of the rolling circle and the generating point P is
defined as eccentricity (Figure 1). Depending on the diameter ratios of the two circles
and the location of the generating point P in the rolling circle, different H-profiles may
be formed.

The diameter ratio (rg/rr) defines the number of sides “n” and should be an integer
(n > 2) to obtain a closed curve without intersection. The coordinates of the generated
point P describe the parameter equations for the hypotrochoid (H-profile) as follows:

x(t) = r · cos(t) + e · cos[(n − 1) · t]
y(t) = r · sin(t)− e · sin[(n − 1) · t] with 0

◦ ≤ t ≤ 360
◦
.

(1)

The overlapping of the profile contour starts from the limit eccentricities of elim = r
n−1

and, accordingly, the limit relative eccentricity of ε lim = elim
r = 1

n−1 .
Figure 4 shows some examples of the H-profiles obtained for different numbers of

sides (n) and eccentricities.
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Figure 4. Examples of H-profiles with different numbers of sides (n) and eccentricities.

If a rolling circle rolls on the outside of a guiding circle, the profile generated is called
an epicycloid (E-profile).

2.1. Geometric Properties
Area

Starting from the parameter representation (1) for the hypotrochoidal contours, the
following complex mapping function is formulated as follows:

ω(ζ) = r · ζ +
e

ζn−1 (2)

This function conformally maps the perimeter of a unit circle to the contour of a
H-profile. However, when the area enclosed by the polygon was mapped, multiple poles
were formed at the corners of the contour. A complete conformal mapping is not essential
for the determination of bending stresses. However, for shear force bending, a complete
mapping of profile cross-section is necessary (analogue to torsion problem [8]).
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By substituting mapping (2) into the equation for the area [10,11]:

A =
1
2

∫ 2π

0
Im
[
ω̄(ζ) · .

ω(ζ)
]
dt (3)

the following relationship can be derived for the area enclosed by an H-profile for any
number of flanks n and eccentricity e:

A = Aa − π · e · [da + e · (n − 2)] (4)

where
.

ω = dω/dt is the first derivative of the mapping function, t defines the parameter
angle, and Aa =

π
4 · d2

a is the area of the head circle (with da = 2 · ra).

2.2. Radius of Curvature at Profile Corners and Flanks

From a manufacturing point of view, the radius of the curvature of the contour at
profile corners (on the head circle) plays an important role. Using the equation presented
in [11], the radius of curvature can be determined:

ρ = 2i · (
.

ω · .̄
ω)

3
2

.̄
ω · ..

ω − .
ω · .̄.

ω
=

∣∣ .
ω
∣∣3

Im(
.̄

ω · ..
ω)

(5)

The second derivative of the mapping function in (5) is defined as
..
ω = d2ω

dt2 .
The radius of curvature at profile corners (on the head circle in Figure 1) can be

determined by substituting mapping function (2) into Equation (5) for t = 0 as follows:

ρa =
(da − 2 · e · n)2

2 · [da + 2 · e · n · (n − 2)]
(6)

The radius of curvature at profile corners ρa is important in connection with the
minimum tool diameter regarding the manufacturability of the profile.

The radius of curvature of the profile in the profile flank ρ f (Figure 1) can also be
determined using Equation (5) for t = π/n:

ρ f =
[da + 2 · e · (n − 2)]2

2 · [da − 2 · e · (n2 − 2 · n + 2)]
(7)

The radius of curvature in the flank area ρ f is a measure of the degree of the form
closure of profile contours.

2.3. Bending Stresses

In many practical applications, a failure may occur in the profiled shaft outside of the
connection due to the excessive stresses. For these cases, the following analytical approach
based on [12] is used to solve the bending problem.

It is assumed that the cross-sections remain flat (without warping) after bending. The
following relationships are valid for the stresses:

σx = σy = τxy = τyz = τxz = 0
σz = −Mb

Iy
· x, (8)

where Iy denotes the moment of inertia for profile cross-section relative to the y-axis
(Figure 5).
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2.4. Bending Deformations

Displacement is determined using Hooke’s law, and the corresponding correlation
between displacements and the strain is as follows (see [12,13]):

ux =
Mb

2 · E · Iy
·
[
z2 + ν ·

(
y2 − x2

)]
(9)

2.5. Moments of Inertia

The moments of inertia involve a double integral over the profile’s cross-section, but
this can be reduced to a simple curvilinear integral over the profile contour using Green’s
theorem, as follows:

Ix = −1
3
∫

γ y3dx

Iy =
1
3
∫

γ x3dy

Ixy =
1
2
∫

γ x2ydy.

(10)

The contour description according to Equation (2) is also advantageous here. For the
contour of the profile’s cross-section, the following coordinates apply:

x =
ω(λ) + ω(λ)

2

y =
ω(λ)− ω(λ)

2 · i
.

(11)

By substituting Equation (11) in (10), Iy, Iy, Ixy can be determined as such:

Ix = − i
48

∫
γ

(
ω(λ)− ω(λ)

)3
d
(

ω(λ) + ω(λ)
)

Iy = i
48

∫
γ

(
ω(λ) + ω(λ)

)3
d
(

ω(λ)− ω(λ)
)

Ixy = − 1
32

∫
γ

(
ω(λ) + ω(λ)

)2(
ω(λ)− ω(λ)

)
d
(

ω(λ)− ω(λ)
)

,

(12)

where λ = eit. Function (12) facilitates the determination of moment of inertia with the
assistance of Equation (2).

The moment of inertia Iy is necessary for the calculation of the bending stress σz as
well as for the determination of bending deformation ux (Equations (8) and (9)).

Inserting the mapping function from (2) into Equation (12) for Iy, the following rela-
tionship is determined for the bending moment of inertia for an arbitrary number of flanks
n and eccentricity e:

Iy =
π

4
·
(

r4 − 2e2(n − 2)r2 − e4(n − 1)
)

(13)
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If one substitutes x(t) from (1) and Iy from (13) into Equation (8), the distribution of
the bending stress on the lateral surface of the profile can be determined as follows:

σb(t) =
4Mb

π
· rcos(t) + ecos((n − 1)t)

r4 − 2e2(n − 2)r2 − e4(n − 1)
(14)

The maximum bending stress on the tension side occurs at x = r + e (on the profile
head, Figure 5), and therefore the following equation can be obtained:

σbh =
4Mb

π
· r + e

r4 − 2e2(n − 2)r2 − e4(n − 1)
(15)

The bending stress on the pressure side occurs at x = r − e in the middle of a profile
flank (on the profile foot, Figure 5) can also be determined as follows:

σb f =
4Mb

π
· r − e

r4 − 2e2(n − 2)r2 − e4(n − 1)
(16)

2.6. Example

An H-profile from DIN 3689-1 [2] with three sides, a head circle diameter of 40 mm
and eccentricity e = 1.818 mm (r = 18.18 mm; related eccentricity ε = 0.1) was chosen as
the object of investigation. The bending load was chosen as Mb = 500 Nm.

In order to compare the analytical results, numerical investigations were carried out
using FE analyses, and the MSC-Marc programme system was used.

Figure 6 shows the mesh structure and the corresponding boundary conditions. The
shaft is fixed on the right side. A bending moment is applied on the left side of the shaft
via a reference node using REB2s. Bending stresses were evaluated at an adequate distance
(lb) from the loading point. The FE mesh in Figure 6 contains hexahedral elements with full
integration, type 7 according to the Marc Element Library [14].
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Figure 6. FE mesh and boundary conditions for the H-profile with n = 3 according to DIN 3689-1.

FE structures are generated by employing software written in Python language at the
Chair of Machine Elements at West Saxon University of Zwickau, Germany. The FE meshes
were then transferred to MSC-Marc program system and integrated into pre-processing.

Figure 7 displays the distribution of bending stress on the circumference of the profile
according to Equation (14) and its comparison with the numerical result. A good agreement
between the results was observed.
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Additionally, bending stresses were experimentally determined for the profile head
and foot areas. Figure 8 shows the test bench for bending load.
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Experimental results for head and foot areas are compared with Equations (15) and (16)
in Figure 9, where a good agreement of the results is evident.
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Figure 9. Comparison of the experimental results with the analytical solutions.

2.7. Stress Factor for Bending Loads

The stress factor is defined as the ratio of bending stress in a profile shaft to a correspond-
ing reference stress for a round cross-section with radius r (nomial radius of the profile):

αb =
σb

σb,re f

with: σb,re f =
Mb·r
Iy,re f

and Iy,re f =
π

4
·r4.

(17)

For the head of the profile, the stress factor is determined as follows:

αbh =
1 + e

1 − 2e2(n − 2)− e4(n − 1)
(18)

Figure 10 shows the curves for the stress factor αbh as a function of the relative
eccentricity ε for different numbers of sides n. It can be recognised that the stress factor
rises with an increase in eccentricity and or the number of sides.

Eng 2023, 4, FOR PEER REVIEW 9 
 

 

𝛼 = 1 + 𝑒1 − 2𝑒 (𝑛 − 2) − 𝑒 (𝑛 − 1) (18)

Figure 10 shows the curves for the stress factor 𝛼   as a function of the relative ec-
centricity 𝜀 for different numbers of sides 𝑛. It can be recognised that the stress factor 
rises with an increase in eccentricity and or the number of sides. 

 
Figure 10. Stress factors for the bending stress at the profile head (Equation (18)) with varying rela-
tive eccentricity and number of sides. 

For the profile base (foot), the following stress factor is analogously obtained: 𝛼 = 1 − 𝑒1 − 2𝑒 (𝑛 − 2) − 𝑒 (𝑛 − 1) (19)

2.8. Rotating Bending Stress 
During power transmission, the gear shaft always shows rotational movement. 

Therefore, the rotating bending was also investigated. 
Figure 11 schematically represents the rotated position of an H-profile with three 

flanks according to the Cartesian coordinates. 

 
Figure 11. Rotated coordinate system for determining the bending moment of inertia. 

The moment of inertia remains invariant due to the periodic symmetry of the cross-
section of the H-profile presented based on Equation (2). Therefore, the following rela-
tionships are valid from Equation (12): 

Relative Eccenticity

St
re

ss
 Fa

ct
or

α b
h

n=3n=4
n=5

n=7

n=9

Mb,y

x

y φ

Figure 10. Stress factors for the bending stress at the profile head (Equation (18)) with varying relative
eccentricity and number of sides.



Eng 2023, 4 837

For the profile base (foot), the following stress factor is analogously obtained:

αb f =
1 − e

1 − 2e2(n − 2)− e4(n − 1)
(19)

2.8. Rotating Bending Stress

During power transmission, the gear shaft always shows rotational movement. There-
fore, the rotating bending was also investigated.

Figure 11 schematically represents the rotated position of an H-profile with three
flanks according to the Cartesian coordinates.
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The moment of inertia remains invariant due to the periodic symmetry of the cross-
section of the H-profile presented based on Equation (2). Therefore, the following relation-
ships are valid from Equation (12):

Ix = Iy and Ixy = 0. (20)

From Equation (20) and the use of Mohr’s circle, it can be proven that the moment of
inertia is independent of the rotation angle φ (see also [10]):

Iξ = Iη

(
= Ix = Iy

)
Iξη = Ixy = 0.

(21)

In order to obtain the general solution of the bending stress according to Equation (8)
for an arbitrary angle of rotation, the perpendicular distance ξ is to be calculated in the
rotated coordinate system:

ξ(φ) = ycos(φ)− xsin(φ) (22)
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where φ denotes the angle of rotation. If the values for x and y from (1) are inserted into
the relationship (22), the following equation results for the perpendicular distance in the
rotated coordinate system (0 ≤ t ≤ 2π):

ξ(φ, t) = rsin(t − φ)− esin((n − 1)t + φ) (23)

The distribution of bending stress on the profile contour may be determined by using
(23) in the relation of bending stress as follows:

σb(φ, t) = −Mb
Iη

· ξ(φ, t) =
4Mb

π
· rsin(t − φ)− esin((n − 1)t + φ)

r4 − 2e2(n − 2)r2 − e4(n − 1)
(24)

Figure 12 shows the distributions of the bending stresses on the profile contour for
different angles of rotation, which were determined using Equation (24). As expected, the
maximum stress occurred at the profile head.
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2.9. Deflection

The deflection of the profile shaft can also be determined with the help of the bending
moment of inertia Iy. As explained above, this is independent of the angular position of
the cross-section (Equation (21)).

The deflection of the neutral axis is determined from Equation (9) for x = y = 0 as
follows:

δx =
Mb

2 · E · Iy
· z2 (25)
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Substituting (13) in (25), the deflection can be determined as

δx =
2Mb
πE

· z2

r4 − 2e2(n − 2)r2 − e4(n − 1)
(26)

2.10. Example

Figure 13 shows the deflection for an H-profile shaft with three flanks according to
DIN3689-1 with da = 40 mm (H3-40 × 32.73 with ε = 0.1) and a length of 160 mm made
of steel (E = 210,000 N

mm2 ). The comparison with FE analysis shows very good agreement
with Equation (26), as can also be seen in Figure 13. The bending load was chosen as
Mb = 500 Nm.
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2.11. H-Profiles According to DIN3689-1

DIN3689-1 is a new standard that was published for the first time in November 2021. It
describes the geometric properties of 18 specified H-profiles in two series. Series A is based
on the head diameter, and series B involves the foot diameter as the nominal size of the
profile. The respective corresponding profiles are geometrically similar. Each series contains
48 nominal sizes, which remain geometrically similar amongst themselves. Consequently,
all standardised profiles are limited to 18 variants. This facilitates the processing of a
generally valid design concept.

2.12. Stress Factor for Bending

The maximum bending stresses at the head and foot of the profile are important from
a technical point of view for the design of a profile shaft subject to bending. Therefore, in
this section, the two stress factors αbh and αb f for all the 18 standard profile series were
determined using Equations (18) and (19).

2.13. Stress Factor for Torsion

The stress concentration factor for torsion αt is defined as the ratio of the maximum
torsional stress τt,max (occurring in the middle of the profile flank) and the torsional stress
in a round reference shaft with radius r:

αt =
τt,max

τt,re f
with: τt,re f =

Mt ·r
It,re f

and It,re f =
π
2 ·r4.

(27)
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In [15], purely numerical investigations were carried out on the torsional stresses in
H-profile shafts to calculate the stress factor.

The analytical solution for torsion may be performed using the approach of Muskhel-
ishvili [12]. However, this requires a conformal mapping of the unit circle onto the polygon’s
cross-section. For H-profiles, the mapping function derived from the parametric equation,
Equation (1), cannot be directly used to solve the torsional stresses due to the multiple
poles. The authors of [16] employed an elaborate computational process to determine
the polynomials required for the description of the mappings of H-profiles. In [8,17–19],
successive methods according to Kantorovich [20] were used to develop a suitable mapping
function in the form of a series converging to the profile contour. The convergence quality
and limit were examined and presented depending on the number of terms in the series
developed in [8], calculating the torsional deformations for all standardised profiles. In
the presented work, this method, accompanied by FEA, was used for all the 18 standard-
ised profile geometries of DIN3689-1 to determine the maximum torsional stresses, which
occur in the middle of the profile flank at the profile foot. A stress concentration factor
for torsional loading αt was also determined analogously to that defined for the case of
bending load.

For practical applications, the results for the bending and torsional stress factors are
compiled in Table 1. Using the relative eccentricity, no dependence on the shaft diameter
appears. Table 1 lists the results obtained for the bending and torsional stress factors for all
standardised profile geometries according to DIN3689-1 (rounded to two decimal places).

Table 1. Stress factors for bending and torsional loads for the H-profiles standardised according to
DIN3689-1.

n ε αbh αbf Iy/I0 αt

3 0.100 1.12 0.92 0.98 1.23
4 0.056 1.07 0.96 0.99 1.17
4 0.111 1.17 0.94 0.95 1.37
5 0.031 1.04 0.97 0.99 1.12
5 0.062 1.09 0.96 0.98 1.24
5 0.094 1.16 0.96 0.95 1.38
6 0.020 1.02 0.98 1.00 1.10
6 0.040 1.05 0.97 0.99 1.18
6 0.062 1.10 0.97 0.97 1.37
7 0.028 1.04 0.98 0.99 1.15
7 0.056 1.09 0.97 0.97 1.29
7 0.083 1.16 0.99 0.93 1.43
9 0.023 1.03 0.98 0.99 1.17
9 0.047 1.08 0.98 0.97 1.31
9 0.062 1.12 0.99 0.95 1.39
12 0.017 1.02 0.99 0.99 1.16
12 0.033 1.06 0.99 0.98 1.28
12 0.050 1.10 1.00 0.95 1.38

The bending moment of the inertia of a circular cross-section with radius r is defined
as a reference moment of inertia and labelled I0. The ratio between Iy and I0 is also listed
in Table 1 for the standardised profiles. The H-profiles are normally slightly more flexible
than round profiles.
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3. Conclusions

In this paper, an analytical approach was presented to determine the bending stresses
and deformations in the hypotrochoidal profile shafts. Valid calculation equations for the
area, radii of curvature of the profile contour, and the bending moment of inertia were
derived for such profiles. Furthermore, the solutions for bending stresses and deformations
were presented. For practical applications, a stress factor was defined for the critical
locations on the profile contour.

The analytical results demonstrated very good agreement with both numerical and
experimentally determined results.

The stress factors of the bending stresses were determined for all profile geometries
standardised according to DIN3689-1, and the values obtained were compiled in a table
for practical applications. Based on previous works of the author, the stress factors for
torsional stresses were also determined and added to the table. The data allow a reliable
and cost-effective calculation of H-profile shafts with a pocket calculator for pure bending
as well as torsional loads. This can be very advantageous for SMEs.
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Abbreviations

Formula Symbols:
A mm2 Area of profile cross-section
e mm Profile eccentricity
e - Euler’s number
elim mm Profile overlap eccentricity limit
E MPa Young’s modulus
n - Profile periodicity (number of sides)
I0 mm4 Corresponding reference moments of inertia for a round cross-section with radius r
It,re f mm4 Torsional moment of inertia for reference shaft
Ix, Iy, Ixy mm4 Surface moments of inertia in the Cartesian coordinate system
Iy,re f mm4 Surface moment of inertia about y-axis for reference shaft
Iξ , Iη , Iξη mm4 Surface moments of inertia in the rotated coordinate system
l mm Length of profile shaft
lb mm Distance to strain gage in experimental test
Mb Nm Bending moment
r mm Nominal or mean radius
t - Profile parameter angle
ux mm Displacement in x direction
x, y, z mm Cartesian coordinates
Greek Formula Symbols:
αbh - Bending stress factor for profile head
αb f - Bending stress factor for profile foot
αt - Torsional stress factor for profile foot
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δx mm deflection
ε = e/r - Relative eccentricity
φ - Rotation angle of the coordinate system
λ = eiθ - Physical plane unit circle
θ - Polar angle
σb, σz MPa Bending stress (z-component of stress vector)
τt MPa Torsional stress
ω(ζ) - Completed mapping function
ω0(ζ) - Contour edge mapping function
ζ - Complex variable in model plane
ξ,η - Coordinates in rotated system
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