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Abstract: A kinetic model was developed for the prediction of HTL product yields based on a
chemical mechanism. The model was developed after experimental studies on food wastes and food
processing wastes. The model parameters were determined by training the model on experimental
data on HTL of food wastes. Two other models from the literature were also tested. The calculated
yields were compared with a large range of experimental data from the literature. Yields of bio-oil
and char can be predicted from the process conditions, temperature, holding time, dry matter content,
and the biochemical composition of the resource. Differences in the experimental recovery procedure
and polarity of the extraction solvent are taken into account. This study shows that a kinetic model
based on compositions allows a more detailed representation of the hydrothermal reactions than
models purely based on resources and products. The precision of any model remains, however,
largely dependent on the quality of the input data.
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1. Introduction

Food wastes represent an interesting resource that can be found in every European city,
from canteens, restaurants, and households to agricultural products transformation plants.
In Europe, approximately 50 MT of food waste is produced each year [1], not counting
residues from the food processing industry. This resource can contribute effectively to the
need for alternative biofuels with even a carbon negative balance for the global process
route, hence reducing the global warming effect of mobility [2,3]. As an example of the
valorisation of dry and wet wastes, the European project Waste2Road aims to develop
conversion pathways to produce biofuels from various wastes. Among the possibilities,
hydrothermal liquefaction is considered as a serious way to valorise food waste [4].

Hydrothermal liquefaction (HTL) is a process that is still under development [5]. It is
particularly adapted for the conversion of wet organic resources due to the fact that the
contained water is also the conversion medium, acting as a solvent but also as a reactant.
The biochemical biomass compounds under hot compressed water are converted into a
biocrude. This biocrude is an oily material containing bio-oil and char. The hydrothermal
conversion takes place at temperatures between 300 and 400 ◦C and at pressures above
the saturation pressure to ensure that water remains in the liquid phase, typically above
100 bar [6]. Under these conditions, the ionisation of water increases while its polarity
decreases, favouring depolymerisation and dehydration of biomass biopolymers to produce
hydrophobic compounds [7]. Previous work on HTL of agro-industrial residues has shown
that the biochemical composition of the initial matter is the major parameter influencing
conversion efficiency and quality of the product [8]. Prediction of bio-oil yields can be done
by linear or polynomial equation with a parameters determination obtained by a design
of experiment [9], but this kind of modelling is difficult to extrapolate to a wide range of
biomass resources and even more difficult if the biochemical composition of the wastes is
variable. This is especially the case when dealing with wastes collected at different locations
and during different seasons.
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Modelling with machine learning algorithms is becoming popular in the HTL com-
munity [10–13]. These modelling techniques are generalisations of the before mentioned
linear or polynomial models. These techniques can be very powerful and allow relatively
accurate prediction of the results. In addition, they can also contribute to the understanding
of the conversion from a global statistical perspective [6]. Machine learning techniques
have many advantages above simplified polynomial models, but cannot really contribute
to the knowledge of the underlying chemistry. They offer the advantage of a high accuracy
and predictability if all parameters of influence have been considered.

Kinetic modelling promises both reliable predictions as well as an insight to the
underlying chemistry. The approach is limited by the complexity of the chemistry. For
now, it is impossible to fully characterise the resource, identify all reaction products and
intermediaries, and identify all underlying reactions. Initial attempts of kinetic models
concentrate on a global biomass characterisation and include simple reactions to final
products, characterised by their phases; generally, bio-oil, solids, aqueous phase, and
gas. These models were pioneered by Valdez et al. [14,15] and later reused by other
authors [16,17]. Other reaction schemes have been proposed by Obeid et al. [18,19] and
Qian et al. [20]. Hietala et al. [21] also proposed a simplified model before publishing a
more detailed kinetic model specific to microalgae [22]. A lot of work in characterization
of the biomass and identification and quantification of compounds or reaction schemes
still needs to be done to improve the underlying knowledge and the predictability of the
kinetic models.

There is a need for a deeper understanding of the chemical conversion routes, allowing
for a more precise model. A more universal model based on a large experimental database
used for model training can assure a more universal quality. The objective of this work
is to develop a model able to predict HTL products yields in relation with the initial
biomass biochemical composition and the process conditions. A new chemical mechanism
is proposed and used for the building of a new kinetic model following the work of
Briand [23]. The experimental database is based on HTL batch experiments following the
usual experimental procedure in addition to data gathered from the literature for the same
kind of resource, the food wastes. The dataset is partly published and described in [6,24]
and is supplied as Supplementary Material.

2. Material and Methods
2.1. Resources

A variety of food wastes have been selected and converted. They were characterized
by moisture content, ash content, and proximate and ultimate analyses. Proximate and
ultimate analysis of resources were subcontracted to the commercial laboratories SOCOR
and CAPINOV. Results of the analyses are given in Table 1. Even if the elemental analyses
look similar, the biochemical composition of those two resources are quite different, except
for their protein content. Blackcurrant pomace (BCP) is a residue of juice production and
was sourced from “Les Vergers de Boiron” in Valence, France. Brewers’ Spent Grains
(BSG) were sourced from “La Brasserie du Dauphiné” near Grenoble, France. Food wastes
were collected in batches from the waste disposal of the CEA campus restaurant H1
during a three month period. Three separate campaigns collected three food waste batches.
This study concentrates on the second batch (FW2). The fermentable fraction of organic
municipal waste (FFOM) is the product of the mechanical separation of household waste to
produce the feedstock for the methanisation plant, and was supplied by Suez in Montpellier,
France. The digested fermentable fraction of organic residue (DFOR) is produced from
household waste at the methanisation plant of Energi Gjenvinnings Etatens (EGE), the
waste valorisation company of the city of Oslo in Norway. Biochemical compositions
and ash content constitute, with temperature and residence time, the input data for the
predictive model.
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Table 1. Feedstock characteristics.

BCP BSG FW2 FFOM DFOR

Feedstock Origin Les Vergers
Boiron

La Brasserie Du
Dauphiné

CEA Restaurant
H1 Suez France EGE

Total moisture. as received wt% 52.5 72.5 82 50 42
Ash 550 ◦C, dry matter wt% 3.7 ± 0.3 3.0 ± 0.2 4.8 ± 0.3 22.5 28

Carbon, dry matter wt% 48.7 ± 0.7 44.7 ± 0.3 43.8 ± 0.2 37.7 37.6
Hydrogen, dry matter wt% 6.5 ± 0.1 6.6 ± 0,1 8.1 ± 0.1 5.2 5.9
Nitrogen, dry matter wt% 2.8 ± 0.1 2.8 ± 0.1 3.2 ± 0.5 1.7 4.8

Sulfur, dry matter wt% 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.3 0.3 0.5
Cellulose, dry ash free wt% 16.0 11.5 7.7 30.1 8.8

Hemicellulose, dry ash free wt% 15.1 30.1 12.5 5.5 9.8
Lignin, dry ash free wt% 16.5 3.3 2.8 7.5 24.2
Sugars, dry ash free wt% 9.6 26.0 40.1 13 0

Proteins, dry ash free wt% 18.4 19.9 6.5 9.6 29.5
Lipids, dry ash free wt% 20.7 6.2 11.5 3.8 1.3

Food wastes have a variable composition depending on the restaurant menu, but
generally have a low lignin content. DFOR and FFOM are rich in ash and low in lipids.

2.2. Experimental Procedure

Experiments were performed in a batch reactor of 600 mL volume with different
resources, food wastes, and agro-industrial resources. The resource to water mixture ratio
was kept constant at 1:9 in all experiments. Experiments were performed using always
the same programmed linear heat-up ramp of 15 ◦C/min in order to have reproducible
conditions. The experimental temperature conditions for the experiments on blackcurrant
pomace and brewers’ spent grains are depicted in the Figure 1, with 200, 250, 300, and
315 ◦C and holding times of 0, 15, and 60 min. The experiments at holding time 0 min can
be considered as intermediary points during the heat-up ramp of experiments at higher
temperatures. As can be seen from Figure 1, the set point ramp is well-respected by the
temperature controller. There is a small constant time delay due to the inertia of the heater.
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Figure 1. Experimental conditions in the HTL experiments on BCP and BSG. The imposed tempera-
ture set-points (left) and the measured temperatures (right) for the case BCP.

For other resources (FW2, FFOM, and DFOR), the experimental conditions were less
structured. The temperatures were 200, 250, 300, 325, and 350 ◦C with holding times 0 and
30 min. The same programmed linear temperature ramp of 15 ◦C/min was applied in most
cases unless otherwise stated with the experiment.

At the end of the desired residence time, the reactor is rapidly cooled down to room
temperature. Final pressure is registered for the gas production calculation, and the gas is



Eng 2023, 4 529

vented after sampling for gas composition analysis by a µGC. The solvent is not poured
directly into the reactor, but the liquid product is poured onto a filter to separate the
aqueous phase from the raw biocrudes product. This raw product, called biocrude, is
dried at 105 ◦C until at a stable weight. The oil content of the dried raw biocrude, called
“biocrude,” is determined by solvent extraction with ethyl acetate or other solvents. More
details on the experimental methods can be found in previous work [6,25].

2.3. Yield Calculations

The yields of the different products are always presented as a fraction of the dry
matter feed. Hydrothermal liquefaction yields three different phases: an aqueous phase
with dissolved organics, biocrude containing the bio-oil char, and a gaseous phase mainly
constituting of carbon dioxide. Biocrudes are complex mixtures containing an oily and a
solid fraction. Biocrude is the raw product obtained after the hydrothermal transformation,
and it is sometimes referred to as bio-oil or raw residue. Biocrude can be a fluid oil with
little or no char, but can also be a solid with little or no oil. This largely depends on the
resource and conditions. The solid fraction is, in fact, an insoluble fraction in a determined
solvent. In this work, the biochar fraction Xchar (-) in the biocrude is determined after
extraction with ethyl acetate as the solvent. The yield of biocrude Ybc (-) is the weight of
dry biocrude Wbc (g) divided by the initial weight of dry matter entered into the reactor,
and the yield of biochar (Ychar) is the weight of biochar divided by the initial weight of dry
matter DM (g), Equation (1). The bio-oil yield (Ybio−oil) is calculated by difference as given
by Equation (2):

Ychar =
(WBC·Xchar)

DM
(1)

Ybio−oil = Ybc − Ychar (2)

The gas yield Ygas (-) is determined by calculation of the gas produced by using the
initial pressure value Pi (Pa) at the initial temperature Ti (K) and the final pressure value
Pf (Pa) in the reactor at final temperature Tf (K) after cooling, with the ideal gas law. In
addition, the quantity of CO2 dissolved in the aqueous phase in the final conditions WCO2diss
(g) is calculated with Henry’s law [25], Equation (3).

Ygas =
Mw· (VR−VL)

R ·
( Pf

Tf
− Pi

Ti

)
+ WCO2_Diss

DM
(3)

With VR (L): reactor volume, VL (L): volume of liquid in the reactor, R (J·K−1·mol−1):
the gas constant, and Mw (g·mol−1): the average molecular weight of the produced gas.

The yield of dissolved organics in the aqueous phase (YAP) is estimated by difference,
Equation (4).

YAP = 100% − Ychar − Ybio−oil − Ygas (4)

2.4. Description of the Dataset

The dataset and experimental methods used in this study are described in previous
work [6,24] as well as the supplemental data associated to this paper. This dataset is the
result of experiments at the CEA laboratory and a literature study. Various experiments on
a wide variety of food wastes at different temperatures and holding times were included.
Data from Motavaf et al. [26], Bayat et al. [27], Aierzhati et al. [28], Evcil et al. [29], Yang
et al. [30–33], and Déniel [34] are also included. It should be noted that Motavaf, Aierzhati,
and Evcil do not present data for char yield, only bio-oil.

Weights are applied to the data. Experiments (lines in the data file) have a weight
variable associated. Some of these experiments are the average of multiple experiments and
are therefore more reliable. These experiments have a more important weight in the error
function. In the same way, weights are applied to products. As the oil is the main product
of interest, it has a weight factor of 3. The weights associated to the char and gas are 2 and
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1, respectively. In most published studies, the gas yield is calculated from the pressure
increase, not including dissolved CO2. It is therefore not a very accurate value. The water
phase is mostly calculated by difference in most published data and cannot be considered
reliable information to fit a model. Missing yields from studies have a zero weight applied,
and are therefore not taken into account in the error calculation and the model fitting. The
model can be trained to a set of experimental data in the database, filtered for an author, a
resource type, or a random selection of the data.

3. Model Development

Different kinetic models have been coded in a Python program using generic solver
algorithms. The program includes the models described by Valdez et al. [14] and Obeid
et al. [18], as well as the model described in this paper. Given proper conditions, reactants
and intermediary products are supposed to react to form products with rates formulated
as differential equations. Kinetic modelling is essentially solving a system of ordinary
differential equations with a Runge Kutta type solver. To minimise the error between the
experimental data and the model results, an optimiser from the same library is used.

The reaction rate is proportional to the concentrations of the reactants multiplied by a
rate constant. Each rate constant k (s−1) is described by an Arrhenius expression that takes
the following commonly used general form, Equation (5).

k = A·Tn·e
−Ea
RT (5)

Here, A (units depend on the reaction) is the pre-exponential term; T (K) is temperature;
Ea (J·mol−1) is the activation energy; and R (J·K−1·mol−1) is the gas constant. It is customary
to work with a molar activation energy even though all equations are mass-based. The
exponent n is often taken as zero, as is the case in the current study, reducing the equation
to the classic formulation by Arrhenius. The heating rates are extremely variable in the
literature, varying from 10 to 100 ◦C·min−1. For each experiment in the database, the
heating rate and the type of heating profile is given. Experiments presented in this paper
are mostly done with a linear temperature ramp (Equation (6)). A quadratic function
approximately describes most other experiments (Equation (7)). The general kinetic system,
an array of concentrations, and its derivatives is a function of time. The temperature (T, ◦C)
at each time (t, sec) is calculated from the heating profile, the heating rate (HR, ◦C·min−1),
and the time (tsp) to reach the temperature set point (Tsp).

T = min(Tsp, Tamb + HR·t) (6)

T = min
(

Tsp, Tamb + 2·HR·t − Tsp − Tamb
tsp2 ·t2

)
(7)

Each reaction system has its own species that take part in the reactions or as products.
Species include constituents of the biomass, intermediate species, or final products such
as char or bio-oil. In the case where the chemistry is detailed with intermediate species,
the final products are formed by combining the species. For species that can be present
in more than one product, the distribution is modulated with the solvent polarity and
extraction order.

The numerical methods in this work are drawn from the SciPy library [35] and im-
plemented in a Python program. The ordinary differential equations of the reactions are
calculated with the solve_ivp ordinary differential equation solver. The model is fitted to the
experimental data in a Python program using the minize optimiser function. Pre-exponential
factors and activation energy form the result for each reaction.
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As a measurement of the quality of the fit, the coefficient of determination is used as
calculated by the function r2_score in the SciPy library, often referred to as R2, a measure
that resumes the variance explained by the model divided by the total variance according
to Equation (8). In this equation, ŷi is the predicted value for each measured value yi. The
average of the measured values is y.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

This formulation of R2 ensures that the upper limit is 1 for a perfect fit. The value 0
means a null model that is essentially a horizontal line characterized only by the intercept.
Negative values are possible without limit, as a model can be arbitrarily bad.

3.1. Models from the Literature

The models of Valdez et al. [14] and Obeid et al. [18,19] are shown in Figure 2 and
have been coded and fitted to the data. The model from Valdez was extended with a lignin
reaction path not included in the original formulation. The models only distinguish final
products. Unreacted resources are qualified as solids, and this is especially important for
the Valdez model.
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These models are relatively simple to implement, but they lack the ability to adapt to
the polarity of solvents used in the product separation. Variants of these models as well as
alternative models have been formulated and published in recent years.

Valdez et al. [14] do not present pre-exponential factors and activation energies for
the model, and the same group did publish Arrhenius parameters in other papers, such
as for micro-algae [17]. In addition, the model as used here was extended with a lignin
degradation mechanism. Obeid et al. [18,19] present sets of Arrhenius parameters for four
different resources, showing the difficulties of finding a precise set to fit all resources.
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3.2. Proposed Model

The new model proposed in this study is based on the identification of molecules in the
light fraction of biocrude oil and in the aqueous phase that was done by gas chromatography
coupled with mass spectrometry, as described previous work [6,8,23]. The model is based
on the identification of lumped intermediary species to form a global conversion mechanism
from the resource to the final product. The model is presented in Figure 3.
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The kinetic model is based on a set of simplified reactions with kinetic constants
expressed as Arrhenius terms (pre-exponential coefficient and activation energy). The
reactions are expressed on a mass basis in g/L. The resources’ biochemical analysis forms
the starting point. The temperature is ramped up to the reaction temperature using the
heating rate specified for each experiment. The temperature is then held constant for the
holding time. Each experiment is calculated in terms of chemical composition. The products
are calculated by attributing the different compounds to the products. The produced gas is
supposed to be CO2 and is only affected to the gas phase. Some compounds are distributed
between two different phases. Examples of these are poly-phenolics found in the bio-oil
and supposed to be found in the char. Phenolics (phenol, gaïacol, etc.) are found in the
bio-oil and in the aqueous phase. Coefficients are set up based on the extraction procedure
and corrected depending on the polarity of the solvent used. The reactions that are taken
into account are listed in Table 2.
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Table 2. List of simplified reactions used in the model.

Reaction Reactants Type of Reaction Reaction Rate Products

- Ash No reaction - Ash
0 Lignin Hydrolysis K0 Char + CO2
1 Lignin Charification K1 Polyphenolics
2 Cellulose Hydrolysis K2 Sugars
3 Proteins Hydrolysis K3 Amino acids
4 Amino acids Dehydration/decarboxylation K4 Nitrogenous heterocycles
5 Amino acids + Sugars Maillard reaction K5 Maillard compounds
6 Lipids Hydrolysis K6 Glycerol + Fatty acids/Alkanes
7 Glycerol Dehydration K7 Aldehydes
8 Sugars Dehydration K8 Furans
9 Amino acids + Fatty acids Combination K9 Amides
10 Sugars Retro-Aldolisation K10 Aldehyde
11 Polyphenolics Hydrolysis K11 Phenolics
12 Furans Condensation K12 Char + CO2
13 Amino acids Deamination K13 Carboxylic acids
14 Carboxylic acids Decarboxylation K14 CO2
14 Nitrogenous heterocycles Decarboxylation K14 CO2
15 Hemicellulose Hydrolysis K15 Sugars
16 Furans Dehydration K16 Phenolics
17 Aldehydes Hydration K17 Carboxylic acids
18 Cellulose Condensation K18 Char + CO2

The compounds used in the model are presented in Table 3. These compounds
should not be considered as a single molecule, but as a representative of a larger family of
molecules. Each compound has a product distribution associated with it in the model. This
distribution factor should not be interpreted as a physical value. The distribution factors
in Table 3 are used as a reference for ethyl acetate and should be adapted for different
solvents. Small phenolic, mallard compounds and nitrogenous heterocycles are generally
observed in both the oil and the aqueous phase. Heavier polyphenolics, on the other hand,
are found only in the oil and char phases. Ash is assumed to be distributed in the char for
most iron-, phosphor-, and calcium-containing compounds, and to a lesser extent in the
aqueous phase (sodium- and potassium-containing compounds that are soluble in water).
These values are not absolute physical properties, but are model parameters, a way to
model the distribution of these families of molecules between the final products. These
parameters are not part of the optimisation problem, as this could lead to non-physical
solutions. Further experimental work on the distribution of the products is needed to
validate these coefficients.

In the literature, there is no consensus on the solvent to be used in the extraction
process after the experiments. In practice, there are advantages to each solvent. The new
model allocates compounds to the product phases. For most, this allocation is simply to
one phase. To be able to include studies with different solvents, the distribution factors are
changed proportionally to their relative polarity of the solvent compared to ethyl acetate
(EA), according to the following formula (Equation (9)).

Factor = Distribution FactorEA·
(

Polarity Solvent
Polarity Ethyl Acetate

)
(9)

The solvents and their relative polarity used in this paper are ethyl acetate (0.228),
dichloromethane (0.309), acetone (0.355), hexane (0.009), and isopropanol (0.546). This
approach is, of course, a severe simplification, and the solubility of different compounds in
a particular solvent cannot be reduced to a simple relative polarity. It does allow to take
the solvent effect somewhat into account.
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Table 3. List of compounds used in the model and their initial distribution factors for ethyl acetate as
the solvent.

Reactants Oil
Phase

Char/Solid
Phase

Gas
Phase

Aqueous
Phase

Ash - 0.7 - 0.3

Lignin - 1 - -

Cellulose - 1 - -

Hemicellulose - 1 - -

Proteins - 1 - -

Lipids 1 - - -

Sugars - - - 1

Amino acids - - - 1

Fatty acids 1 - - -

Glycerol - - - 1

Polyphenolics 0.5 0.5 - -

Phenolics 0.5 - - 0.5

Carboxylic acids/Furans - - - 1

Nitrogenous heterocycles 0.5 - - 0.5

Maillard compounds 0.5 - - 0.5

Amides 1 - - -

Char - 1 - -

CO2 - - 1 -

4. Results and Discussion

The models were first trained to our data set based only on experiments with ethyl
acetate as the extraction solvent. The second section presents the models trained on an
extended data set, including alternative solvents. The last section extrapolates the models
to the literature data.

4.1. Fitting the Models to the Data with One Solvent

The reduced dataset consists of 44 lines in the data file, all with ethyl acetate as the
extraction solvent. They consist of the resources described in detail in Section 2. Kinetic
parameters for the models of Valdez and Obeid were determined through the optimisation
procedure against this reduced dataset. Figure 4 below shows the results for the calculated
yields with the optimised models of Valdez and Obeid on the experimental data for food
wastes of the four different product phases: oil, char, gas, and organics in the aqueous
phase (named water in the legends). Each of the phases is colour-coded, and this graph
gives a visual representation of the fit result. Most points are centred around the parity line
except for those of the aqueous phase (water) that are above or below, indicating a bad fit.

The results show, globally, a good prediction of the yields, except for the organics in
aqueous phase that are not considered in the fitting of the model. The best results are for
the oil yields prediction due to the higher weight given to the oil data. The results with the
new model are presented in Figure 5. The model has a few more parameters, 19 reactions
against 12 and 17 for Valdez and Obeid respectively. The better fit appears mainly due to
the more complex reaction pathways that are possible with a model that is somewhat closer
to reality.



Eng 2023, 4 535

Eng 2023, 4, FOR PEER REVIEW 10 
 

 

aqueous phase (named water in the legends). Each of the phases is colour-coded, and this 
graph gives a visual representation of the fit result. Most points are centred around the 
parity line except for those of the aqueous phase (water) that are above or below, indicat-
ing a bad fit. 

  
  

Figure 4. Prediction of the products with models of Valdez (left) and Obeid (right) with ± 5% and ± 
10% zone lines. 

The results show, globally, a good prediction of the yields, except for the organics in 
aqueous phase that are not considered in the fitting of the model. The best results are for 
the oil yields prediction due to the higher weight given to the oil data. The results with 
the new model are presented in Figure 5. The model has a few more parameters, 19 reac-
tions against 12 and 17 for Valdez and Obeid respectively. The better fit appears mainly 
due to the more complex reaction pathways that are possible with a model that is some-
what closer to reality. 

 
  

Figure 5. Prediction of the products with the new model (left) and a zoom on the oil yield (right). 

The parity graphs give a relatively positive impression of the results, even for aque-
ous phase yields with calculated yields in the range of ± 10%. Table 4 compares the coef-
ficient of determination, often referred to as the R2 score, of the different models. A R2 of 
one is a perfect fit, and zero or a negative value means that the model badly fits the model. 

Figure 4. Prediction of the products with models of Valdez (left) and Obeid (right) with ± 5% and
±10% zone lines.

Eng 2023, 4, FOR PEER REVIEW 10 
 

 

aqueous phase (named water in the legends). Each of the phases is colour-coded, and this 

graph gives a visual representation of the fit result. Most points are centred around the 

parity line except for those of the aqueous phase (water) that are above or below, indicat-

ing a bad fit. 

  

Figure 4. Prediction of the products with models of Valdez (left) and Obeid (right) with ± 5% and ± 

10% zone lines. 

The results show, globally, a good prediction of the yields, except for the organics in 

aqueous phase that are not considered in the fitting of the model. The best results are for 

the oil yields prediction due to the higher weight given to the oil data. The results with 

the new model are presented in Figure 5. The model has a few more parameters, 19 reac-

tions against 12 and 17 for Valdez and Obeid respectively. The better fit appears mainly 

due to the more complex reaction pathways that are possible with a model that is some-

what closer to reality. 

  

Figure 5. Prediction of the products with the new model (left) and a zoom on the oil yield (right) 

[6,23] . 

The parity graphs give a relatively positive impression of the results, even for aque-

ous phase yields with calculated yields in the range of ± 10%. Table 4 compares the coef-

ficient of determination, often referred to as the R2 score, of the different models. A R2 of 

one is a perfect fit, and zero or a negative value means that the model badly fits the model. 

  

Figure 5. Prediction of the products with the new model (left) and a zoom on the oil yield
(right) [6,23].

The parity graphs give a relatively positive impression of the results, even for aqueous
phase yields with calculated yields in the range of ± 10%. Table 4 compares the coefficient
of determination, often referred to as the R2 score, of the different models. A R2 of one is a
perfect fit, and zero or a negative value means that the model badly fits the model.

Table 4. R2 scores of the models trained with ethyl acetate data.

Model Oil Char Gas Aqueous Phase

Valdez 0.696 0.134 −0.886 0.135
Obeid 0.674 0.242 −2.053 −0.33

New Model 0.718 0.667 −0.895 0.092

Figure 6 shows the evolution of the two most important products compared to the
experimental data for blackcurrant pomace. There is quite some spread in the data, and the
model also had to be composed with data from brewers’ spent grains and food waste, of
quite a different nature.
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Figure 6. Temporal profiles for oil (left) and char (right) predicted by the model on data for blackcur-
rant pomace, compared to the experimental data for different temperatures.

The char yield is decreasing as the initial dry matter is considered to be fully in the
char product (as a solid phase). For a higher temperature, the final char yield is lower than
the lowest temperature. For the oil yield, the trend is the other way around. Oil yields
are higher at higher temperatures, and after 30 min, a kind of steady state is reached. The
advantage of the new compositional model is that it allows for following the evolution of
the different species in time. This helps to explain the form of the overall product graphs
and to better understand the reactions. In Figure 7, it is shown that proteins are hydrolysed
to form amino acids that, in turn, react with fatty acids to form amides. The model is
able to capture the fact that hydrolysis is faster at higher temperatures, but it remains a
rate-limiting step.
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The kinetic parameters that make the models best fit the data are presented in Table 5.
The units for the pre-exponential factor depend on the order of the reaction as well as the
number of reactants.

Sheehan and Savage [17] present kinetic data for the Valdez model on a data set for
algae. They report pre-exponential factors in the range of 10−5 to 10−2 (min−1), slightly
lower that the values presented in Table 5 for the same model. The activation energies
they present are 50 to 140 kJ·mol−1, and these values are higher than the values in Table 5.
Sheehan and Savage report a R2 for the oil yield of 0.45.
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Table 5. Kinetic parameters in the models trained to the experimental data.

Valdez Obeid New Model
A Ea A Ea A Ea

Units mol−1 or
L·g−1·mol−1 J·mol−1 mol−1 or

L·g−1·mol−1 J·mol−1 mol−1 or
L·g−1·mol−1 J·mol−1

Reaction0 9.421 16,407.6
Reaction1 0.152 13,046.4 0.065 23,019.81 9.922 17,400.21
Reaction2 0.685 1000.851 0.511 1010.577 11.438 6238.992
Reaction3 0.06 20,157.35 1.01 11,038.4 10.867 25,645.08
Reaction4 0.019 43,596.83 0.738 1000.23 10.68 18,720.6
Reaction5 0.195 14,919.05 0.125 17,386.63 9.696 20,541.66
Reaction6 0.512 6850.066 0.35 1001.63 9.606 8133.046
Reaction7 0.22 2054.016 0.082 20,907.09 10.068 15,063.84
Reaction8 0.116 46,329.72 0.268 7274.476 11.813 11,168.74
Reaction9 0.32 19,795.96 0.069 1000.88 12.084 27,161.62

Reaction10 0.00016 9419.418 0.401 8581.595 11.402 13,761.49
Reaction11 0.036 10,438.12 0.064 12,839.88 9.968 15,841.01
Reaction12 0.0045 502.059 0.449 16,834.57 2.139 18,122.33
Reaction13 0.09 38,058.25 13.732 10,000.03
Reaction14 0.00005 32,472.59 7.153 13,752.71
Reaction15 0.278 8949.258 11.194 18,520.29
Reaction16 0.06 1000.687 11.764 25,563.92
Reaction17 0.083 19,017.95 6.469 44,593.55
Reaction18 3.007 20,041.21

4.2. Fitting the Models to the Data Multiple Solvents

The models are now trained on a dataset containing more solvents. Many of the exper-
iments were evaluated with different solvents. The dataset now consists of 96 experiments.
This is a useful test, as it shows the ability of the models to adapt to different experimental
protocols. Figure 8 below shows the results for the calculated yields with the optimised
models of Valdez and Obeid on the experimental data.
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Figure 8. Prediction of the products using multiple solvents with models of Valdez (left) and Obeid
(right) with ± 5% and ± 10% zone lines.

The results show, globally, a good prediction of the yields, except for the organics in
water phase that are not considered in the fitting of the model. The best results are for oil
yields prediction due to the higher weight given to the oil data. The results with the new
model are presented in Figure 9. Visually, the new model appears to be faring somewhat
better. This should be of no surprise, as the compositional aspect allows for taking into
account solvent characteristics, albeit in a simplified way.
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Figure 9. Prediction of the products with different solvents with the new model (left) and a zoom on
the oil yield (right) [6,23].

The parity graphs, again, give a relatively positive impression of the results. Table 6
compares the coefficient of determination, often referred to as the R2 score, of the differ-
ent models. It shows that the new model significantly fares better that the Valdez and
Obeid models.

Table 6. R2 score of the models trained with ethyl acetate data.

Model Oil Char Gas Aqueous Phase

Valdez 0.594 0.101 −2.042 −0.024
Obeid 0.564 0.173 −4.727 −1.313

New Model 0.680 0.647 −2.09 0.097

Table 7 presents the kinetic parameters of the models trained with the extended data
set taking into account different solvents. The values of the pre-exponential factors and
activation energies are slightly different, but remain in the same order of magnitude for
most reactions.

Table 7. Kinetic parameters in the models trained to the experimental data produced with vari-
ous solvents.

Valdez Obeid New Model
A Ea A Ea A Ea

Units mol−1 or
L·g−1·mol−1 J·mol−1 mol−1 or

L·g−1·mol−1 J·mol−1 mol−1 or
L·g−1·mol−1 J·mol−1

Reaction0 7.21 18157.548
Reaction1 0.046 13,508.526 0.101 17,681.462 8.995 23,097.927
Reaction2 0.319 1000.017 0.399 1000.048 14.31 13,510.008
Reaction3 0.065 14,803.933 0.101 13,925.228 15.707 16,730.224
Reaction4 0.08 20,762.982 0.517 1000.627 12.52 18,696.677
Reaction5 0.089 13,260.351 0.108 15,819.529 12.02 20,237.533
Reaction6 0.454 7992.232 0.195 9098.875 13.797 7560.32
Reaction7 0.165 1001.746 0.091 18,184.555 11.944 15,612.032
Reaction8 0.158 22,380.493 0.201 7280.748 15.766 10,656.844
Reaction9 0.019 12,224.009 0.018 1001.517 9.632 21,999.27

Reaction10 0.0002 13,894.889 0.179 13,949.741 14.765 11,787.853
Reaction11 0.069 11,171.848 0.14 15,279.109 10.276 14,592.325
Reaction12 0.003 14,022.397 0.23 12,963.947 0.582 14,425.313
Reaction13 0.09 26,917.634 15.505 10,492.589
Reaction14 0.006 21,824.565 8.89 23,795.956
Reaction15 0.192 6298.809 13.584 29,343.481
Reaction16 0.108 4361.554 18.769 28,613.73
Reaction17 0.041 22,766.874 0.008 31,705.088
Reaction18 10.142 23,158.633
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4.3. Extrapolating the Models to Literature Data

The trained models from Section 4.2 were applied to a large set of experimental data,
including literature data, totalling 294 points. The models were trained exclusively on
blackcurrant pomace, brewers’ spent grains, and food wastes collected from the CEA
restaurant, including data with different solvents. This is the ultimate test for any model
to show that it is universal. Figure 10 presents oil and char yields predicted with the
new model.
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Figure 10. Comparison between calculated and experimental yields on food wastes with the new
model for oil (left) and char (right) [6,23,24,26–34].

The graphs show horizontally aligned points, often for a particular resource of a
particular author. These points signify that the model gives the same result, even though
the experimental data shows a certain dependency to process variables. The R2 values are
generally low. Table 8 presents the result for the three models. Even though the new model
performs less for the oil yields, it is slightly better on the char yield.

Table 8. R2 score of the models trained with ethyl acetate data.

Model Oil Char Gas Aqueous Phase

Valdez 0.664 −0.965 −0.131 −0.432
Obeid 0.686 −0.416 −1.913 −0.033

New Model 0.539 0.328 −1.861 −0.279

Even if there is a larger scattering of the results with some other experimental data,
globally, all three models that were tested in this paper are able to reproduce results
on a wide range of food wastes and agro-industrial wastes, processed at different HTL
conditions and with different experimental ways of products recovery. The solvent effect is
taken into account with an extremely simple model that can be improved.

Many explanations can be advanced to explain this inability to correctly represent
the experimental results. Reactions are generally considered first order with the rate
purely proportional to the concentration. The water concentration does not play a role.
Considering that water takes part in the reactions, some deviation of a first order is to
be expected. In an earlier paper on the same dataset [6], it was shown that even with
very advanced regression tools, some spread in the results cannot be avoided. The data
is typically regrouped around the parity line, with most of the data with a 10% deviation.
This natural spread should be imputed to differences in the limited descriptions of the
experimental practices and experimental uncertainty, but also in resource characterisation.
Considering that clusters of outliers are often associated with one author suggests that
there may be systematic differences. These differences potentially include resource analysis
techniques. A wide variety of analysis techniques are used in the literature to estimate
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carbohydrate, lipid, and protein content. Each of these techniques produce their own
estimate of the composition.

Simplified models dealing only with final products do not allow to really understand
the chemistry. In the Valdez model, there is no char product and the unconverted resources
are counted as char, obliging the model to limit the conversion of the resource to allow
for some char. These models are better suited for algae or other resources producing little
char. However, even with this limitation, this model gives good results. A perfect fit is not
possible, as previously published studies with machine learning algorithms have shown
that there is a minimal incompressible dispersion that cannot be avoided.

5. Conclusions

The kinetic models presented in the literature are generally trained to a limited set of
experimental data, showing generally good results. The models presented in this paper
have shown that they can be trained on a limited experimental dataset and then applied to
a much wider set of data. As the models have a sufficient number of kinetic parameters,
reasonably good results can be obtained.

The advantage of a compositional model is that it allows for following the evolution of
the different species in time. This type of model can be trained on a particular resource and
applied on another. It also allows for the adaptation of the model to different extraction
techniques and solvents, extending the application field of a trained model.

The next steps are to quantify intermediate and final product families of compounds
and include these in the model training to obtain a better validation of the conversion
routes and more accurate prediction results in term of global oil and char yields, but also
molecular composition of those product phases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/eng4010031/s1, Table S1: Data file, containing all experimental
data [6,23,24,26–34].
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BCP Blackcurrant Pomace
BSG Brewers’ Spent Grains
DCM Dichloromethane
DFOR Digested Fraction of Organic Residue
DM Dry Matter
EA Ethyl Acetate
FW Food Waste
FPW Food Processing Waste
FFOM Fermentable Fraction of Organic Municipal waste
GC Gas Chromatography
HTL hydrothermal liquefaction
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