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Abstract: Prediction of potential evapotranspiration (PET) using an artificial neural network (ANN)
with a different network architecture is not uncommon. Most researchers select the optimal network
using statistical indicators. However, there is still a gap to be filled in future applications in various
drought indices and of assessment of location, duration, average, maximum and minimum. The
objective was to compare the performance of PET computed using ANN to the Penman–Monteith
technique and compare drought indices standardized precipitation index (SPI) and standardized
precipitation evapotranspiration index (SPEI), using two different computed PET for the durations of
1, 3, 6, 9, and 12–months. Statistical performance of predicted PET shows an RMSE of 9.34 mm/month,
RSR of 0.28, R2 of 1.00, NSE of 0.92, and PBIAS of −0.04. Predicted PET based on ANN is lower
than that the Penman–Monteith approach for maximum values and higher for minimum values.
SPEI–Penman–Monteith and SPI have a monthly correlation of greater than 0.95 and similar severity
categories, but SPEI is lower than SPI. The average monthly index values for SPEI prediction show that
SPEI–ANN captures drought conditions with higher values than SPEI–Penman–Monteith. PET–based
ANN, performs robustly in prediction, fails by a degree of severity classification to capture drought
conditions when utilized.

Keywords: artificial neural network; drought indices; statistical analysis; evapotranspiration;
United Kingdom

1. Introduction

According to the World Water Assessment Programme (2015), by 2050, global food
demand is predicted to rise by 70%. Thus, an increase in agricultural activities would be
required, leading to 70% of total freshwater withdrawal worldwide [1,2]. Sustainability
in water usage would be demanded with the increasing population and finite water
supply [3]. One of the most pressing issues faced by the world in the 21st century is the
lack of access to water [4]. The severity of water deficits on the world’s surface is reflected
in various drought indices. Droughts are unavoidable and detrimental to the ecological
and social system. Economically, drought impacts are severe across the globe, especially
meteorological droughts, requiring thorough investigation [5,6]. Further–more, climate
change and socioeconomic development have significantly altered the regional supply, and
moisture demand, and it is essential for risk management to comprehend the dynamics of
drought and the effects of shifting supply and demand [7,8]. Potential Evapotranspiration
(PET) is a components that significantly affects drought conditions [9]. For effective water
management, a precise estimate of evapotranspiration (ET) is required, and deep learning
algorithms could greatly benefit forecasting [10].

Next to precipitation comes the most significant component, ET in the hydrologic
budget. The spatial variance of ET could be visualized both regionally and seasonally, and
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during drought according to weather [11]. ET is a combination of two processes, evapora-
tion and transpiration [12–14]. The number of water sources, soil moisture, and vegetation
growth are significantly impacted by ET [15]. Therefore, it is critical to compute ET. The ET
can be measured on the field using a lysimeter through a water balance approach or inferred
by an empirical approach using climatological data. On the field, using a lysimeter would
not always be possible due to time constraints and maintaining unhindered measurements
of experiments [16]. The data requirements for empirical methods of estimating PET ranges
from air temperature to radiation, wind speed, precipitation, and relative humidity [17].
Due to climatic data constraints or that they were specially developed for a given climate
region, PET’s reliability varies as methodology varies [18–21]. Due to a lack of understand-
ing of the ET process physically and the absences of all pertinent data, the ET has added
inaccuracy [16]. The Penman–Monteith method superior to estimating PET compared to
other empirical methods for various climatic circumstances [22–26]; however, the daily
time–scale is a challenge due to the non–availability of climatic data across the study area.
Accuracy of PET estimation depends on the availability of high–quality meteorological
data. It is susceptible to modifications in inaccuracies of climatic parameters [27,28].

Drought is one of the costliest natural environmental disasters and an extreme event [29]
impacting increasing wildfires, water scarcity, crop loss and health effects [30–36]. With no
universal definition of droughts [37], it could be generally coincide where the precipitation, soil
moisture, water sources and supplies are scarce [38]. Drought features based on raw data have
less considerable benefits than drought indices, which are single numerical values computed
from multiple climatic variables [39]. Climatic variables, precipitation, runoff, soil moisture
and PET, significantly impact drought [29]. Future effects of drought are more likely to worsen
under the global warming scenario [40,41]. To measure drought severity, duration and extent
of drought indices have been created with precipitation or a combination of meteorological
variables [29,42,43]. Standardized Precipitation Index (SPI) and Standardized Precipitation
Evapotranspiration Index (SPEI) are the most frequently utilized indices for meteorological
drought evaluation [44–49]. SPI uses monthly precipitation totals, and SPEI adds to that with
PET, which is where the difference in result lies [50].

ET is a complicated nonlinear phenomenon as it depends on various climatic factors,
crop characteristics and growing cycles [51]. Due to the unavailability of climatic data,
selecting a methods to capture the ground reality is challenging [52]. Current challenges in
ET determination include defining and understanding, measuring in–situ, parameterizing
and estimating remotely at catchment scale ET [53]. The artificial neural network (ANN) is
a tool for assessing PET [52]. In numerous fields of knowledge, ANN has been successfully
employed to model the relationship involving complex transient series [52]. The ANN
allows capturing of more complex properties of the data, which are sometimes challenging
to do when using traditional statistical methods. It does not require in–depth details
about the physical processes as they are explicitly stated as input–output models with a
mathematical form [54]. Numerous scholars have used ANN in their studies to estimate ET
as a function of meteorological factors, further discovering acceptable and even superior
outcomes to the usual, conventional approach [51,54–57].

The recent literature review includes the estimation of PET through several approaches,
such as comparison of empirical equations [58–61] or prediction through complex machine
learning algorithms [62–70] either through remotely sensed data or through meteorological
observed station data. Drought assessments with various PET methods and prediction
of drought indices through machine learning algorithms have been carried out in recent
research studies [9,71–74]. The research generally addresses which empirical method or
machine learning algorithm is robust in determining PET, assessing various drought indices,
and predicting and forecasting PET or drought indices. A study has been carried out for
the United Kingdom (UK), which indicates an increase in river flow over the last five
decades (before 2015) [75], potential evaporation from 1961–2012 [76], precipitation [76],
and ET [77]. Major drought events experienced in the UK are 1798–1808, 1854–1860,
1887–1888, 1890–1909, 1921–1922, 1933–1934, 1959, 1976, 1990–1992, and 1995–1997, with
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the main cause being the long duration of dry weather [78]. The UK has suffered clusters
of drought in the form of long and short drought series [79,80]. The following conclusions
were drawn with the recent study carried out for the UK indicating projected changes in
droughts using SPEI and SPI: increase in drought risk with increasing global mean surface
temperature, drought frequency seasonality, duration greatly varies spatially, increase in
English regions and Wales, decreases in North and West Scotland, and a large difference
between SPI and SPEI was observed [81]. SPEI–6 was the best predictor of drought impacts
on agriculture in UK regions compared to the reported drought impacts, however, the
findings indicate that the relationship varies spatially between the large heterogeneous
regions and needs smaller spatial units [82]. With the review, we realized that there is
minimal work addressing the application of the output of artificial neural network–based
PET to drought indices. The research gap we are addressing covers this aspect with a
specific case study of the UK, considering the highest resolution observed data as the input
data source.

The objective of the study is to investigate the performance of predicted PET based on
ANN in comparison to Penman–Monteith using drought indices for the UK region. We
selected meteorological drought indices SPEI and SPI and compared the results statistically.
The drought indices were choosen to analyze the drought phenomenon for the given study
area based on its widely used approach [83–86]. The highlight is the approach method, not
only predicts PET but also tests its performance when used as drought indices with various
cumulative periods (1, 3, 6, 9, and 12–months) as well as the highest resolution of observed
data utilized for the whole country at a monthly scale. The main goals were:

• Computation of PET and drought indices (SPEI and SPI) using high resolution grid-
ded data.

• ANN model development and prediction of PET.
• Computation and comparison of ANN–based PET with the observed data–based PET

for various drought indices.

2. Materials and Methods
2.1. Data Acquisition

The study area focused on here is the UK which is ~244,820 km2 (94,530 mi2), com-
prising England, Scotland, Wales and Northern Ireland. This study uses the package from
the R platform “SPEI” (https://cran.r--project.org/package=SPEI) to compute PET using
the Penman–Monteith method, SPI and SPEI. The input data required to compute PET are
elevation, maximum and minimum temperature, precipitation, relative humidity, sunshine
hours, sea level pressure and wind speed. The HadUK–Grid c1.1.0.0 dataset was used
to obtain the gridded climate variables [87]. This dataset is at a monthly timescale of
the period 1969–2021 (53 years); with an extent of 48.83◦ N–60.86◦ N × 12.61◦ W–4.59◦ E
providing complete coverage across the UK with a resolution of 1 km × 1 km [87]. The
gridded data set is derived from land surface observation of the UK network with further
interpolation from meteorological station data [87]. The elevation dataset is obtained from
the GTOPO30 global digital elevation model (DEM) with a horizontal grid spacing of
~1 km [88]. Averaged yearly spatial distribution of weather data across the UK using
monthly weather data and elevation are showcased (Figure 1).

https://cran.r--project.org/package=SPEI
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Figure 1. Average yearly spatial distribution of climatic data and elevation: (A) elevation (m),
(B) average air maximum temperature (◦C), (C) average air minimum temperature (◦C), (D) total
average monthly cumulative precipitation (mm), (E) average relative humidity (%), (F) average daily
sunshine hours (h), (G) average sea level pressure (kPa) and (H) average wind speed (m/s).

2.2. Methodology

The first phase entails choosing a PET technique based on available input data and the
empirical equation that may accurately reflect the actual conditions. The Penman–Monteith
approach is chosen on consideration of factors. According to the FAO manual [13], the
following Equation (1) is used to calculate the PET:

PET =
0.408∆ (Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ (1 + 0.34u2)
(1)

where, PET is potential evapotranspiration in mm/day, Rn is net radiation at crop surface
in MJ/m2 day, G is soil heat flux density in MJ/m2 day, T is mean daily air temperature
at 2 m height in ◦C, u2 is wind speed at 2 m height in m/s, es and ea are saturation and
actual vapor pressure in kPa (the difference would result in vapor pressure deficit), ∆ is
the slope vapor pressure curve in kPa/◦C, and γ is the psychometric constant (kPa/◦C). It
has been assumed that the reference crop will be short for the entire UK coverage, which
could increase some of the uncertainty. The local and regional management structure in the
UK region, which may contain an abundance or scarcity of water supplies, are additional
elements that could impact uncertainty.

Once the PET has been determined using the Penman–Monteith equation, the ANN
model is created. The ANN model is a multilayer feed forward backpropagation neural
network, commonly referred to as a multilayer perceptron (MLP). There are three layers
in a neural network: input, hidden and output layer. In contrast to the Penman–Monteith
based PET, the performance of the output determines the type of input parameter, training
algorithm, activation functions, neurons and hidden layers [89]. To test the performance
various statistical indicators like Root Mean Square Error (RMSE), RMSE–observations
standard deviation ratio (RSR), R–squared coefficient (R2), Nash Sutcliffe model Efficiency
coefficient (NSE) and Percent Bias (PBIAS) are used. It adheres to the first–order gradient
slope with a steep descent approach. The network propagates errors, which are the dis-
crepancy between output PET and the empirical–based PET for a given model set. This
procedure is repeated until the required error tolerance is attained [90,91]. Weight and bias
are adjusted to optimize the training of the Levenberg–Marquardt algorithm. The ANN is
trained with this technique as it is the most effective training approach. Before prediction
is carried out, training is conducted for the given set of input and output values. The
output value is constrained to a certain finite value based on the selection of the activation
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function. Learning parameters such as learning rate, momentum value, error function,
epoch size and gain of transfer function affect the network performance [92]. Initial weights
are random, but over iterations of the learning algorithms modifies them. Equation (2) is
the approach behind the ANN model.

YN = fo[ B′ +
nh

∑
j=1

W′′
j fh(

nv

∑
i=1

W′ijXi + B)] (2)

Here, Xi is input data, YN is output data, nh and nv are the number of neurons in
hidden and input layer, B

′
and B are the biases for output and hidden layer, fo is the

activation function for output layer, W′
ij weights connecting input and hidden layers, fh is

the activation function transferring from input layer, W′′
j weights connecting output and

hidden layer.
Figure 2 describes the network architecture used to predict the PET using a feed

forward backpropagation neural network.
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Figure 2. Artificial Neural Network used for training, validation and prediction (W, B and TF mean
weight, bias and transfer function, respectively).

Monthly temperature data for the maximum and minimum for 53 years (1969–2021)
were used as predictors. The predictand was based on the PET produced using the Penman–
Monteith method. The choice of the input data was made based on its simplicity of accessi-
bility across many regions where a similar approach was used, as well as an alternative to
the lack of climatic data in the study area. The ANN model was developed grid by grid
with the weights and bias initially as a random value with 1 hidden layer and 1 neuron.
A total of 1000 iterations were performed, with a learning rate of 0.1. The hidden layer
uses a hyperbolic tangent sigmoid transfer function, whereas the output layer uses a linear
transfer function. Prior to making a prediction, it is crucial to train and validate the model
using the provided predictor and predictand data. To do this, the training set was sepa-
rated into the years 1969–2011 and the validation set into the years 2012–2016. Once the
statistical indicators were computed, and the model was robust enough to be utilized for
future predictions, the prediction dataset years 2017–2021 were tested out. The descriptive
statistics in terms of training, validation and prediction of the maximum and minimum
temperature predictor data used for ANN model development are showcased in Table 1.

SPI value derived from the observation record, represents the frequency of the recorded
precipitation amount in the corresponding month. It assigns a classification to the pre-
cipitation amounts of a given frequency in relation to the amount for the same month
over all the measurement years. A standard normal centered at zero is created from the
cumulative precipitation total for the entire record. The probability distribution function
used for the SPI is gamma, SPEI is log–logistic, and the method used for computing the
distribution function parameters is the unbiased sample probability–weighted moments.
In a similar approach to SPI, SPEI is computed, but instead of utilizing precipitation total,
cumulative water balance is used. The water balance is determined using the difference
between precipitation and PET. The PET in this determination differs from the previous
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steps, which is Penman–Monteith based PET and ANN–based PET. The condition of the
study area is assessed with the values of SPI and SPEI for various frequencies such as 1, 3,
6, 9, and 12–months [93].

Table 1. Descriptive statistics of the input data used for ANN model development.

Minimum Maximum Mean Standard Deviation Coefficient of Variation

Maximum Temperature (◦C)

Training
(1969–2011) −6.21 28.28 12.51 0.13 0.01

Validation
(2012–2016) −4.82 26.66 13.00 0.13 0.01

Prediction
(2017–2021) −3.97 28.09 13.31 0.13 0.01

Minimum Temperature (◦C)

Training
(1969–2011) −10.99 17.40 5.37 0.05 0.01

Validation
(2012–2016) −8.06 16.43 5.74 0.05 0.01

Prediction
(2017–2021) −7.14 17.19 6.00 0.05 0.01

3. Results and Discussion

The highest maximum and lowest minimum temperatures were recorded in July (6 ◦C
to 28 ◦C) and February (−10 ◦C to 9 ◦C), respectively. Maximum and minimum precipita-
tion totals were recorded in December (1500 mm/month) and May (700 mm/month), while
the average relative humidity ranges from 78% to 88%. The UK experiences its highest and
lowest levels of sunshine in May (188 h per month) and December (40 h per month). The
average wind speed in the UK is 4.84 m/s (4.07 m/s in August and 5.61 m/s in January).
As supplementary information, each meteorological dataset’s monthly spatial visualization
is displayed to highlight the dispersion of the data. The results are showcased with the
initial comparison of PET based on the Penman–Monteith Equation and the ANN model,
followed by utilizing each of the PET to compute drought indices SPEI for durations of 1, 3,
6, 9, and 12–months. It also compares the two drought indices: SPI and SPEI.

3.1. Penman–Monteith and ANN–Based PET

Based on the monthly weather data available for the UK study area, monthly PET
values were calculated using an empirical equation and ANN model. The time series
of the comparison of PET using two approaches, Penman–Monteith and ANN model,
is showcased in Figure 3. The computed values are averaged over months, showcased
spatially in Figure 4.
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Figure 3. Time Series Comparison of PET using Penman–Monteith and ANN.
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The analysis shows that the average PET over the past 53 years has been between 20
and 91 mm/month between December and July. The UK’s highest maximum PET was
recorded in July of 2006 (about 116 mm/month), and its lowest minimum was registered in
December of 1976 (about 13 mm/month). When the UK is shown on an average monthly
basis over 53 years, the southern part experiences more PET than the northern part. The
greatest PET, 690 mm/year, was recorded in 1995. The average annual PET is 620 mm/year.
The average PET for January was ~21 mm/month, February was ~24 mm/month, March
was ~40 mm/month, April was ~58 mm/month, May was ~79 mm/month, June was
~86 mm/month, July was ~91 mm/month, August was ~80 mm/month, September was
~57 mm/month, October was ~38 mm/month, November was ~25 mm/month, and Decem-
ber was ~20 mm/month. Northolt (~71 mm/month) and Shetland (~37 mm/month) have
the average monthly maximum and minimum for all the cumulative years’ PET, respectively.

The performance using statistical indicators for the training, validation and prediction
datasets shows, respectively, RMSE values in mm/month of 9.40, 10.72, and 9.34; RSR
values of 0.30, 0.35, and 0.28; R2 values of 0.97, 0.99, and 1.00; NSE values of 0.91, 0.88,
and 0.92; and PBIAS values of 0.01, −0.03, and −0.04. The training and validation indicate
there is no overestimation, and hence the model is robust to be used for prediction. Further,
the statistical indicators also include a satisfactory performance for prediction. The time
series comparison from Figure 3 and spatial visualization from Figure 4 also depict an
overlay of similarity in contrast. The Penman–Monteith method predicts the highest PET
at Hayes with ~184 mm/month during July 2018 and the lowest PET at Fort William
with ~1.5 mm/month during January 2021, while the ANN method predicts the highest
PET at Hayes with ~161 mm/month during July 2018 and the lowest PET at Ballachulish
with ~6 mm/month during January 2021. Using Penman–Monteith, the average PET
across the UK is maximum in July with ~96 mm/month (maximum PET in July 2018
~114 mm/month) and minimum in December with ~18 mm/month (minimum PET in
January 2021 ~14 mm/month), whereas using ANN, the average PET is maximum in July
with ~89 mm/month (maximum PET in July 2018 ~103 mm/month) and minimum in
January with ~23 mm/month (minimum PET at January 2021 ~20 mm/month). When
comparing PET predictions, the error difference for each month ranges from−9 mm/month
to 15 mm/month. Previous studies have concluded that ANN modeling is an alternative
for FAO–56 Penman–Monteith PET with a high model efficiency [16,51,94]. Compared to
various other algorithms, Levenberg–Marquardt simulated the best estimate of PET [94–96].
The similar network architecture of ANN shows not only a good robust output over a
general average value but also with minimal error in capturing maximum and minimum
values for a trained, validated and predicted dataset across the UK.
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3.2. SPI and SPEI with Penman–Monteith and ANN–Based PET

For the gridded data across the UK, the 1, 3, 6, 9, and 12–months values of SPI and SPEI
were calculated. SPEI was computed with two different PET, one derived from Penman–
Monteith and other from ANN model. Figure 5 gives a visualization of the comparison of
the monthly drought indices over 53 years (1969–2021).

Average monthly results over 53 years in the UK show that the SPI and SPEI (Penman–
Monteith) drought indices with durations of 1 month were during the months of April–July
and October–December, 3 months during October–February (also similar SPI and SPEI),
6 months during August–February (also similar SPI and SPEI), 9 months during July–
January and September–May, and 12 months during August–January and October–May.
The highest moist conditions have been recorded based on SPI and SPEI for 1, 3, 6, 9,
and 12–months: February 2020, July 2007, September 2012, July 2007 and August 2007.
Values of SPI during that period were ~1.83, ~1.86, ~1.70, ~1.66, and ~1.69, and values for
SPEI were ~1.75, ~1.76, ~1.58, ~1.56, and ~1.56. The highest drought conditions observed
based on SPI and SPEI for 1, 3, 6, 9, and 12–months were during April 1974 and August
1995, October 1972, and August 1976, August 1984 and August 1995, March 1973 and
October 2003, and August 1976. Values of SPI during that period were ~−2.46, ~−2.185,
~−1.85, ~−2.06, and ~−1.97, and for SPEI were ~−1.95, ~−1.91, ~−1.60, ~−1.82, and
~−1.78. The yearly averages showcases an increasing trend in drought index values.
The extreme moist condition based on SPI for frequencies of 1, 3, 6, 9, and 12–months
were observed at Moray (~4.35—September 1995), Rushbury (~4.58—July 2007), Hexham
(~4.36—April 2016), Llangoed (~4.32—July 2016), and Keswick (~4.10—September 2016),
whereas for SPEI, it was observed at Upton (~3.55—August 2004), Devon (~3.78—August
2012), Colyton (~4.32—August 2012), Wistow (~4.12—September 2012), and Forsinard
(~3.79—December 1969). The percentage differences of extreme moist values between SPI
and SPEI for 1, 3, 6, 9, and 12–months were ~22%, ~21%, ~1%, ~5%, and ~8%. The extreme
drought condition based on SPI for frequencies of 1, 3, 6, 9 and 12 months were observed
at Isle of Lewis (~−12.99—April 1974), Larnencekirk (~−9.77—August 1994), Ventnor
(~−5.69—July 1976), Selsey (~−6.35—July 1976), and Housay (~−6.41—December
1970) whereas for SPEI were observed at Hull (~−6.94—July 1976), Aberdeenshire
(~−3.85—May 2020), Bolton (~−9.75—March 1996), Clitheroe (~−7.67—June 1996), and
Chorley (~−5.58—July 1996). The percentage difference of extreme drought values between
SPI and SPEI for 1, 3, 6, 9 and 12 months are ~87%, ~154%, ~−41%, ~17%, and ~15%. A
Comparison of SPI and SPEI has been made in the past, it indicates that the SPEI is more
accurate as it incorporates PET, and it is advisable to use SPEI [49,97,98]. The results indicate
that the captured monthly maximum values of SPI and SPEI are similar during periods of
moist conditions but differ during periods of drought conditions except for the 12–month
frequency. Moreover, under both conditions, the computed output from SPI is higher
than that of SPEI, which is similar to the previous analysis in different regions [99]. The
correlation coefficient between SPEI and SPI for frequency of 1, 3, 6, 9, and 12–months
is > 0.95 across each month. A high correlation between SPEI and SPI has already been
showcased in previous research [100–102], and the condition remains valid for the UK
too. Additionally, evaluation was done for the predicted PET when utilizing ANN to
compute the SPEI—1, 3, 6, 9, and 12–months drought indices. Spatial visualization is
shown in Figure 6 compared to the empirically based Penman–Monteith generated
PET drought indices.

The visualization reveals that, on average the predicted PET, when applied to com-
puting drought indices does not differ greatly in comparison. However, each month is
different in terms of visualization patterns during prediction, so seasonality is not inte-
grated into the computation of drought indices. A comparison of SPEI for predictions based
on a duration of 1–month indicates that January, April, May, and November have major
areas under drought conditions whereas February, March, June, July, August, Septem-
ber, October, and December have major areas under wet conditions. For a duration of
3 months, the drought conditions mostly prevailed in the months of April, May, June, and
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July, and the rest of the months present major areas under wet conditions. For a duration of
6 months, the drought conditions mostly prevailed in April, May, June, July, August, and
September, and the other months present major areas with wet conditions. For a duration
of 9 months, the drought conditions mostly prevailed in May, June, July, August, and
September, and the other months present major areas with wet conditions. For SPEI–12,
it cannot be visualized in a similar way as across all the months for drought and moist
conditions. Predicted PET from the ANN used for computing SPEI for 1, 3, 6, 9, and
12–months indicates extreme wet conditions with index values of ~2.84 (January 2021),
~2.80 (February 2021), ~3.04 (February 2018), ~3.28 (April 2018) and ~3.11 (December 2020)
whereas Penman–Monteith indicates ~2.91 (January 2021), ~2.86 (February 2021), ~3.01
(October 2019), ~3.22 (April 2018) and ~3.18 (June 2021). For ANN–based extreme drought
conditions with index values of ~−2.92 (May 2020), ~−3.06 (June 2018), ~−2.87 (February
2017), ~−3.19 (April 2017) and ~−2.83 (June 2017) whereas Penman–Monteith indicates
~−6.21 (May 2020), ~−3.85 (May 2020), −3.10 (May 2020), ~−3.46 (May 2017) and ~−2.58
(June 2017). The differences between drought index values capturing extreme wet and
drought conditions for SPEI of 1, 3, 6, 9, and 12–months using both approaches are ~0.07,
~0.06, ~−0.03, ~−0.06, and ~0.07 and ~−3.29, ~−0.79, ~−0.23, ~−0.27, and ~0.26. Average
SPEIs during 1, 3, 6, 9, and 12–months frequency using Penman–Monteith across the UK
when the prediction is maximum are ~1.75 (February 2020), ~1.14 (February 2020), ~1.12
(February 2020), ~1.40 (February 2020), and ~1.29 (February 2020). When it is minimum,
they are ~−1.36 (April 2020), ~−1.80 (July 2018), ~−1.24 (July 2018), ~−1.31 (May 2017),
and ~−1.25 (April 2019). Using ANN when the prediction is maximum, the predictions are
~1.77 (February 2020), ~1.08 (February 2020), ~1.07 (February 2020), ~1.33 (February 2020),
and ~1.20 (February 2020) and when they are minimum, they are ~−1.44 (April 2020),
~−1.86 (July 2018), ~−1.34 (February 2017), ~−1.51 (May 2017), and ~−1.38 (April 2019).
Previous research has focused towards predicting or forecasting drought indices [103–107]
or PET [108–110] using complex approaches. The result highlight the application of pre-
dicted PET to compute drought indices SPEI of various durations. The results indicate
that even though the PET of the ANN and empirical approach presented satisfactory per-
formance through the statistical indicators, for the drought–severity classification [111] it
failed for the frequency of 1–month of SPEI.

Figure 5. Cont.
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Figure 5. Comparison of SPI and SPEI using PET of Penman–Monteith and ANN.
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Figure 6. Monthly spatial visualization of SPEI (1, 3, 6, 9 and 12) using Penman–Monteith and ANN 

(prediction performance) (red indicates wet condition, and blue indicates drought condition). 

The visualization reveals that, on average the predicted PET, when applied to com‐
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Figure 6. Monthly spatial visualization of SPEI (1, 3, 6, 9 and 12) using Penman–Monteith and ANN
(prediction performance) (red indicates wet condition, and blue indicates drought condition).

4. Conclusions

This study takes into account the application of predicted PET using an ANN in terms
of drought indices SPEI by comparison with empirical PET using Penman–Monteith in
terms of location, duration, average, maximum and minimum.

PET, was predicted using the ANN model based on the minimum and maximum air
temperatures as predictor and Penman–Monteith–based PET as predictand. A feedforward
backpropagation neural network with a layer of neurons and a hidden layer was optimized
with the given set of predictor and predictand through training and validation. A total of
53 years of high resolution gridded monthly data for the study region across the UK was
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utilized in this study with ANN model development grid–by–grid. The performance of
ANN models using time–series, spatial visualization, and statistical indicators revealed that
the model could be used to predict PET. Prediction on average indicates a similar month
(July) during which maximum PET is reached. However, there is one month gain (instead
of December, it shows January) to the minimum PET. The differences between the averages
of all months during prediction are negligible in comparison. The ANN shows a lower
value than that of Penman–Monteith for the maximum PET at any given location and a
higher value during minimum PET; however, the location and time are similar.

Comparison of SPI and SPEI indicates similarity between the minimum and maximum
average values for durations of 3 and 6 months, but for other durations (1, 9 and 12 months),
the lag is high. Averaged monthly highest moist conditions observed for SPEI and SPI are
similar for all durations, and error differences are negligible, indicating that all of them
present similar conditions—severely wet. Averaged monthly highest drought conditions
observed for SPEI and SPI are similar only during the 12–month duration. Moreover,
SPEI tends to showcase lower values in comparison with SPI for severe wet and drought
conditions. Based on the drought indices computing individual maximum values across the
UK, the error percentages of SPEI and SPI are higher for drought prone zones compared to
wet prone zones. This indicates that on average the comparison looks similar over months,
but interchangeability of drought indices still lacks if the maximum and minimum values
are focused. However, all the values computed do fall in the same range of severity.

Based on the predicted ranges of PET (2016–2021), two different SPEIs are computed
which showcase the application of ANN through drought indices. After visualization,
it could be stated that all the regions of the UK face challenges in terms of drought and
wet conditions across various months. However, the degree of extremes might vary along
the months. There is a lag observed in ANN–based SPEI in capturing the extreme moist
and drought conditions. For SPEI–1 the difference is relatively smaller in moist–condition
averages but higher in terms of severity classification for drought conditions. For the rest
of the SPEI durations, it is very small for change in classification of severity [111]. On
average, in all predicted years across the UK, the drought index values for extreme drought
conditions for SPEI were higher for ANN– than Penman–Monteith–based PET.

To conclude by covering maximum and minimum values, the key findings are:

• ANN–based PET shows a lower values than Penman–Monteith–based PET for maxi-
mum values and a higher values for minimum values. Location and time are similar.

• SPI shows a higher values in moist and drought conditions than SPEI.
• Severity classification changes during drought conditions for SPEI computed by ANN

for 1–month duration, but the class remains the same for 3, 6, 9, and 12–months duration.
• Lag is seen in moist and drought conditions in SPEI computed using ANN.

The limitation of these studies involves the ANN (a black box) which is still unlikely
to ascertain how the performance would be for future extreme climatic data. However, a
replacement with various new approaches to machine learning could enhance the existing
studies. In the future, various other aspects, such as using different ET empirical tech-
niques, neural network architecture and algorithm, could be focused on indicating their
performance optimization and improvement. Various AI models evaluated PET, which is
important, but their application and utilization in various other indices is still required.
Further discussion about the performance of each of them when applied could lead to the
development of more robust algorithms.
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