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Abstract: For the first time, we study the Fokas–Lenells equation in polarization preserving fibers
with multiplicative white noise in Itô sense. Four integration algorithms are applied, namely, the
method of modified simple equation (MMSE), the method of sine-cosine (MSC), the method of Jacobi
elliptic equation (MJEE) and ansatze involving hyperbolic functions. Jacobi-elliptic function solutions,
bright, dark, singular, combo dark-bright and combo bright-dark solitons are presented.
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1. Introduction

Nonlinear differential equations (NLDEs) play a very important role in scientific fields
and engineering such as optical fibers, the heat flow, plasma physics, solid-state physics,
chemical kinematics, the proliferation of shallow water waves, fluid mechanics, quantum
mechanics, wave proliferation phenomena, etc. One of the fundamental physical prob-
lems for these models is to obtain their traveling wave solutions. As a consequence, the
search for mathematical methods to create exact solutions of NLDEs is an important and
essential activity in nonlinear sciences. In recent years, many articles have studied optical
solitons’ form in telecommunications industry. These soliton molecules form the informa-
tion transporter across intercontinental distances around the world. Lastly, the nonlinear
Schrödinger’s equation (NLSE) has been discussed with the help of many models [1–38].
The aspect of stochasticity is one of the features that is less touched upon and there are
hardly any papers that have debated this point [3–9]. The Fokas–Lenells equation (FLE)
appears as a model which appoints nonlinear pulse propagation in optical fibers. The FLE
is a completely integrable equation which has arisen as an integrable generalization of the
NLSE using bi-Hamiltonian methods [10]. On the other hand, the FLE models have the
propagation of nonlinear light pulses in monomode optical fibers when certain higher-order
nonlinear effects are considered in optics field [11]. The complete integrability of the FLE
has been presented by using the inverse scattering transform (IST) method [12]. In the
main, a Lax pair and a few conservation laws connected to it have been obtained using the
bi-Hamiltonian structure and the multi-soliton solutions have been derived by using the
dressing method [13]. One more main characteristic of the FLE is that it is the first negative
flow of the integrable hierarchy of the derivative NLSE [14].

In the present article, we will study the FLE with multiplicative white noise in the Itô
sense. Our results are presented after a comprehensive analysis obtained in this article.

2. Governing Model

The dimensionless structure of the stochastic perturbed FLE in polarization preserving
fiber with multiplicative white noise in the Itô sense is written, for the first time, as:
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iqt + a1qxx + a2qxt + |q|2(bq + icqx) + σ(q− ia2qx)
dW(t)

dt = i
[
αqx + λ

(
|q|2q

)
x
+ µ

(
|q|2
)

x
q
]
, (1)

where q(x, t) is a complex-valued function that represents the wave profile, while a1, a2, b, c,
σ, α, λ, µ are real-valued constants and i =

√
−1. The first term in Equation (1) is the linear

temporal evolution, a1 is the coefficient of chromatic dispersion (CD), a2 is the coefficient of
spatio-temporal dispersion (STD), b is the coefficient of self-phase modulation (SPM), c is
the coefficient of nonlinear dispersion term, σ is the coefficient of the strength of noise, the
Wiener process is denoted by W(t), while dW(t)/dt represents the white noise. Also, the
term dW(t)/dt is the time derivative of the standard Wiener process W(t) which is called
a Brownian motion and has the following properties [7]: (i) W(t), t ≥ 0, is a continuous
function of t, (ii) For s < t, W(t)−W(s) is independent of increments. (iii) W(t)−W(s)
has a normal distribution with mean zero and variance (t− s).

Next, α is the coefficient of inter-modulation dispersion (IMD), λ is the coefficient of
self-steepening (SS) term, and finally µ is the coefficient of higher-order nonlinear dispersion
term. If σ = 0, Equation (1) reduces to the familiar FLE which is studied in [1,2,37]. The
authors [37] studied Equation (1) with variable coefficients and σ = 0. The motivation of
adding the stochastic term σ(q− ia2qx)

dW(t)
dt to Equation (1) is to formulate the stochastic

FLE with noise or fluctuations depending on the time, which has been recognized in
many areas via physics, engineering, chemistry and so on. This stochastic term has been
constructed with the help of the two terms iqt and a2qxt. Therefore, in general, the stochastic
model means that the model of differential equations should contain the white noise term
(σ 6= 0). The physical importance of the stochastic FL Equation (1) is to find its traveling
wave stochastic solutions which appoint the nonlinear pulse propagations in optical fibers.

The aim of this article is to use the method of MMSE in Section 3, the method of
MSC in Section 4, the method of MJEE in Section 5 and the ansatze involving hyperbolic
functions in Section 6 to find the bright, dark, singular soliton solutions, as well as the
Jacobi elliptic function solutions of Equation (1). Some numerical simulations are obtained
in Section 7. Finally, conclusions are illustrated in Section 8.

3. On Solving Equation (1) by MMSE

In order to solve the stochastic Equation (1), we use a wave transformation involving
the noise coefficient σ and the Wiener process W(t) in the form:

q(x, t) = φ(ξ) exp i
[
−κx + wt + σW(t)− σ2t

]
, (2)

where the transformation ξ = x− vt is used. Here, κ, w, v, are real constants, such that
κ represents the wave number, w represents the frequency and v represents the soliton
velocity. The function φ(ξ) is real function which represents the amplitude part. When we
put Equation (2) into Equation (1), we obtain the ordinary differential equation (ODE):

[a1 − a2v]φ′′ + Yφ + [b + κ(c− λ)]φ3 = 0, (3)

and the soliton velocity,

v =
Y

(a2κ − 1)
, a2κ 6= 1 (4)

as well as the constraint condition,

c− 3λ− 2µ = 0, (5)
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where Y =
[
(w− σ2)(a2κ − 1)− a1κ2 − ακ

]
and ′′ = d2

dξ2 . We have the balance number

N = 1 by balancing φ′′ with the φ3 in Equation (3). According to the method of MSE [15–20],
the solution of Equation (3) is written as:

φ(ξ) = A0 + A1

[
ψ′(ξ)
ψ(ξ)

]
, (6)

where ψ(ξ) is a new function of ξ, and A0, A1 are constants to be determined later, provided
A1 6= 0, ψ(ξ) 6= 0 and ψ′(ξ) 6= 0.

Inserting Equation (6) into Equation (3), and collecting all the coefficients of ψ−i(ξ)
(i = 0, 1, 2, 3), we obtain the equations:

ψ0 : A0Y + A3
0[b + κ(c− λ)] = 0, (7)

ψ−1 : A1ψ′′′[a1 − a2v] + A1ψY + 3A2
0 A1ψ′[b + κ(c− λ)] = 0, (8)

ψ−2 : −3A1ψ′ψ′′[a1 − a2v] + 3A0 A2
1ψ′2[b + κ(c− λ)] = 0, (9)

ψ−3 : 2A1ψ′3[a1 − a2v] + A3
1ψ′3[b + κ(c− λ)] = 0. (10)

By solving Equations (7) and (10), we obtain:

A0 = 0, A0 = ±
√
− Y
[b + κ(c− λ)]

, A1 = ±
√
− 2[a1 − a2v]
[b + κ(c− λ)]

, (11)

provided [b + κ(c− λ)]Y < 0 and [b + κ(c− λ)][a1 − a2v] < 0.
By solving Equations (8) and (9), we conclude that A0 = 0 is rejected. Therefore,

A0 6= 0. Now, Equation (9) reduces to the ODE :

[a1 − a2v]ψ′′ − A0 A1[b + κ(c− λ)]ψ′ = 0, (12)

which has the solution

ψ′(ξ) = ξ0 exp
[

A0 A1[b + κ(c− λ)]

[a1 − a2v]
ξ

]
, (13)

where ξ0 6= 0 is a constant. From Equation (11) and Equation (13), we can show that
Equation (8) is valid. Hence, we have the results:

ψ(ξ) =
ξ0[a1 − a2v]

A0 A1[b + κ(c− λ)]
exp

[
A0 A1[b + κ(c− λ)]

[a1 − a2v]
ξ

]
+ ξ1, (14)

where ξ1 is a nonzero constant of integration. Now, the exact solution of Equation (1) has
the form:

q(x, t) =



A0 + A1

ξ0 exp
[

A0 A1[b+κ(c−λ)]
[a1−a2v] (x− vt)

]

ξ1 +
ξ0[a1−a2v]

A0 A1[b+κ(c−λ)]
exp

[
A0 A1[b+κ(c−λ)]

[a1−a2v] (x− vt)
]



 exp i

[
−κx + wt + σW(t)− σ2t

]
. (15)

In particular, if we set,

ξ1 =
ξ0[a1 − a2v]

A0 A1[b + κ(c− λ)]
, (16)

we have the dark soliton solution:

q(x, t) = ±
√
− Y

[b+κ(c−λ)]
tanh

[√
Y

2[a1−a2v] (x− vt)
]

exp i
[
−κx + wt + σW(t)− σ2t

]
, (17)
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while, if we set,

ξ1 = − ξ0[a1 − a2v]
A0 A1[b + κ(c− λ)]

, (18)

we have the singular soliton solution:

q(x, t) = ±
√
− Y

[b+κ(c−λ)]
coth

[√
Y

2[a1−a2v] (x− vt)
]

exp i
[
−κx + wt + σW(t)− σ2t

]
, (19)

provided,
[b + κ(c− λ)]Y < 0, [a1 − a2v]Y > 0. (20)

On comparing our above results (17) and (19) with the results (19) and (20) obtained
in [37], we deduce that they are equivalent when σ = 0.

4. On Solving Equation (1) by MSC

To apply this method according to [21–25], assume that Equation (3) has the sine-
solution form:

φ(ξ) =





λ1 sinβ1(µ1ξ) , if |ξ| < π
µ1

,

0 , otherwise.
(21)

Substituting Equation (21) into Equation (3), we obtain:

[a1 − a2v]
[
λ1µ2

1β1(β1 − 1) sinβ1−2(µ1ξ)− λ1µ2
1β2

1 sinβ1(µ1ξ)
]

+Yλ1 sinβ1(µ1ξ) + [b + κ(c− λ)]λ3
1 sin3β1(µ1ξ) = 0.

(22)

From (22), we deduce that β1 − 2 = 3β1 which leads β1 = −1. Consequently, we have
the results:

µ2
1 =

Y
[a1 − a2v]

, λ2
1 = − 2Y

[b + κ(c− λ)]
. (23)

Now, the periodic solution of Equation (1) is:

q(x, t) = ±
√
− 2Y

[b+κ(c−λ)]
csc
[√

Y
[a1−a2v] (x− vt)

]
exp i

[
−κx + wt + σW(t)− σ2t

]
, (24)

provided [b + κ(c− λ)]Y < 0 , [a1 − a2v]Y > 0.
Since csc(ix) = −icschx, then the singular soliton solution of Equation (1) is written as:

q(x, t) = ±
√

2Y
[b+κ(c−λ)]

csch
[√
− Y

[a1−a2v] (x− vt)
]

exp i
[
−κx + wt + σW(t)− σ2t

]
, (25)

provided Y[b + κ(c− λ)] > 0 , [a1 − a2v]Y < 0.
In parallel, if we allow that Equation (3) has the cosine-solution:

φ(ξ) =





λ1 cosβ1(µ1ξ) , if |ξ| < π
2µ1

,

0 , otherwise.
(26)

Putting Equation (26) into Equation (3), we obtain

[a1 − a2v]
[
−µ2

1β2
1λ1 cosβ1(µ1ξ) + λ1µ2

1β1(β1 − 1) cosβ1−2(µ1ξ)
]

+Yλ1 cosβ1(µ1ξ) + [b + κ(c− λ)]λ3
1 cos3β1(µ1ξ) = 0.

(27)
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From Equation (27), we deduce that β1 − 2 = 3β1, which leads β1 = −1. Therefore,
we have the solutions:

q(x, t) = ±
√
− 2Y

[b+κ(c−λ)]
sec
[√

Y
[a1−a2v] (x− vt)

]
exp i

[
−κx + wt + σW(t)− σ2t

]
, (28)

with conditions [b + κ(c− λ)]Y < 0 , [a1 − a2v]Y > 0.
Since, sec(ix) = sechx, we have the bright soliton solution:

q(x, t) = ±
√
− 2Y

[b+κ(c−λ)]
sech

[√
− Y

[a1−a2v] (x− vt)
]

exp i
[
−κx + wt + σW(t)− σ2t

]
, (29)

provided[b + κ(c− λ)]Y < 0 , [a1 − a2v]Y < 0.

5. On Solving Equation (1) by MJEE

If we multiply Equation (3) by φ′(ξ) and integrate, we have the JEE as:

φ′ 2(ξ) = l0 + l2φ2(ξ) + l4φ4(ξ), (30)

where,

l0 =
2c1

[a1 − a2v]
, l2 = − Y

[a1 − a2v]
, l4 = − [b + κ(c− λ)]

2[a1 − a2v]
, (31)

and c1 is the integration constant, [a1 − a2v] 6= 0. It is noted [26–30] that Equation (30) has
the Jacobi-elliptic solutions in the forms:

(1) If l0 = 1, l2 = −
(
1 + m2), l4 = m2, 0 < m < 1, then,

φ(ξ) = sn(ξ) or φ(ξ) = cd(ξ). (32)

Then, Equation (1) has the JEE solution:

q(x, t) = sn(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
,

or
q(x, t) = cd(x− vt) exp i

[
−κx + wt + σW(t)− σ2t

]
,

(33)

where,
c1 = 1

2 (a1 − a2v),
Y = (1 + m2)(a1 − a2v),
b + κ(c− λ) = −2m2(a1 − a2v),

(34)

and consequently, we obtain

Y = − (1 + m2)

2m2 [b + κ(c− λ)].

Particularly, if m→ 1, we get,

q(x, t) = tanh(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
. (35)

Note that the solution Equation (35) is equivalent to the solution Equation (17) under
the conditions of Equation (34).

(2) If l0 = m2, l2 = −
(
1 + m2), l4 = 1, 0 < m < 1, then,

φ(ξ) = ns(ξ) or φ(ξ) = dc(ξ). (36)

Then, we obtain the JEE solution for Equation (1),

q(x, t) = ns(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
,

or
q(x, t) = dc(x− vt) exp i

[
−κx + wt + σW(t)− σ2t

]
,

(37)
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where,
c1 = 1

2 m2(a1 − a2v),
Y = (1 + m2)(a1 − a2v),
b + κ(c− λ) = −2(a1 − a2v),

(38)

and consequently, we have,

Y = − (1 + m2)

2
[b + κ(c− λ)].

Particularly, if m→ 1, we obtain,

q(x, t) = coth(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
. (39)

Note that the solution in Equation (39) is equivalent to the solution in Equation (19)
under the conditions in Equation (38).

(3) If l0 = 1−m2, l2 = 2m2 − 1, l4 = −m2, 0 < m < 1, then,

φ(ξ) = cn(ξ). (40)

Now, we have the JEE solution for Equation (1),

q(x, t) = cn(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
, (41)

where,
c1 = 1

2 (1−m2)(a1 − a2v),
Y = −(2m2 − 1)(a1 − a2v),
b + κ(c− λ) = 2m2(a1 − a2v),

(42)

and consequently, we have,

Y = − (2m2 − 1)
2m2 [b + κ(c− λ)].

Particularly, if m→ 1, we obtain,

q(x, t) = sech(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
(43)

Note that the solution of Equation (43) is equivalent to the solution of Equation (29)
under the conditions of Equation (42).

(4) If l0 = −m2(1−m2), l2 = 2m2 − 1, l4 = 1, 0 < m < 1, then,

φ(ξ) = ds(ξ). (44)

Consequently, we have the JEE solution for Equation (1),

q(x, t) = ds(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
, (45)

where,
c1 = −m2

2 (1−m2)(a1 − a2v),
Y = −(2m2 − 1)(a1 − a2v),
b + κ(c− λ) = −2(a1 − a2v),

(46)

and we have,

Y =
1
2
(2m2 − 1)[b + κ(c− λ)].
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Particularly, if m→ 1, we obtain

q(x, t) = csch(x− vt) exp i
[
−κx + wt + σW(t)− σ2t

]
, (47)

Note that the solution of Equation (47) is equivalent to the solution of Equation (25)
under the conditions of Equation (46).

(5) If l0 = 1
4 , l2 = 1

2 (1− 2m2), l4 = 1
4 , 0 < m < 1, then,

φ(ξ) =
sn(ξ)

1± cn(ξ)
. (48)

Now, we have the JEE solution for the Equation (1),

q(x, t) =
sn(x− vt)

1± cn(x− vt)
exp i

[
−κx + wt + σW(t)− σ2t

]
, (49)

where,
c1 = 1

8 (a1 − a2v),
Y = − 1

2 (1− 2m2)(a1 − a2v),
b + κ(c− λ) = − 1

2 (a1 − a2v),
(50)

and consequently, we have,

Y = (1− 2m2)[b + κ(c− λ)].

Particularly, if m→ 1, we obtain the combo dark-bright soliton solutions:

q(x, t) =
tanh(x− vt)

1± sech(x− vt)
exp i

[
−κx + wt + σW(t)− σ2t

]
. (51)

(6) If l0 = 1−m2

4 , l2 = 1+m2

2 , l4 = 1−m2

4 , 0 < m < 1, then,

φ(ξ) =
cn(ξ)

1± sn(ξ)
. (52)

Then, we have the JEE solution for Equation (1),

q(x, t) =
cn(x− vt)

1± sn(x− vt)
exp i

[
−κx + wt + σW(t)− σ2t

]
, (53)

where
c1 = 1

8 (1−m2)(a1 − a2v),
Y = − 1

2 (1 + m2)(a1 − a2v),
b + κ(c− λ) = − 1

2 (1−m2)(a1 − a2v).
(54)

Particularly, if m→ 1, we obtain the combo bright-dark soliton solutions:

q(x, t) =
sech(x− vt)

1± tanh(x− vt)
exp i

[
−κx + wt + σW(t)− σ2t

]
. (55)

Finally, there are many other Jacobi elliptic solutions which are omitted here for
simplicity.

6. Ansatze Involving Hyperbolic Functions

To this aim, we first write Equation (3) in the simple form,

Aφ′′ + Yφ + Cφ3 = 0, (56)
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where,
A = a1 − a2v,
C = b + κ(c− λ).

(57)

Along these lines, the main steps of the proposed ansatze have been presented accord-
ing to the ansatze involving the hyperbolic functions method [31].

6.1. Combo Bright-Dark Solitons

We assume the ansatz,

φ(ξ) =
α1sech(µ1ξ)

1 + λ1 tanh(µ1ξ)
. (58)

where α1, λ1, µ1 are parameters to be determined. Now, we obtain

φ′′(ξ) = α1µ2
1(2λ2

1−1)sech(µ1ξ)+2α1λ1µ2
1sech(µ1ξ) tanh(µ1ξ)+α1µ2

1(2−λ2
1)sech(µ1ξ) tanh2(µ1ξ)

(1+λ1 tanh(µ1ξ))3 . (59)

Substituting Equations (58) and (59) into Equation (56), combining all the coefficients
of sechp(ξ) tanhq(ξ) (p = 1, q = 0, 1, 2), we obtain the set of equations:

Aα1µ2
1(2λ2

1 − 1) + Yα1 + Cα3
1 = 0,

2Aα1λ1µ2
1 + 2Yα1λ1 = 0,

Aα1µ2
1(2− λ2

1) + Yα1λ2
1 − Cα3

1 = 0.
(60)

By resolving the Equation (60), we have the results:

µ2
1 =
−Y
A

, AY < 0, λ2
1 =

2Y + Cα2
1

2Y
> 0, α1 6= 0.

Now, we obtain

q(x, t) =





α1sech
[√

−Y
A (x− vt)

]

1±
√

2Y+Cα2
1

2Y tanh
[√

−Y
A (x− vt)

]





exp i
[
−κx + wt + σW(t)− σ2t

]
. (61)

which represent the combo-bright-dark soliton solutions and are equivalent to the solutions
Equation (55) of Section 5, if A = −Y, C = 0 and α1 = 1.

6.2. Combo Dark-Bright Solitons

We assume the ansatz

φ(ξ) =
α1 tanh(µ1ξ)

1 + λ1sech(µ1ξ)
, (62)

where α1, λ1, µ1 are parameters to be determined. Now, we obtain

φ′′(ξ) =
α1µ2

1(λ
2
1 − 2)sech2(µ1ξ) tanh(µ1ξ)− α1λ1µ2

1sech(µ1ξ) tanh(µ1ξ)

(1 + λ1sech(µ1ξ))3 . (63)

Substituting Equations (62) and (63) into Equation (56), combining all the coefficients
of tanhp(ξ)sechq(ξ) (p = 1, q = 0, 1, 2), we obtain the algebraic equations:

Yα1 + Cα3
1 = 0,

−Aα1λ1µ2
1 + 2Yα1λ1 = 0,

Aα1µ2
1(λ

2
1 − 2) + Yα1λ2

1 − Cα3
1 = 0.

(64)

Solving the algebraic Equation (64), we obtain the results:

µ2
1 =

2Y
A

, AY > 0, α2
1 =
−Y
C

, YC < 0, λ2
1 = 1.
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Now, Equation (1) has the combo dark-bright soliton solutions:

q(x, t) = ±
√
−Y
C





tanh
[√

2Y
A (x− vt)

]

1± sech
[√

2Y
A (x− vt)

]





exp i
[
−κx + wt + σW(t)− σ2t

]
. (65)

which are equivalent to the solutions Equation (51) of Section 5, if A = 2Y and Y = −C.

7. Numerical Simulations

In this section, we present the graphs of some solutions for Equation (1). Let us now
examine Figures 1–15, as it illustrates some of our solutions obtained in this paper. To this
aim, we select some special values of the obtained parameters.

Figure 1: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values
a1 = 1, a2 = 1, b = 1, σ = 0, α = 1, κ = 2, w = 2, λ = 1, µ = 1, c = 5, v = 3,

−5 ≤ x, t ≤ 5.
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[√

2Y
A (x− vt)

]





exp i
[
−κx + wt + σW(t)− σ2t

]
. (65)

which are equivalent to the solutions Equation (51) of Section 5, if A = 2Y and Y = −C.

7. Numerical Simulations

In this section, we present the graphs of some solutions for Equation (1). Let us now
examine Figures 1–15, as it illustrates some of our solutions obtained in this paper. To this
aim, we select some special values of the obtained parameters.

Figure 1: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values
a1 = 1, a2 = 1, b = 1, σ = 0, α = 1, κ = 2, w = 2, λ = 1, µ = 1, c = 5, v = 3,

−5 ≤ x, t ≤ 5.

Figure 1. The profile of the dark soliton solutions (17).

Figure 2: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 1, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 4, −5 ≤ x, t ≤ 5.

Figure 1. The profile of the dark soliton solutions (17).

Figure 2: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 1, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 4, −5 ≤ x, t ≤ 5.
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Figure 2. The profile of the dark soliton solutions (17).

Figure 3: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 2, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 8, −5 ≤ x, t ≤ 5.

Figure 3. Shows the profile of the dark soliton solutions (17).

Figure 4: The numerical simulations of the solutions (19) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 0, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 3, −5 ≤ x, t ≤ 5.

Figure 2. The profile of the dark soliton solutions (17).

Figure 3: The numerical simulations of the solutions (17) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 2, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 8, −5 ≤ x, t ≤ 5.
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Figure 4: The numerical simulations of the solutions (19) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 0, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 3, −5 ≤ x, t ≤ 5.
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Figure 4. Shows the profile of the singular soliton solutions (19).

Figure 5: The numerical simulations of the solutions (19) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 1, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 4, −5 ≤ x, t ≤ 5.

Figure 5. Shows the profile of the singular soliton solutions (19).

Figure 6: The numerical simulations of the solutions (19) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 2, α = 1, κ = 2, w = 2, λ = 1, µ = 1,
c = 5, v = 8, −5 ≤ x, t ≤ 5.
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Figure 6. Shows the profile of the singular soliton solutions (19).

Figure 7: The numerical simulations of the solutions (29) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = 1, σ = 0, α = 1, κ = 1
2 , w = 2, λ = 1, µ = 1,

c = 5, v = −2, −5 ≤ x, t ≤ 5.

Figure 7. Shows the profile of the bright soliton solutions (29).

Figure 8: The numerical simulations of the solutions (29) 3D and 2D (with t = 1
2 ) with

the parameter values a1 = 1, a2 = 1, b = 1, σ = 4, α = 4, κ = 1
4 , w = 16, λ = 2, µ = 2,

c = 10, v = −6, −5 ≤ x, t ≤ 5.
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Figure 8. Shows the profile of the bright soliton solutions (29).

Figure 9: The numerical simulations of the solutions (29) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = 1, σ = 2, α = 2, κ = 1
2 , w = 2, λ = 1, µ = 1,

c = 5, v = −10, −5 ≤ x, t ≤ 5.

Figure 9. Shows the profile of the bright soliton solutions (29).

Figure 10: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 4, a2 = 2, b = −16, σ = 0, α = 1, κ = 2, w = 10, λ = 2,
µ = 2, c = 10, v = 2, −5 ≤ x, t ≤ 5.
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Figure 10. The profile of the combination of dark-bright soliton solutions (51).

Figure 11: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 4, a2 = 1, b = −21, σ = 1, α = 1, κ = 2, w = 24, λ = 2,
µ = 2, c = 10, v = −6, −5 ≤ x, t ≤ 5.

Figure 11. The profile of the combination of dark-bright soliton solutions (51).

Figure 12: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 6, a2 = 1, b = −16, σ = 2, α = 1, κ = 2, w = 30, λ = 2,
µ = 2, c = 10, v = 6, −5 ≤ x, t ≤ 5.

Figure 10. The profile of the combination of dark-bright soliton solutions (51).

Figure 11: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 4, a2 = 1, b = −21, σ = 1, α = 1, κ = 2, w = 24, λ = 2,
µ = 2, c = 10, v = −6, −5 ≤ x, t ≤ 5.
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Figure 12: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )
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Figure 12: The numerical simulations of the solutions (51) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 6, a2 = 1, b = −16, σ = 2, α = 1, κ = 2, w = 30, λ = 2,
µ = 2, c = 10, v = 6, −5 ≤ x, t ≤ 5.
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Figure 12. The profile of the combination of dark-bright soliton solutions (51).

Figure 13: The numerical simulations of the solutions (55) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = −16, σ = 0, α = 2, κ = 2, w = 2, λ = 2,
µ = 2, c = 10, v = −7, −5 ≤ x, t ≤ 5.

Figure 13. The profile of the combination of bright-dark soliton solutions (55).

Figure 14: The numerical simulations of the solutions (55) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = −16, σ = 1, α = −5
3 , κ = 2, w = 2, λ = 2,

µ = 2, c = 10, v = 4
3 , −5 ≤ x, t ≤ 5.

Figure 12. The profile of the combination of dark-bright soliton solutions (51).

Figure 13: The numerical simulations of the solutions (55) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = −16, σ = 0, α = 2, κ = 2, w = 2, λ = 2,
µ = 2, c = 10, v = −7, −5 ≤ x, t ≤ 5.

Figure 13. The profile of the combination of bright-dark soliton solutions (55).

Figure 14: The numerical simulations of the solutions (55) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = −16, σ = 1, α = −5
3 , κ = 2, w = 2, λ = 2,

µ = 2, c = 10, v = 4
3 , −5 ≤ x, t ≤ 5.
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Figure 14. The profile of the combination of bright-dark soliton solutions (55).

Figure 15: The numerical simulations of the solutions (55) 3D and 2D (with t = 1
2 )

with the parameter values a1 = 1, a2 = 1, b = −16, σ = 2, α = 2, κ = 2, w = 2, λ = 2,
µ = 2, c = 10, v = −9, c1 = 0, −5 ≤ x, t ≤ 5.

Figure 15. The profile of the combination of bright-dark soliton solutions (55).

Let us now explain the effect of multiplicative white noise in the obtained solutions
as follows:

In Figures 1, 4, 7, 10 and 13 when the noise σ = 0, we note that the surface is less
planer. But in Figures 2, 3, 5, 6, 8, 9, 11 and 12 when the noise σ increases (σ = 1, 2, 4), we
note that the surface becomes more planer after small transit behaviors. This means the
multiplicative noise effects on the solutions and it makes the solutions stable.



Eng 2022, 3 539

8. Conclusions

In this article, we have obtained the solutions of the stochastic FLE in the presence
of multiplicative white noise in the Itô sense. The modified simple equation method, the
sine-cosine method, the Jacobi-elliptic function expansion method and the ansatze method
are applied. Dark solitons, bright solitons, singular solitons, combo dark-bright solitons,
combo bright-dark solitons, as well as Jacobi-elliptic solutions are given. Without noise
(σ = 0) the authors [1,2,37] studied a number of methods to get the exact solutions of
FL equation while the stochastic FL Equation (1) is not yet studied. So, on comparing
our stochastic solutions (σ 6= 0) obtained in our present article with the non- stochastic
solutions (σ = 0) obtained in [1,2,37] we deduce that the stochastic solutions are more
general than the non-stochastic solutions. Finally, in future, this work will be extended
in birefringent fibers, in fiber Bragg gratings and in magneto-optic waveguides. Also, we
will study the stochastic FL Equation (1) with variable coefficients [37] when σ 6= 0, to get
stochastic solutions.
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