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Abstract: In the article, we point out the need to measure the mass concentration of particulate
matter (PM) in central Europe in a place of residence (a city and a small town), as PM has a negative
impact on human health, especially that of children and the elderly. Since different amounts of
PM (mainly peaks) were measured at two locations at a distance of 35 m from each other, a control
measurement was also performed to verify the conformity of the measurements of both sensors,
which was confirmed with measured courses of quantities. Cases of strong correlation (very close
relationship) between PM10 and meteorological factors (temperature, humidity, barometric pressure)
were found, but cases of no correlation were found as well, probably due to the effect of wind,
which has not been measured yet. The article also points to the fact that, especially during the
autumn/winter/spring heating season, the air quality in a small village may be worse than in a
large city. This was also confirmed by the detected AQI sub-indices from PM2.5 and PM10. Due to
the current rise in prices of gas and electricity, the use of wood combustion as a heating source is
nowadays becoming increasingly more attractive, which may contribute to the worsening of the air
quality in the future.
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1. Introduction

Particulate matter (PM) consists of solid or liquid particles in the air of varying sizes
and compositions. Particulate matter is categorized by its size, typically into the following
categories: PM10 (particles with diameter <10 µm); PM2.5 or fine particles (<2.5 µm); coarse
particles, which complement fine particles that are defined by diameter between 2.5 and
10 µm; and ultrafine particles or PM0.5 (<0.5 µm) [1]. The sources of PM can be natural
(which include windblown dust, wildfires, volcano eruptions and sea salt aerosols) or
anthropogenic [2,3]. The anthropogenic sources of PM include residential combustion,
road traffic (more specifically, combustion from diesel and petrol engines, erosion of the
pavement caused by the traffic as well as the abrasion of tires and brakes), and emissions
from energy and manufacturing industries (metal processing, construction, manufacturing
of cement and bricks, smelting and mining activities) [1,2,4].

The negative effects particulate matter has on health are well researched and docu-
mented. It is known that respiratory and cardiovascular systems are negatively affected
by PM. The exposure to particulate matter can cause, for example, difficulty breathing,
decreased pulmonary function, irregular heartbeat and is linked to asthma, heart attack
and lung cancer [3,5–8]. In 2016, the World Health Organization estimated that 4.2 million
premature deaths per year are due to exposure to ambient fine particles [9]. The smaller
the particles are, the greater is their impact on human health; while coarse particles deposit
in the upper respiratory system, fine particles can reach lung alveoli and ultrafine particles
can even enter the bloodstream [10]. Particulate matter affects people of all ages, but
children, the elderly, and pregnant women are amongst the most vulnerable [5–8]. There
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are no safe levels of PM mass concentration and the impact on human health is significant
even for relatively low levels, which is the reason why we consider the measuring and
monitoring of PM an important issue worth looking into. After all, to be able to lower the
mass concentration of PM, we must first know how much particulate matter there is in the
air. We are especially interested in finding if there is any significant correlation between the
mass concentration of PM and other physical quantities, such as temperature, humidity,
and barometric pressure. We are also interested in AQI calculated from daily averages of
PM10 and PM2.5 mass concentrations. The previous research into the correlation between
PM and meteorological factors such as temperature, humidity and pressure have found
that favorable weather conditions, these conditions being sunny and warm weather as it
was found that the increase in temperature helps reduce the concentration of air pollutants,
and improve air quality as PM concentration relates significantly to meteorological fac-
tors [11–14]. Paper [11] has found negative correlation between PM concentrations and the
average wind speed, precipitation and relative humidity, and positive correlation between
PM concentration and barometric pressure. With the increase in the latitude, the impact
of temperature on the air pollutant concentration became more obvious. The values of
correlation coefficients between the concentration of air pollutants and meteorological
conditions in autumn/winter were significantly higher than spring/summer. However,
contrary to the findings of [11], the positive correlation between PM and humidity was
also confirmed in [12], as the humidity causes the particles to become moist, which in-
creases the weight of particles, which causes the reduction in the diffusion of particulate
matter. The same study [12] also confirmed significant negative correlation between PM
and barometric pressure, as well as between PM and the wind speed, as when no wind
was present particulate matter tended to stick close to the ground. Furthermore, the same
study found consistent negative correlation between temperature and PM concentration
at different heights. The results of this study were obtained from the October–December
period of measurement, which corresponds with the seasonal correlations found in the
previous study [11]. Paper [13] found that the effect of meteorological factors (wind speed,
temperature, air pressure, and relative humidity) on PM concentrations varied with each
season. While wind speed was the most important factor, temperature, humidity and
pressure have been found to be key factors during some seasons as well. Wind direction
was also considered, and high and low PM concentrations were linked to different wind
directions. In spring, air pollutants were more susceptible to the influences of temperature,
wind speed and atmospheric pressure but not relative humidity. As in study [11], study [13]
found that the correlation between PM and atmospheric pressure is positive as atmospheric
pressure obstructs the upward movement of PM. This means that the higher the pressure,
the more the particles accumulate, the higher the mass concentrations of PM in the air.
In summer, the relative humidity was negatively correlated with PM mainly due to the
low relative humidity during that season. Strong wind speeds in summer caused dust
suspension, which caused the positive correlation between PM and wind speed. Wind
speed was a key factor in the autumn season, when it was correlated negatively with PM, as
it had important effect on pollutant diffusion. Just like in the autumn–winter season of [12],
study [13] also found negative correlation between PM and temperature. In winter, PM was
significantly positively correlated with humidity. Strong positive correlation between PM
concentration and temperature was found by [12], though there was a long-term decrease
in correlation coefficient in recent years (2010–2017). This suggests that the correlation be-
tween PM and meteorological factors varies with time. However, ref. [15] suggests that the
effect of temperature on PM concentration is different during different months and during
low temperatures (e.g., in December) it is correlated with PM negatively. Study [16] found
regional differences in correlations between PM2.5 and meteorological factors. Temperature
was positively correlated with PM concentrations throughout the US. The correlation of
PM with relative humidity varied with different regions—it was positive in the Northeast
and Midwest but negative in the Southeast and the West. It was found that precipitation
was negatively correlated with PM throughout the US. A study conducted in the Czech
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Republic [17] was to characterize vertical distribution of PM in spring and summer. Meteo-
rological factors were measured simultaneously with PM. Strong correlation between PM
and meteorological factors were not found.

Studies [11–13,15] were conducted in China. Study [12] was conducted in South Korea
and study [16] was conducted in the US. We hope that this paper finds how PM is affected
by the meteorological factors in central Europe. The weather conditions in central Europe
are different than those in East Asia or the United States, which may affect the concentration
of PM in different ways. Our study is conducted in Košice (a city), and in a small village
located 35 km from Košice. Considering the aforementioned negative effects on human
health, we were interested in the state of air quality. This was reflected in PM concentrations
in the form of graphs, and AQI in the form of numerical values. Additionally, correlation
between PM and meteorological factors (temperature, humidity, pressure) was calculated,
which could help with the future predictions of PM mass concentration.

In short, this paper has the following objectives:

• measure the mass concentration of PM, calculate AQI for PM2.5 and PM10;
• compare air quality in a city and in a small village;
• compare the air quality within short distances relative to the sources of PM;
• calculate the correlations between PM and meteorological factors (temperature, hu-

midity, pressure).

2. Materials and Methods
2.1. Measurement Station

To measure particulate matter, a measurement station was created. The station was
based on the Arduino Mega board, to which several sensors have been connected along with
the Real Time Clock (RTC) module and a microSD module. The sensors used in the mea-
suring station were the following: particulate matter sensor SPS30, which measures mass
concentration of PM1, PM2.5, PM4 and PM10, quantity of particles of PM0.5, PM1, PM2.5,
PM4 and PM10 and typical size of the particles. SPS30 is an OPC (optical particle counter)
based on the principle of laser diffraction. The particle intercepts the laser beam, which
causes the beam to scatter. The scattered light is then measured by the photodetector. The
intensity of the scattered light allows the individual particles to be counted and measured.
The sensor measures mass concentration of PM1 and PM2.5 with the accuracy of±10 µg/m3

for mass concentration < 100 µg/m3 and ±10% for mass concentration > 100 µg/m3. Mass
concentration of PM4 and PM10 is measured with the accuracy of ±25 µg/m3 for mass
concentration < 100 µg/m3 and ±25% for mass concentration > 100 µg/m3 [18]. The next
sensor used in this measurement station was the temperature and humidity sensor SHT30,
which measures temperature with the accuracy of ±0.3 ◦C and humidity with the accuracy
of ±3% RH [19]. The final sensor used in this measurement station was the temperature
and pressure sensor MS5611. It measures temperature with the accuracy of ±0.8 ◦C and
pressure with the accuracy of ±1.5 hPa [20]. The measurements were taken every 5 s and
saved in a *.csv file on a microSD card. The RTC module assured the measurements were
properly timestamped.

2.2. Test Measurement of SPS30

In order to verify that the measured values of the two SPS30 sensors do not significantly
differ from each other, a test measurement (Figure 1) has been conducted, for which two
SPS30 sensors were used simultaneously.

Figure 1a,b depict the measured values by both SPS30 sensors. 15,784 measurements
were made over the course of ~22 h. Experimental data from this measurement are available
in Table S1, Supplementary Materials. From these two graphs it is not apparent just how
many values measured by S1 differ from the values measured by S2, therefore the difference
between these values is plotted in Figure 1c. Most of the time, when the mass concentration
of PM10 is ~5 µg/m3, the difference between measurements of S1 and S1 falls between
−1 and +1 µg/m3. The exceptions happen during the 20–25 µg/m3 peaks, when the
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difference between S1 and S2 measurements is 3–4 µg/m3. In all cases, this difference is
less than 10 µg/m3, which means that both sensors comply with the accuracy guaranteed
by the manufacturer [15]. The scatter plot of the difference between S1 and S2 is shown in
Figure 1d.
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The reason it is important to evaluate the accuracy of the sensor used for measuring
PM is due to the negative effects of particulate matter on human health, as described in the
Introduction. In our experience with different sensors, we have come across sensors that
did not meet the accuracy guaranteed by the manufacturer. An example of one such sensor
is temperature and barometric pressure sensor BMP280, which measures temperature
with the accuracy of ±1 ◦C and barometric pressure with the accuracy of ±1.7 hPa [21].
During our previous work with this type of sensor, we used eight BMP280 sensors to
simultaneously measure temperature and pressure, as shown in Figure 2. Measured data
by BMP280 sensors are available in Table S2, Supplementary Materials.
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As shown in Figure 2a the difference between S5 (which recorded the highest tem-
perature) and S4 (which recorded the lowest temperature) is ~5 ◦C. Figure 2b shows that
S8 (highest recorded pressure) and S1 (lowest recorded pressure) differ by 160 hPa. While
the barometric pressure deviated from the accuracy of the sensor by a significantly greater
margin, neither the temperature nor the pressure correspond to the accuracy guaranteed
by the manufacturer.

However, seeing as there was no such problem in the case of SPS30 (as demonstrated
by Figure 1), we have concluded that this sensor is reliable for our measurements of PM,
temperature, humidity, and barometric pressure.

2.3. Measurement Locations

The measurements of PM took place over the course of several months (in this article
we will include measurements from January, March and May 2022) in multiple locations.

The first set of measurements took place in Slovakia, in Košice at the Department
of Theoretical Industrial Electrical Engineering, and was carried out in November and
December 2021 [22]. The measurement station was placed outside of a window on the
first floor of the building. A park was situated just across the road from this area, and the
measuring station was facing the park. The road itself was not often busy, as it was located
in the university campus and the nearest four-lane main road was situated 150 m from the
department, behind a park, which filtered PM created by traffic.

The second set of measurements was conducted in a small village, on one street with
five family houses clustered together as a close neighborhood. All of them used wood
combustion as a primary heat source (although one of them could also use gas for heating),
which is understandably increasingly attractive, even for the houses which also had the
option to heat using gas or electricity due to rising energy prices. The measurements were
carried out simultaneously in two places—on the balcony of the house and in the garden on
the other side of the same house. The distance between both measuring places was 35 m.

2.4. Data Collection and Processing

The measurements in both locations were carried out in 5-s intervals, which means
that there are 2160 measured values in a 3-h interval, 4320 measured values in a 6-h interval
and 8640 measured values in a 12-h interval.

The measured data was logged into a *.csv file on a microSD card, after which MATLAB
software was used to process the data. The measured data was divided into 3-h, 6-h and
12-h intervals, from which correlation coefficients were calculated. In addition, hourly
averages of PM were calculated for the 12-h intervals and plotted in bar graphs. Daily
averages of PM were also calculated, which were necessary for calculating AQI values. All
graphs were plotted using MATLAB.

2.5. Calculating AQI

Air Quality Index (AQI) indicates the levels of air pollutants from a public health
point of view. It evaluates the impact of air pollutants on human health. A number of air
pollutants are taken into consideration when calculating AQI: PM2.5, PM10, CO, SO2, NO2
and O3. Table 1 shows the categories of AQI and what level of air pollutants correspond
to them [23,24]. AQI can be characterized by one of 6 categories: Good, Moderate, Un-
healthy for sensitive groups (sensitive groups are defined for each air pollutant in Table 2),
Unhealthy, Very unhealthy and Hazardous.
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Table 1. AQI categories and their corresponding levels of air pollutants. Adapted from [24].

O3 ** (ppm) O3 ***
(ppm)

PM2.5 *
(µg/m3)

PM10 *
(µg/m3) CO ** (ppm) SO2 ***

(ppb)
NO2 ***

(ppb) AQI Category

0.000–0.054 - 0.0–12.0 0–54 0.0–4.4 0–35 0–53 0–50 Good
0.055–0.070 - 12.1–35.4 55–154 4.5–9.4 36–75 54–100 51–100 Moderate

0.071–0.085 0.125–0.164 35.5–55.4 155–254 9.5–12.4 76–185 101–360 101–150 Unhealthy for
sensitive groups

0.056–0.105 0.165–0.204 55.5–150.4 255–354 12.5–15.4 186–304 361–649 151–200 Unhealthy
0.106–0.200 0.205–0.404 150.5–250.4 355–424 15.5–30.4 305–604 650–1249 201–300 Very unhealthy

- 0.405–0.504 250.5–350.4 425–504 30.5–40.4 605–804 1250–1649 301–400 Hazardous
- 0.505–0.604 350.5–500.4 505–604 40.5–50.4 805–1004 1650–2049 401–500 Hazardous

* 24-h average. ** 8-h average. *** 1-h average.

Table 2. AQI categories and their corresponding levels of air pollutants. Adapted from [24].

Air Pollutant Sensitive Groups

O3

People with lung disease, children, older adults, people who are active
outdoors (incl. outdoor workers), people with certain genetic variants, and
people with diets limited in certain nutrients

PM2.5 and PM10 People with heart or lung disease, older adults, children, and people of
lower socioeconomic status

CO People with heart disease
SO2 and NO2 People with asthma, children, and older adults

AQI sub-indices [24] are calculated for each air pollutant using the following equation:

Ip =
IHi − ILo

BPHi − BPLo

(
Cp − BPLo

)
+ ILo, (1)

where Ip = index for pollutant p, Cp = truncated concentration of pollutant p, BPHi =
concentration breakpoint greater than or equal to Cp, BPLo = concentration breakpoint less
than or equal to Cp, IHi = AQI value corresponding to BPHi, ILo = AQI value corresponding
to BPLo.

From then, the final AQI [24] is determined as:

AQI = max
(
IPM2.5, IPM10, IO3 , ICO, ISO2 , INO2

)
. (2)

However, since only PM2.5 and PM10 were measured, we can only calculate the
sub-indices IPM2.5 and IPM10. This still has an informational value for us, as it can tell us
which parts of the PM have higher impact on the air quality and what that air quality is, at
least with respect to PM.

2.6. Post-Hoc Test for Determining Statistical Significance

Our null hypothesis is that there is no significant correlation between PM and other
meteorological factors:

H0 : ρ = 0. (3)

The formula for the test statistic is:

t =
r
√

n− 2√
1− r2

, (4)

where r = correlation coefficient between two quantities, n = sample size.
p-value then can be calculated using an MS Excel function = TDIST(t, n − 2, 2), where

t is a value of test statistic calculated by Equation (4), n is the sample size and 2 indicates
2-tailed test. If p ≤ α, we reject the null hypothesis, thus concluding that the non-zero
correlation found between the pair of measured quantities is statistically significant. If
p > α, null hypothesis cannot be rejected.
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With small datasets, it is customary to use α = 0.05. However, we deal with large
datasets (n = 2160 for 3-h intervals, n = 4320 for 6-h intervals, n = 8640 for 12-h intervals),
so the significance threshold α needs to be scaled by a bandwidth, which can also be
adjusted to account for multiple comparisons, a solution offered by Naaman [25]. The
scaled significance threshold α is shown in Table 3.

Table 3. Significance threshold α scaled according to sample size n.

Interval Length n α

3 h 2160 1.072 × 10−7

6 h 4320 2.679 × 10−8

12 h 8640 6.698 × 10−9

3. Results
3.1. Measurements in Košice, Slovakia

During the first set of measurements (in Košice, Slovakia, at the Department of The-
oretical and Industrial Electrical Engineering, data available in Table S3, Supplementary
Materials) it was found that the air quality with respect to mass concentration of PM is
usually (other than in a few exceptions) very good (VG) or good (G), as per Table 4 [26].

Table 4. Limit values for hourly averages of PM2.5 and PM10 mass concentrations. Adapted
from [26].

Air Quality Hourly Average of PM2.5
(µg/m3)

Hourly Average of PM10
(µg/m3)

Very Good (VG) 0–14 0–20
Good (G) 14–25 20–40

Worsened (W) 25–70 40–100
Bad (B) 70–140 100–180

Very Bad (VB) 140+ 180+

Good air quality was also confirmed by the measurements conducted in January 2022
up until 25 January, when during the afternoon hours (Figure 3a), the mass concentration of
PM started to steadily increase. The hourly average of PM10 mass concentration increased
from ~40 µg/m3 at 12:00 to 110 µg/m3 at 19:00. The mass concentration stays roughly the
same for the next 12 h (Figure 3b). It momentarily dips to ~80 µg/m3 at 12:00 on 26 January
2022 (Figure 3c), before it rises to ~160 µg/m3 by 22:00. PM10 mass concentration then
reaches 140–160 µg/m3 for the next 11 h (Figure 3d). However, it is important to note that
mass concentration of PM1 starts falling during this period of time. The increase in PM10
compared to PM1 at 9:00 to 10:00 (Figure 3d) is almost 50%, which only happens sometimes
(during these measurements and also on 27 January at 15:00 to 18:00—Figure 3e). From
27 January 2022 at 22:00, the concentration of particulate matter (all measured categories)
starts decreasing (Figure 3d–g), until it reaches the hourly average of 1 µg/m3 on 28 January
2022 at 15:00, after which the mass concentration stays in the category of very good (VG) air
quality levels. The decrease in mass concentration at 11:00–15:00 (Figure 3f,g) is significant.
The levels of mass concentration of particulate matter as measured on 25 to 28 January 2022
12:00 (Figure 3a–f) are not typical for this location. Measurements carried out on 28 January
2022 12:00 and onwards (Figure 3g,h) are much closer to the mass concentration, which is
usually measured at the Department of Theoretical and Industrial Electrical Engineering
(DTIEE), FEEI, TU of Košice.
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AQI was calculated from the daily averages of PM2.5 and PM10 for the better un-
derstanding of air quality. Table 1 contains the AQI categories characterized by the levels
of concentration of different air pollutants (PM2.5, PM10, CO, O3, SO2 and NO2) [23,24].
AQI sub-indices for each pollutant are calculated using Equation (1). The resulting AQI is
equal to the maximum value of the AQI sub-indices. Since only PM was measured and
no other air pollutants, the overall AQI cannot be determined. However, the IPM2.5 and
IPM10 can be calculated, and they do carry an informative value of how PM impacts air
quality and which PM has greater impact. Table 5 consists of daily averages of PM2.5
and PM10 and their respective AQI sub-indices. For three days (25 to 27 January 2022),
the air quality is unhealthy. On 28 January 2022 the air quality is unhealthy for sensitive
groups. However, on 29 January 2022 the air quality finally reaches good levels. In all cases,
IPM2.5 negatively influenced the air quality to a greater degree than IPM10, which is also the
case in the following measurements in March 2022 (Section 3.2). Nevertheless it should be
noted that this long term increase (lasting about four days) in PM mass concentration is
rare in Košice at DTIEE, as we have found that the PM mass concentration measured on
29 January 2022 is much more true to the usual levels (as has been found in our previous
measurements in [22]).

Table 5. Air Quality Index for Košice, DTIEE measurement.

Date PM2.5 * (µg/m3) IPM2.5 PM10 * (µg/m3) IPM10

25 January 2022 72.3 160 75 60
26 January 2022 115.4 182 120 83
27 January 2022 109.1 179 123 85
28 January 2022 40.7 114 44 41
29 January 2022 7.2 30 7 7

* 24-h average.

The measurements were divided into 12-h (for which the hourly averages of PM mass
concentration were calculated and visualized in Figure 3), 6-h and 3-h long intervals. For
each interval correlation coefficients between all possible pairs of measured quantities were
calculated. In the following tables we present r between PM10 and temperature, humidity,
and pressure. Correlation coefficients during the 12-h intervals are shown in Table 6; 6-h
intervals in Table 7; and 3-h intervals in Table 8. The cells in Tables 6–8 with corresponding
correlation coefficient (r) are shaded in three colors. White color indicates weak correlation
(|r| < 0.4) (or no correlation, when r approaches 0); light grey indicates moderate correlation
(0.4 < |r| < 0.8) and dark grey indicates strong correlation (|r| > 0.8) [27]. The asterisk
marks r close to the lower limit of moderate or strong correlation.

Table 6. Correlation between mass concentration of PM10 and temperature, humidity, pressure: 12-h
intervals.

Interval PM10 and Temperature PM10 and Humidity PM10 and Pressure
25 January, 12:00–24:00 −0.931 0.941 −0.703
26 January, 0:00–12:00 0.281 −0.232 −0.003 **
26 January, 12:00–24:00 −0.853 0.874 −0.858
27 January, 0:00–12:00 −0.652 0.527 0.514
27 January, 12:00–24:00 −0.304 0.165 0.563
28 January, 0:00–12:00 −0.859 0.791 * −0.447
28 January, 12:00–24:00 0.574 −0.366 −0.590
29 January, 0:00–12:00 0.443 −0.474 0.651

* r close to lower limit of moderate correlation (number in white cells) or strong correlation (light grey cells). ** r,
for which p > α.
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Table 7. Correlation between PM10 and temperature, humidity, pressure: 6-h intervals.

Interval PM10 and Temperature PM10 and Humidity PM10 and Pressure
25 January, 12:00–18:00 −0.955 0.940 −0.680
25 January, 18:00–24:00 −0.562 0.710 −0.443
26 January, 0:00–6:00 −0.701 −0.229 0.410

26 January, 6:00–12:00 0.125 −0.097 0.484
26 January, 12:00–18:00 −0.915 0.731 −0.736
26 January, 18:00–24:00 −0.780 0.835 −0.778
27 January, 0:00–6:00 −0.394 * 0.373 0.388 *

27 January, 6:00–12:00 −0.725 0.672 0.599
27 January, 12:00–18:00 −0.432 0.342 −0.428
27 January, 18:00–24:00 −0.527 0.176 0.751
28 January, 0:00–6:00 −0.301 0.030 ** −0.348

28 January, 6:00–12:00 −0.913 0.910 −0.813
28 January, 12:00–18:00 0.695 −0.260 −0.792 *
28 January, 18:00–24:00 −0.340 0.615 0.101

29 January, 0:00–6:00 −0.435 −0.388 * 0.854
29 January, 6:00–12:00 0.507 −0.422 0.205

* r close to lower limit of moderate (number in white cells) or strong correlation (light grey cells). ** r for which
p > α.

Table 8. Correlation between PM10 and temperature, humidity, pressure: 3-h intervals.

Interval PM10 and Temperature PM10 and Humidity PM10 and Pressure
25 January, 12:00–15:00 −0.847 0.922 −0.815
25 January, 15:00–18:00 −0.900 0.747 0.096 **
25 January, 18:00–21:00 −0.721 0.723 −0.267
25 January, 21:00–24:00 −0.632 0,369 0.077 **
26 January, 0:00–3:00 −0.220 −0.497 0.573
26 January, 3:00–6:00 −0.595 0.719 −0.605
26 January, 6:00–9:00 0.473 −0.413 0.710

26 January, 9:00–12:00 −0.715 0.744 0.225
26 January, 12:00–15:00 −0.941 0.683 −0.707
26 January, 15:00–18:00 −0.896 0.739 −0.553
26 January, 18:00–21:00 −0.780 0.804 −0.688
26 January, 21:00–24:00 −0.284 0.369 −0.232
27 January, 0:00–3:00 −0.399 * 0.555 0.641
27 January, 3:00–6:00 −0.701 0.726 0.120
27 January, 6:00–9:00 −0.350 0.357 0.244

27 January, 9:00–12:00 −0.862 0.846 0.343
27 January, 12:00–15:00 −0.438 0.440 −0.371
27 January, 15:00–18:00 −0.634 0.398 * 0.019 **
27 January, 18:00–21:00 −0.888 0.625 0.779
27 January, 21:00–24:00 −0.481 0.460 −0.492

28 January, 0:00–3:00 −0.467 0.078 ** −0.863
28 January, 3:00–6:00 0.018 ** −0.289 0.221
28 January, 6:00–9:00 −0.601 0.550 −0.591

28 January, 9:00–12:00 −0.653 0.689 −0.018 **
28 January, 12:00–15:00 0.350 0.858 −0.823
28 January, 15:00–18:00 −0.558 0.597 0.574
28 January, 18:00–21:00 −0.417 0.606 0.591
28 January, 21:00–24:00 −0.555 0.639 −0.440

29 January, 0:00–3:00 0.264 0.589 0.030 **
29 January, 3:00–6:00 −0.757 −0.207 0.832
29 January, 6:00–9:00 0.444 −0.249 0.784

29 January, 9:00–12:00 0.364 −0.136 0.368
* r close to lower limit of moderate (number in white cells) or strong correlation (light grey cells). ** r for which
p > α.
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As can be seen from Table 6, there are only four measurements with weak correlation
and one with none. The rest of the measurements show correlation; most of them moderate
but some show strong correlation (ex. |r| = 0.93–0.94, a very close relationship between
the measured quantities). The first row (25 January, 12:00–24:00) indicates strong correla-
tion between PM10 and Temperature, and Humidity; and moderate correlation between
PM10 and pressure. In the 2nd row, there is a weak correlation on 26 January, 0:00–12:00.
Furthermore, r for PM10 and Pressure equals −0.003 (no correlation).

After performing a post-hoc test to get the adjusted p-values (two-tailed, n = 8640), it
was found that all except for one p-value were less than α (as corresponding to Table 3).

After dividing the 12-h interval ex. of the second row from Table 6 (26 January,
0:00–12:00) into 6-h intervals (Table 7), it is apparent that out of six correlation coefficients,
three show moderate correlation (between PM10 and Pressure, during the 0:00–6:00 and
6:00–12:00 intervals and between PM10 and Temperature during the 0:00–6:00 interval).
This finding is interesting, since r between PM10 and Pressure was close to zero during the
12-h interval, while the 6-h intervals both show moderate correlation.

All p-values (two-tailed, n = 4320) except for one in Table 7 were equal to or lesser than
α (as corresponding to Table 3).

Even more interesting is the case when the same 12-h interval from Table 6 is divided
into four 3-h intervals, which means 12 correlation coefficients will be calculated. Table 8
shows that out of all 3-h intervals, only three of them show weak or no correlation for all
the physical quantities (white cells of the table) and the rest of the interval shows mostly
moderate correlation. Another surprise in Tables 7 and 8 is that for the first row in Table 6
(25th January, 12:00–24:00), r for PM10 and Pressure during the 12-h interval is −0.703,
while for the 6-h intervals r = −0.681 and −0.443. The biggest surprise was dividing the
12-h interval into 3-h intervals, as in Table 8, for 25th January, 12:00–15:00 r =−0.815 and the
other three intervals show no correlation (r ≈ 0). It is possible to observe the development
of r for other measurements in Table 8 in a similar way.

All except for seven p-values (two-tailed, n = 2160) were equal to or lesser than α (as
corresponding to Table 3).

We were interested in finding what the changes were in measured quantities that
correspond to r calculated for the intervals in Tables 6–8. Figure 4 illustrates the changes in
measured quantities over 12 h for the first and second row in Table 6. Since the positive and
negative correlations are indicated in the tables, it will be possible to observe the increase
or decrease in both measured quantities in the case of positive r, or the increase in one
and the decrease in the other measured quantity in the case of negative r. The timeline in
Figure 4 is divided into 3-h intervals, which means it will be possible to observe the change
in measured quantities and r corresponding not only for the 12-h intervals, but also for the
6-h and 3-h intervals.

The numbers written on the bottom of the graphs inside the 3-h intervals are the
corresponding correlation coefficients from Table 8 for the 3-h intervals. The numbers
written in the middle of the graph next to the 6-h line are the corresponding r from Table 7
for the 6-h intervals and the number written in the top left corner of the picture is the
corresponding r from Table 6 for the 12-h interval. In the left column, all the graphs show
the measured quantities on 25th January, 12:00–24:00 and in the right columns, the graphs
show the measured quantities on 26th January 0:00–12:00. The first row shows the changes
in mass concentration of PM10 and Temperature, and the second row shows the changes in
mass concentration of PM10 and Humidity. Finally, the 3rd row shows the changes in mass
concentration of PM10 and Pressure.
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Figure 4. Changes in the measured quantities: PM10 and Temperature in January 2022 (a) 25th
12:00–24:00; (b) 26th 0:00–12:00; PM10 and Humidity on (c) 25th 12:00–24:00; (d) 26th 0:00–12:00;
PM10 and Pressure on (e) 25th 12:00–24:00; (f) 26th 0:00–12:00.

In Figure 4a it is apparent why r = −0.931. The increase in PM10 mass concentration
corresponds to the decrease in temperature, which is why r is of such high value with a
negative sign. Similarly, in Figure 4c, the increase in PM10 mass concentration corresponds
to the increase in Humidity, so r = 0.941 with a positive sign. Figure 4e is an answer to why
r = −0.703 for correlation between PM10 and Pressure. The barometric pressure is almost
constant from 14:00 to 19:00 and it is the reason r is not close to the value of −0.9, even
though for the 3-h interval from 12:00 to 15:00, r = −0.815. On the other hand, in Figure 4f
r = −0.003 for the 12-h interval. However, for the 3-h or 6-h intervals r shows moderate
correlation between PM10 and pressure. Other graphs in Figure 4 can be described in a
similar way.

The question which arose from these measurements is: why is there not always at
least moderate correlation between PM10 and other quantities? Why does the value of r
change significantly with each interval? If there was a relationship found between the mass
concentration of particulate matter and other quantities, it would be possible to predict the
future development of mass concentration of PM and therefore warn the population against
the high concentration of PM in the air. Mass concentration of PM could be forecast similarly
to weather. The air pollution by particulate matter changes not only with temperature,
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humidity, and pressure, but also with wind speed and direction [12,13]. Unfortunately,
comparing the measured data with the wind speed and direction data has not yet been
implemented in our measuring station due to a lack of availability of components or long
delivery times needed for extending our measuring station with an anemometer.

3.2. Measurements in a Small Village

Another question is whether the place of measurement also affects the mass concen-
tration of PM, and if so, to what degree. Therefore, a second set of measurements (Figure 5)
was carried out in a small village (the place of measurement described in 2.3. Measurement
Locations). Measured data are available in Tables S4–S6, Supplementary Materials.
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Figure 5. Measurement of PM10 in a small village on the balcony of the family house (blue line) and
in the garden (red line).

As it can be seen in Figure 5, values measured by sensor S1 on the balcony and sensor
S2 in the garden differ. The most noticeable differences are during short-term peaks in mass
concentration of PM10. For a better view, Figure 6 shows a close-up on the 12:00–24:00
intervals on 12th (Figure 6a) and 13th March (Figure 6b). It is important to note, that while
the y-axis scale is set to 450 µg/m3, there are three peaks in Figure 6b that exceed this scale:

1. at 16:30:38, PM10 mass concentration was 477.37 µg/m3;
2. at 16:32:18, PM10 mass concentration was 760.45 µg/m3;
3. at 18:36:16, PM10 mass concentration was 508.15 µg/m3.
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All three peaks were recorded on the balcony. Overall, a higher number of these
peaks were recorded on the balcony as opposed to the garden. Not only are they more
common on the balcony but they also reach higher values. Occasionally, S2 located in the
garden recorded higher peaks (ex. at 15:41:49 PM10 mass concentration in the garden was
398.45 µg/m3 in Figure 6a) but that was a rare occurrence. However, the baseline levels of
PM10 mass concentration are comparable between both measuring places, which are also
documented by Figure 7.
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Figure 7. Hourly averages of mass concentration of PM1, PM2.5, PM4, PM10: measured on the
balcony in March 2022: (a) 12th 12:00–24:00, (b) 13th 12:00–24:00; measured in the garden on: (c) 12th
12:00–24:00, (d) 13th 12:00–24:00. Abbreviations next to the dashed lines indicate the air quality:
VG = Very Good, G = Good, W = Worsened, B = Bad, corresponding to Table 4.

Figure 7 shows the hourly averages of mass concentration of particulate matter.
Figure 7a,b were calculated from the measurements that were conducted on the balcony
while Figure 7c,d were calculated from the measurements carried out in the garden. If
we compare measurements from 12th March, 12:00–24:00, both the measurement on the
balcony (Figure 7a) and in the garden (Figure 7c) follow a similar trend. The hourly aver-
ages of PM mass concentration tend to be slightly higher for the balcony measurements
compared to the garden measurements, especially at 13:00–14:00, 19:00–20:00, 22:00–24:00.
It can be seen from Figure 6a that during that time, there were frequent peaks recorded
by the sensor S1, but also the baseline PM mass concentration was higher on the balcony
than in the garden. As for the measurements from 13th March, 12:00–24:00, the hourly
averages of mass concentration of PM also tend to be higher for the balcony measurements
(Figure 7b) than the garden measurements (Figure 7c). The biggest difference is at 14:00–
15:00, 16:00–19:00. During other measured days the hourly averages of mass concentration
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are generally higher on the balcony as well. However, there were also a few exceptions
when the mass concentration of PM was higher in the garden.

The question which we were interested in next was: how much does the correlation be-
tween PM10 and meteorological factors (temperature, humidity, pressure) change with the
change in location? The measurements taken showed that even though the two measuring
places were distant from each other by 35 m, there was a significant difference between the
immediate mass concentration of PM (e.g., short but high peaks in the mass concentration)
(Figures 5 and 6) and a slight difference in hourly averages of the mass concentration of
PM (Figure 7). This raises the question: how will that affect the correlation?

Table 9 shows daily averages of PM2.5 and PM10 as well as their respective air quality
sub-indices for the measurement on the balcony. The air quality reached moderate levels
during a total of 5 days (on 12–14, 18 and 21 March), unhealthy for sensitive groups during
a total of 5 days (on 11, 15, 17, 19 and 20 March) and unhealthy levels for one day (on
16 March).

Table 9. Air Quality Index for the balcony measurement.

Date PM2.5 * (µg/m3) IPM2.5 PM10 * (µg/m3) IPM10

11 March 2022 48.0 132 53 49
12 March 2022 33.1 95 35 32
13 March 2022 33.9 97 37 34
14 March 2022 34.5 98 35 33
15 March 2022 44.9 124 46 43
16 March 2022 71.7 159 74 60
17 March 2022 54.2 147 56 51
18 March 2022 28.1 85 29 27
19 March 2022 44.3 123 46 43
20 March 2022 38.4 108 39 36
21 March 2022 30.5 90 31 28

* 24-h average.

As for IPM2.5 and IPM10 (Table 10) for the garden measurement, the air quality was
moderate during a total of 6 days (on 11–14, 18 and 20 March), unhealthy for sensitive
people during a total of 4 days (on 15, 17, 19 and 21 March) and unhealthy during 1 day (on
16th March). Hourly averages of PM2.5 and PM10 as well as IPM2.5 and IPM10 were better
in the garden (Table 10) than on the balcony (Table 9) every day except for 21 March 2022.
This is another confirmation that the distance from the source of PM (family houses which
use wood combustion as a heat source) impacts the air quality.

Table 10. Air Quality Index for the garden measurement.

Date PM2.5 * (µg/m3) IPM2.5 PM10 * (µg/m3) IPM10

11 March 2022 27.7 84 30 28
12 March 2022 28.1 85 29 27
13 March 2022 26.6 82 28 26
14 March 2022 32.8 95 34 31
15 March 2022 38.4 108 39 36
16 March 2022 61.1 154 62 55
17 March 2022 54.1 147 55 51
18 March 2022 25.2 79 26 24
19 March 2022 36.3 103 37 35
20 March 2022 32.4 94 33 31
21 March 2022 35.6 101 36 33

* 24-h average.

Next, both measurements were divided into 12-h intervals. Tables 11 and 12 consist
of the correlation coefficients from the measurement on the balcony and in the garden,
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respectively. As is the case with Tables 5–7, the cells within the table are colored according
to how strong the correlation between PM10 and other physical quantities is. If |r| < 0.4,
then the cells are white, as there is weak correlation (or no correlation if r approaches 0).
If 0.4 < |r| < 0.8, there is moderate correlation, and the cells are shaded light grey. Dark
grey is used for cells with |r| > 0.8, or strong correlation [27]. However, in our case, no
strong correlation was found in Tables 11 and 12, so there are no cells shaded with dark
grey color. For most intervals, in both Tables 11 and 12, either weak or no correlation was
found. In Table 11, only 15 out of 54 correlation coefficients show moderate correlation. In
Table 12, the number of correlation coefficients that correspond to moderate correlation is
21. Seven cells in total change from having none or weak correlation in Table 6 to having
moderate correlation in Table 7 and one cell changes from r > 0.4 in Table 11 to r < 0.4 in
Table 12 (correlation between mass concentration of PM10 and temperature on 15 March,
0:00–12:00). However, the value of this cell in Table 12 is 0.384, which is close to 0.4. Still in
most cases, the correlation improves during the garden measurement (Table 12). There is
even one interval, in which all correlations (between PM10 and temperature, PM10 and
humidity, as well as PM10 and pressure) improve from weak correlation in Table 11 to
strong correlation in Table 12—13 March, 12:00–24:00. Mass concentration of PM10 during
this interval can be seen in Figure 6b (both the balcony and the garden measurement)
and the hourly averages of mass concentration of PM is shown in Figure 7b (the balcony
measurement) and Figure 7d (the garden measurement). The cells, which have moderate
correlation in Table 11 and weak correlation in Table 12 and vice versa, are marked by one
asterisk (*).

Although there are many cases where correlation coefficient changes from Table 11 to
Table 12, there are also some intervals, in which the changes are very small. Cells, in which
the difference between r in Tables 11 and 12 is smaller than 0.05, are marked with a double
asterisk (**). There are eight such cells, three of which belong to the same interval (12
March, 12:00–24:00). The mass concentration of PM10 for this interval is shown in Figure 6a
and the hourly averages in Figure 7a,c. The comparison of PM10 mass concentration and
meteorological factors for those intervals is shown in Figures 8 and 9.

Table 11. Correlation between mass concentration of PM10 and temperature, humidity, pressure:
balcony measurement.

Interval PM10 and
Temperature PM10 and Humidity PM10 and Pressure

12 March, 0:00–12:00 −0.032 *** 0.058 *** 0.158
12 March, 12:00–24:00 −0.538 ** 0.605 ** −0.560 **
13 March, 0:00–12:00 −0.031 *** 0.018 *** 0.061 ***
13 March, 12:00–24:00 −0.276 * 0.273 * 0.192 *
14 March, 0:00–12:00 0.139 −0.089 0.354
14 March, 12:00–24:00 −0.140 * 0.076 0.069
15 March, 0:00–12:00 0.446 * −0.431 ** 0.432
5 March, 12:00–24:00 −0.257 0.262 −0.150
16 March, 0:00–12:00 −0.209 0.480 −0.252
16 March, 12:00–24:00 −0.381 0.257 0.039 ***
17 March, 0:00–12:00 −0.101 0.133 0.213
17 March, 12:00–24:00 −0.061 *** 0.069 0.006 **/***
18 March, 0:00–12:00 −0.120 0.153 * −0.048 ***
18 March, 12:00–24:00 −0.460 0.452 −0.205
19 March, 0:00–12:00 −0.123 0.129 −0.024 ***
19 March, 12:00–24:00 −0.490 0.518 0.520 **
20 March, 0:00–12:00 −0.135 * 0.202 * 0.003 ***
20 March, 12:00–24:00 −0.534 ** 0.502 −0.435

* The values of r which show weak correlation in Table 6 but show moderate correlation in Table 7 or vice versa.
** The values of r which differ from Table 7 by less than 0.05. *** r for which p > α.
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Table 12. Correlation between mass concentration of PM10 and temperature, humidity, pressure:
garden measurement.

Interval PM10 and
Temperature PM10 and Humidity PM10 and Pressure

12 March, 0:00–12:00 −0.180 0.185 −0.016 ***
12 March, 12:00–24:00 −0.504 ** 0.581 ** −0.599 **
13 March, 0:00–12:00 −0.270 0.219 0.121
13 March, 12:00–24:00 −0.527 * 0.553 * 0.494 *
14 March, 0:00–12:00 0.000 *** 0.007 *** 0.166
14 March, 12:00–24:00 −0.402 * 0.388 0.164
15 March, 0:00–12:00 0.384 * −0.433 ** 0.553
15 March, 12:00–24:00 −0.334 0.398 −0.303
16 March, 0:00–12:00 0.293 0.626 −0.370
16 March, 12:00–24:00 −0.283 0.090 −0.306
17 March, 0:00–12:00 −0.356 0.376 0.031 ***
17 March, 12:00–24:00 −0.190 0.263 0.010 **/***
18 March, 0:00–12:00 −0.329 0.411 * −0.165
18 March, 12:00–24:00 −0.522 0.538 −0.379
19 March, 0:00–12:00 −0.257 0.304 −0.119
19 March, 12:00–24:00 −0.577 0.658 0.507 **
20 March, 0:00–12:00 −0.405 * 0.492 * −0.206
20 March, 12:00–24:00 −0.577 ** 0.594 −0.543

* The values of r which show moderate correlation in Table 7 but weak correlation in Table 6 or vice versa. ** The
values of r which differ from Table 6 by less than 0.05. *** r for which p > α.

Eng 2022, 3, FOR PEER REVIEW 18 
 

 

a double asterisk (**). There are eight such cells, three of which belong to the same interval 
(12 March, 12:00–24:00). The mass concentration of PM10 for this interval is shown in Fig-
ure 6a and the hourly averages in Figure 7a,c. The comparison of PM10 mass concentra-
tion and meteorological factors for those intervals is shown in Figures 8 and 9. 

The fact that most correlation coefficients indicate either weak or no correlation, and 
some indicate only moderate correlation (Tables 11 and 12), while the previous measure-
ments in Košice showed the majority of intervals as having moderate correlation with 
some strong correlation or weak correlation, may be caused by the peaks that have been 
measured in the village. After all, even the garden measurements, which show smaller 
peaks that are less frequent, improve the correlation slightly. In Košice no peaks were 
measured and therefore mass concentration of PM is distributed more evenly even during 
a longer time interval. This even distribution is disrupted in the village by residents in 
family houses burning wood and therefore creating these local non-regular short increases 
in particulate matter. These peaks then affect the correlation found in Tables 6 and 7. 

As for the p-values corresponding to r in Tables 11 and 12, there were eleven p-values 
(two-tailed, n = 8640) which exceeded α (as corresponding to Table 3) in Table 11, and only 
five p-values which exceeded α in Table 12. For the rest of the intervals, p ≤ α. This suggests 
that the peaks, which are more often found in the balcony measurement (Table 11), nega-
tively impact the correlation between PM and meteorological factors. 

To better illustrate correlation, the changes in PM10 mass concentration and temper-
ature, humidity, and pressure during the intervals mentioned above (12 and 13 March, 
12:00–24:00) are shown in Figure 8 (balcony measurement) and Figure 9 (garden measure-
ment). In Figure 8b,d,f, three peaks of PM10 mass concentration exceed the y-axis scale, 
just like in Figure 6b. They reach 477.37, 760.45 and 508.15 µg/m3. The effect the peaks 
have on the correlation can be best seen in Figure 8b, where PM10 mass concentration and 
temperature are plotted. Even in the section where temperature is constant or decreasing 
slowly (18:00–24:00), there is still a number of changes in PM10 caused by the peaks. 
Therefore, it is reasonable that weak correlation was found in those intervals. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Cont.



Eng 2022, 3 360Eng 2022, 3, FOR PEER REVIEW 19 
 

 

  
(e) (f) 

Figure 8. Changes in the measured quantities: PM10 and temperature (a) on 12 March 2022, (b) 13 
March 2022; PM10 and humidity (c) on 12 March 2022, (d) on 13 March 2022, PM10 and pressure (e) 
on 12 March 2022 and (f) 13 March 2022; measured on the balcony. 

Now compare the changes in PM10 mass concentration in Figure 8b to the changes 
in PM10 mass concentration in Figure 9b. The peaks are smaller, but, more importantly, 
less frequent, and therefore the distribution of mass concentration is more uniform. There 
are still some peaks, and there are not many clear examples when both quantities simul-
taneously increase or decrease, or where one quantity increases and the other quantity 
decreases (compared to Figure 4, when such intervals can be clearly identified). As such, 
from the graph in Figure 9b, it is more difficult to predict whether there will be any corre-
lation found. However, we can rely on the correlation coefficient to reveal if there is any 
correlation between the measured quantities and how strong it is (ex., for Figure 9b). Mod-
erate correlation was found between PM10 mass concentration and temperature. Other 
graphs in Figures 8 and 9 can be compared in a similar way. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Changes in the measured quantities: PM10 and temperature (a) on 12 March 2022, (b) 13
March 2022; PM10 and humidity (c) on 12 March 2022, (d) on 13 March 2022, PM10 and pressure
(e) on 12 March 2022 and (f) 13 March 2022; measured on the balcony.

Eng 2022, 3, FOR PEER REVIEW 19 
 

 

  
(e) (f) 

Figure 8. Changes in the measured quantities: PM10 and temperature (a) on 12 March 2022, (b) 13 
March 2022; PM10 and humidity (c) on 12 March 2022, (d) on 13 March 2022, PM10 and pressure (e) 
on 12 March 2022 and (f) 13 March 2022; measured on the balcony. 

Now compare the changes in PM10 mass concentration in Figure 8b to the changes 
in PM10 mass concentration in Figure 9b. The peaks are smaller, but, more importantly, 
less frequent, and therefore the distribution of mass concentration is more uniform. There 
are still some peaks, and there are not many clear examples when both quantities simul-
taneously increase or decrease, or where one quantity increases and the other quantity 
decreases (compared to Figure 4, when such intervals can be clearly identified). As such, 
from the graph in Figure 9b, it is more difficult to predict whether there will be any corre-
lation found. However, we can rely on the correlation coefficient to reveal if there is any 
correlation between the measured quantities and how strong it is (ex., for Figure 9b). Mod-
erate correlation was found between PM10 mass concentration and temperature. Other 
graphs in Figures 8 and 9 can be compared in a similar way. 

  
(a) (b) 

  
(c) (d) 

Eng 2022, 3, FOR PEER REVIEW 20 
 

 

  
(e) (f) 

Figure 9. Changes in the measured quantities: PM10 and temperature (a) on 12 March 2022, (b) 13 
March 2022; PM10 and humidity (c) on 12 March 2022, (d) on 13 March 2022, PM10 and pressure (e) 
on 12 March 2022 and (f) 13 March 2022; measured in the garden. 

4. Discussion 
Comparing our measurements in Košice at DTIEE with our measurements in a small 

village, we have found that in a small village, short-term (over the course of several sec-
onds to minutes) increases in PM mass concentrations were very common due to the 
measuring place being located near the sources of PM (houses heating with solid fuel). In 
Košice at DTIEE, the levels of mass concentration were much more stable. The increases 
in mass concentration were more likely to be long term (for example over the course of 
four days, as demonstrated in this paper). Furthermore, air quality was usually worse in 
the small village with the exception of the four-day increase in PM mass concentrations in 
Košice at DTIEE. In fact, the air quality on 29 January 2022 is much more indicative of the 
usual air quality in Košice, which we concluded in our previous research [22]. Further-
more, air quality sub-indices calculated from PM2.5 and PM10 indicate that PM2.5 affects 
the air quality to a greater degree, regardless of the place of measurement. IPM2.5 was con-
sistently higher that IPM10 both in Košice at DTIEE and in the small village (on the balcony 
and in the garden). 

We also paid attention to comparing the measurements in a small village on the bal-
cony vs. in the garden. The measuring place on the first floor balcony was closer to the 
sources of PM (chimneys of the houses, which used solid fuel/wood for heating) by about 
35 m than the measuring place in the garden. It was found that the peaks (short-term 
increases in PM mass concentration) recorded in the garden were lower and less frequent 
than those recorded on the balcony at the same time. 

As for the correlation between PM and meteorological factors (temperature, humid-
ity, barometric pressure), more cases of correlation were found in Košice than when meas-
uring in a small village. This may be due to a more even distribution of PM within Košice, 
as the main source of PM in Košice (road transport) is more evenly distributed within the 
city (although the US Steel factory distant by 12 km from the department where the meas-
urements were carried out must also be taken into account). Therefore, PM is more homo-
geneously distributed in Košice than in a small village, where the chimneys of houses are 
located relatively near each other and pollute the air with smoke from wood combustion. 
Therefore it seems that, especially during the heating season (fall/winter/spring), the air 
quality is better in a big city like Košice than in a small village, where it is even possible 
to feel the deteriorating air quality during the heating season with one’s own senses. As 
fine particles (PM2.5) have a significant negative impact on the health of children and the 
elderly, the need to measure PM concentrations has become greater than before. The fact 
that the typical particle size is in the range of 0.5–0.75 µm (these particles are included in 
PM1, and the sensor is able to measure particles with a diameter larger than 0.3 µm) makes 

Figure 9. Changes in the measured quantities: PM10 and temperature (a) on 12 March 2022, (b) 13
March 2022; PM10 and humidity (c) on 12 March 2022, (d) on 13 March 2022, PM10 and pressure
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The fact that most correlation coefficients indicate either weak or no correlation, and
some indicate only moderate correlation (Tables 11 and 12), while the previous measure-
ments in Košice showed the majority of intervals as having moderate correlation with
some strong correlation or weak correlation, may be caused by the peaks that have been
measured in the village. After all, even the garden measurements, which show smaller
peaks that are less frequent, improve the correlation slightly. In Košice no peaks were
measured and therefore mass concentration of PM is distributed more evenly even during
a longer time interval. This even distribution is disrupted in the village by residents in
family houses burning wood and therefore creating these local non-regular short increases
in particulate matter. These peaks then affect the correlation found in Tables 6 and 7.

As for the p-values corresponding to r in Tables 11 and 12, there were eleven p-values
(two-tailed, n = 8640) which exceeded α (as corresponding to Table 3) in Table 11, and
only five p-values which exceeded α in Table 12. For the rest of the intervals, p ≤ α. This
suggests that the peaks, which are more often found in the balcony measurement (Table 11),
negatively impact the correlation between PM and meteorological factors.

To better illustrate correlation, the changes in PM10 mass concentration and temper-
ature, humidity, and pressure during the intervals mentioned above (12 and 13 March,
12:00–24:00) are shown in Figure 8 (balcony measurement) and Figure 9 (garden measure-
ment). In Figure 8b,d,f, three peaks of PM10 mass concentration exceed the y-axis scale, just
like in Figure 6b. They reach 477.37, 760.45 and 508.15 µg/m3. The effect the peaks have on
the correlation can be best seen in Figure 8b, where PM10 mass concentration and tempera-
ture are plotted. Even in the section where temperature is constant or decreasing slowly
(18:00–24:00), there is still a number of changes in PM10 caused by the peaks. Therefore, it
is reasonable that weak correlation was found in those intervals.

Now compare the changes in PM10 mass concentration in Figure 8b to the changes in
PM10 mass concentration in Figure 9b. The peaks are smaller, but, more importantly, less
frequent, and therefore the distribution of mass concentration is more uniform. There are
still some peaks, and there are not many clear examples when both quantities simultane-
ously increase or decrease, or where one quantity increases and the other quantity decreases
(compared to Figure 4, when such intervals can be clearly identified). As such, from the
graph in Figure 9b, it is more difficult to predict whether there will be any correlation
found. However, we can rely on the correlation coefficient to reveal if there is any correla-
tion between the measured quantities and how strong it is (ex., for Figure 9b). Moderate
correlation was found between PM10 mass concentration and temperature. Other graphs
in Figures 8 and 9 can be compared in a similar way.

4. Discussion

Comparing our measurements in Košice at DTIEE with our measurements in a small
village, we have found that in a small village, short-term (over the course of several seconds
to minutes) increases in PM mass concentrations were very common due to the measuring
place being located near the sources of PM (houses heating with solid fuel). In Košice at
DTIEE, the levels of mass concentration were much more stable. The increases in mass
concentration were more likely to be long term (for example over the course of four days,
as demonstrated in this paper). Furthermore, air quality was usually worse in the small
village with the exception of the four-day increase in PM mass concentrations in Košice
at DTIEE. In fact, the air quality on 29 January 2022 is much more indicative of the usual
air quality in Košice, which we concluded in our previous research [22]. Furthermore, air
quality sub-indices calculated from PM2.5 and PM10 indicate that PM2.5 affects the air
quality to a greater degree, regardless of the place of measurement. IPM2.5 was consistently
higher that IPM10 both in Košice at DTIEE and in the small village (on the balcony and in
the garden).

We also paid attention to comparing the measurements in a small village on the
balcony vs. in the garden. The measuring place on the first floor balcony was closer to
the sources of PM (chimneys of the houses, which used solid fuel/wood for heating) by
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about 35 m than the measuring place in the garden. It was found that the peaks (short-term
increases in PM mass concentration) recorded in the garden were lower and less frequent
than those recorded on the balcony at the same time.

As for the correlation between PM and meteorological factors (temperature, humidity,
barometric pressure), more cases of correlation were found in Košice than when measuring
in a small village. This may be due to a more even distribution of PM within Košice,
as the main source of PM in Košice (road transport) is more evenly distributed within
the city (although the US Steel factory distant by 12 km from the department where the
measurements were carried out must also be taken into account). Therefore, PM is more
homogeneously distributed in Košice than in a small village, where the chimneys of houses
are located relatively near each other and pollute the air with smoke from wood combustion.
Therefore it seems that, especially during the heating season (fall/winter/spring), the air
quality is better in a big city like Košice than in a small village, where it is even possible
to feel the deteriorating air quality during the heating season with one’s own senses. As
fine particles (PM2.5) have a significant negative impact on the health of children and the
elderly, the need to measure PM concentrations has become greater than before. The fact
that the typical particle size is in the range of 0.5–0.75 µm (these particles are included in
PM1, and the sensor is able to measure particles with a diameter larger than 0.3 µm) makes
the situation with the air we breathe even more alarming, as the ultrafine particles (PM0.5)
very easily penetrate into the human bloodstream.

Overall, when the correlation was found, the measured PM10 had a tendency to
correlate negatively with temperature and pressure and positively with humidity, which
proves some of the statements in [12–15]. A sudden change in the correlation over 12 h
from a strong/moderate correlation to weak correlation (Table 2, first and second lines)
suggests that another factor, which might affect the measurement, may be the wind, as it
has been stated by [12,13]. Just like the wind, another group of houses, which are closer
to the garden, may affect the measurements in the garden but not on the balcony. The
impact of wind on PM concentration and correlation will be assessed in the near future.
Regional differences, as concluded by study [16] may also be a factor as to why the strength
of the correlation varies with measuring location (city vs. village). With the current crisis
in Europe and the rising prices of gas and electricity, as well as regionally available wood
for heating family homes, we can assume a worsening of the AQI index and, later, even
greater health problems for the population.
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