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Abstract: Metallic Ni shows high activity for a variety of hydrogenation reactions due to its intrinsi-
cally high capability for H2 activation, but it suffers from low chemoselectivity for target products
when two or more reactive functional groups are present on one molecule. Modification by other
metals changes the geometric and electronic structures of the monometallic Ni catalyst, providing an
opportunity to design Ni-based bimetallic catalysts with improved activity, chemoselectivity, and
durability. In this review, the hydrogenation properties of these catalysts are described starting from
the typical methods of preparing Ni-based bimetallic nanoparticles. In most cases, the reasons for the
enhanced catalysis are discussed based on the geometric and electronic effects. This review provides
new insights into the development of more efficient and well-structured non-noble metal-based
bimetallic catalytic systems for chemoselective hydrogenation reactions.

Keywords: Ni-based bimetallic catalysts; selective hydrogenation; alkynes; chemoselective hydrogenation;
unsaturated carbonyl compounds; unsaturated nitro compounds; reductive coupling

1. Introduction

Catalysis has emerged as an important branch of energy and sustainability research be-
cause it allows for chemical transformations to be carried out at relatively low temperatures
while minimizing or avoiding the formation of byproducts [1,2]. Catalysts can be broadly
classified into two groups: homogeneous and heterogeneous catalysts. Homogeneous
catalysts have some advantages over heterogeneous catalysts, such as the possibility of
carrying out a reaction under relatively mild conditions, higher activity and selectivity, ease
of spectroscopic monitoring, and controlled and tunable reaction sites [3]. The main draw-
back of homogeneous catalysts is the difficulty in separating them from the products after
completion of the reaction [4]. Heterogeneous catalysts can overcome this drawback [4]. To
date, heterogeneous catalysts based on transition metals have been found to be effective in
a number of processes. In particular, hydrogenation is of great importance in petroleum
refining and processing and in the manufacture of fine and bulk chemicals [5]. Although
most catalytic hydrogenations today rely on precious metals such as Pd and Pt, the high
cost and low availability of these metals have caused scientific interest to shift from such
precious metals to nonprecious metals for hydrogenation catalysts [6]. Earth-abundant
first-row transition metals such as Fe, Co, and Ni have received much more attention due
to their specific advantages, such as high abundance on earth, low price, low or no toxicity,
and unique catalytic properties [7]. Ni has a long history in the field of catalysis, and its
first application for hydrogenation led P. Sabatier to earn the Nobel Prize in chemistry in
1912 [8]. Therefore, Ni is a fascinating alternative to precious metals such as Pd and Pt.
However, the chemoselective hydrogenation of a target functional group in the presence of
other reactive functional groups in a molecule is difficult to achieve because most transi-
tion metal catalysts cannot recognize and preferentially interact with the target group [9].
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For this reason, great efforts have been made to seek heterogeneous Ni-based catalysts with
high activity for chemoselective hydrogenation reactions.

Effective approaches reported so far include the modification of Ni metal with or-
ganic modifiers, reducible metal oxides, and other metals [10,11]. The addition of organic
modifiers to the reaction mixture requires subsequent tedious and costly separation. To
ensure the occurrence of strong metal-support interactions (SMSIs), catalyst preparation
remains critical; for example, the amount of partially reducible metal oxides present must
be precisely controlled. The alloying with an additional metal to form intermetallic com-
pounds or alloys will offer an opportunity to design new catalysts with improved activity,
selectivity, and stability because the surface atoms have different electronic and geometric
structures from those of their monometallic counterparts [12,13]. In the early 1960s, a study
on bimetallic catalysts was initiated by J. Sinfelt who worked at Standard Oil Develop-
ment Company, known today as ExxonMobil Research and Engineering Company, and
bimetallic catalysts have continued to attract growing attention in the past decade [14,15].
Alloys are classified into two groups, solid-solution-based and intermetallic-based alloys,
depending on their structures (Figure 1) [16]. Solid-solution alloys, in which different
metals are randomly mixed at the atomic scale, generally form one of three basic crystal
structures: body-centered cubic, face-centered cubic, or hexagonal close-packed struc-
tures [17]. The crystal structure of solid-solution alloys changes depending on both their
constituent elements and composition [17]. Solid-solution alloys are classified into two
groups: substitutional and interstitial solid-solution alloys (Figure 1a,b) [18]. The difference
is whether the atoms of the counterpart metal replace or squeeze between those of the
parent metal. Intermetallic compounds are composed of different metals with an ordered
structure and often a well-defined and fixed stoichiometry (Figure 1c) [19].
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While the currently reported reviews on Ni-based heterogeneous catalysts mainly
describe the reforming and decomposition of methane, to the best of our knowledge, there
are few available reviews dealing with Ni-based bimetallic alloy-catalyzed hydrogenation
reactions [20–24]. Therefore, we hope that this review will provide useful information
for future research on the rational design of high-performance non-noble metal-based
bimetallic catalysts for chemoselective hydrogenation reactions.

2. Preparation Methods of Ni-Based Bimetallic Nanoparticles

There are many well-established methods for preparing bimetallic nanomaterials.
The choice of method plays an important role in determining the surface and bulk struc-
ture of bimetallic systems [12,25]. This section provides a better understanding of the
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relationships between the preparation methods and structural characteristics of Ni-based
bimetallic nanoparticles.

Impregnation (co-impregnation and successive impregnation) is a classical and simple
method used for the preparation of supported bimetallic nanoparticles and involves drying,
calcination, and, finally, reduction [26,27]. The only difference between the two impreg-
nation methods is whether two metal precursors are loaded on a support simultaneously
or successively [26]. Sn- or Fe-containing Ni-based alloy nanoparticles were prepared by
the coprecipitation method [28,29]. However, in most cases, the reduction of two metal
precursors does not occur at the same time because of the difference in their reduction po-
tentials [30]. Successive impregnation is often adopted to prepare core-shell nanoparticles
such as NishellCucore and CushellNicore [31]. Generally, the core is composed of a less active
metal, and the other active metal is deposited on it.

The following methods enable high phase purity of desired bimetallic alloys. Surface
organometallic chemistry on metals (SOMC/M) and chemical vapor deposition (CVD)
are similar methods involving the reaction between a supported transition metal and an
organometallic [32–35]. These methods enable the controlled deposition of the second metal
precursor on the pre-reduced monometallic catalyst but not the support. In the SOMC/M
method, the previously reduced monometallic catalyst reacts with an organometallic
solution in a paraffinic solvent such as n-heptane or n-dodecane [32,33]. In contrast, the
CVD method introduces the second metal precursor to the surface of the parent metal in the
form of a vapor [34,35]. In both cases, hydrogen treatment at an appropriate temperature
is finally carried out to form a bimetallic phase with the loss of all the organic fragments.
In addition to the CVD method, Komatsu and coworkers reported the synthetic method
of Ni-Sn intermetallic compounds from Ni and Sn powders [36]. The mixture of the two
metal powders was loaded in an alumina boat in a SiC electric furnace and then melted
by raising the temperature from room temperature to 1733 K under flowing argon. This
method, which is called arc melting, has disadvantages, such as high energy consumption
compared to other methods, although its procedure is much simpler. Polyol-mediated
process involves liquid-phase reduction. Various polyols from low-weight ethylene glycol
to high-weight polyethylene glycols have several features, such as (i) high boiling points (up
to 593 K), (ii) reductant, and (iii) capping agent [37]. In the preparation of Ni-Sn and Ni-Fe
bimetallic systems, tetraethylene glycol and polyethylene glycol were used as the solvent
and dispersing media, respectively [38,39]. Li et al. prepared Ni-Co and Ni-Cu alloys via a
hydrothermal method with hydrazine as a reducing agent [40]. The pH and the temperature
were the key factors to influence the reactions. Pure alloy powders can be formed only
when the pH ≥ 13 and the temperature is more than 393 K. Our group developed Ni-
based intermetallic compounds via a hydrothermal method without any reducing reagents,
followed by a typical hydrogen reduction at high temperatures [41–43]. Table 1 summarizes
the second metals and reducing agents used in each preparation method.

Table 1. Preparation methods of Ni-based bimetallic nanoparticles.

Method Second Metal Reducing Agent Reference

Co-impregnation Sn H2 [28]

Co-impregnation Fe H2 [29]

Successive impregnation Cu H2 [31]

SOMC/M Sn H2 [32]

SOMC/M Zn H2 [33]

CVD Sn H2 [34]
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Table 1. Cont.

Method Second Metal Reducing Agent Reference

CVD Ge H2 [35]

Arc-melting Sn - [36]

Hydrothermal method without
reducing reagents Sn H2 [41]

Hydrothermal method without
reducing reagents Fe H2 [42]

Hydrothermal method without
reducing reagents In H2 [43]

Polyol-mediated process Sn NaBH4 [38]

Polyol-mediated process Fe H2 [39]

Hydrothermal method Co Hydrazine
[40]

Hydrothermal method Cu Hydrazine

3. Catalytic Applications of Ni-Based Bimetallic Nanoparticles for
Hydrogenation Reactions

This section is divided into four subsections focusing on the hydrogenation of
(1) alkynes, (2) unsaturated carbonyl compounds, and (3) unsaturated nitro compounds
and (4) one-pot reductive coupling of nitrobenzene and benzaldehyde. Here, we compared
the catalytic performances of Ni-based bimetallic catalysts with those of their monometallic
counterparts and described the reasons for the enhanced catalysis based on their electronic
and geometric effects.

3.1. Hydrogenation of Alkynes

Selective hydrogenation of alkynes to alkenes, while avoiding over-hydrogenation
to undesired alkanes, represents an industrially important chemical transformation in the
manufacturing of polymers as well as fine chemicals [44,45]. For example, the selective
hydrogenation of acetylene to ethylene has been used to remove trace acetylene in ethylene
feed streams in the production of polyethylene [46]. The most commonly used industrial
catalyst for this reaction is based on supported Pd nanoparticles modified by Ag additives,
although Lindlar catalyst (Pd poisoned with Pb supported on CaCO3) is not used because of
its toxicity [47]. However, this system leaves ample room for improvement, particularly in
terms of cost-effectiveness in catalyst design, over-hydrogenation to ethane, and oligomer-
ization to higher hydrocarbons [44,48]. Therefore, it is highly desirable to develop more
cost-effective and efficient substituents from both industrial and academic perspectives.

F. Studt et al. used density functional theory (DFT) calculations to determine why Ag
showed the high selectivity to ethylene for the hydrogenation of acetylene [48]. The process
is as follows: acetylene adsorbs exothermically, and the transition state energies for the first
and second steps are below the energy of gas-phase acetylene. The ethylene formed on
the surface is subjected to desorption or reaction to undesired ethane. Ethylene from the
gas phase can also adsorb on the surface and be hydrogenated to ethane. For PdAg(111),
the barrier for desorption is smaller than that of Pd(111). This result explains the reason
for the addition of Ag to Pd in the industrial catalyst. These researchers also developed a
series of Ni-Zn alloy catalysts on MgAl2O4 spinel supports and evaluated their catalytic
performance in the hydrogenation of acetylene in a gas mixture of ethylene, acetylene, and
hydrogen [48]. Ni-Zn catalyst with the highest Zn content of 75% showed an even greater
selectivity to ethylene than the well-established Pd-Ag system. The DFT calculation for
Ni-Zn(110) revealed that there was no obvious difference between the adsorption energy of
ethylene and the energy of gas-phase ethylene.

Y. Liu et al. discovered that intermetallic NixMy (M = Ga and Sn) nanocrystals ex-
hibited much higher selectivity for the semi-hydrogenation of acetylene to ethylene than
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Pd-based catalysts (i.e., Pd and PdAg) and could be applied to different substrates con-
taining terminal and internal alkynes [44]. A DFT study was carried out to identify why
these intermetallic compounds can be used as alternatives to precious metal-based cata-
lysts. Figure 2 illustrates the full potential energy diagram for the semi-hydrogenation of
acetylene to ethane on Ni3Ga. The barrier for desorption of ethylene from Ni3Ga is 0.31 eV,
smaller than that from PdAg [48]. More importantly, the transition state energy of ethylene
hydrogenation is above the energy of gas-phase ethylene, which indicates that ethylene is
subjected to desorption rather than over-hydrogenation to ethane. The excellent selectivity
to ethylene in the hydrogenation of acetylene can be assigned to the partial isolation and
modified electronic structure of the active metal.
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Figure 2. Potential energy diagram obtained from DFT calculations for the hydrogenation of acetylene
to ethane on (111) of Ni3Ga. The geometries of the reaction intermediates, containing acetylene and
ethylene, and transition states along the reaction pathway are displayed in the inset. The Ni, Ga, C,
and H atoms are shown by the gray, dark gray, black, and white balls, respectively. Adapted from [44]
with permission of Wiley-VCH, copyright 2016.

Komatsu and coworkers studied the catalytic properties of Ni-Sn intermetallic com-
pounds for the hydrogenation of acetylene compared with those of pure Ni [36]. The
activity descended in the order of Ni >> Ni3Sn > Ni3Sn2 >> Ni3Sn4. The successive hy-
drogenation of acetylene into ethane via ethylene seemed to occur over the parent active
metal, and ethane was the main final product. However, Ni3Sn yielded ethylene as the
main final product along with only a trace amount of ethane. In the case of Ni3Sn2, ethane
was not observed as a product of the reaction. Therefore, Ni3Sn and Ni3Sn2 showed a high
selectivity to ethylene for acetylene hydrogenation. These authors presumed, based on
the H-D exchange between C2D4 and H2, that the inhibition of ethylene hydrogenation on
Ni3Sn2 was due to no formation of ethylidyne species by the geometric restriction. The
same theoretical prediction might be applied to Ni3Sn. However, it should be considered
that the electronic effect might cause the inhibition of ethylene hydrogenation because the
electron density of Ni3Sn2 at the Fermi level was found to be less than that of Ni according
to X-ray photoelectron spectroscopy (XPS).

Komatsu’s group prepared Ge-containing Ni-based intermetallic compound, Ni3Ge,
for the hydrogenation of acetylene and found that it exhibited greater selectivity to ethylene
than Ni [35]. This greater selectivity is due to the expanding atomic distance between
adjacent Ni atoms and the relatively low electron density of Ni atoms in Ni3Ge. A large
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atomic distance will slow the formation of ethylidyne species adsorbed on three-fold Ni
sites; ethylidyne is known to be the intermediate in the direct hydrogenation of acetylene
into ethane [49]. In addition to the geometric effect, the researchers mentioned the electronic
effect on the high selectivity to ethylene. The lower electron density of Ni in Ni3Ge prevents
further hydrogenation to ethane on Ni because there is less back donation [35].

G. X. Pei et al. employed a series of Ag-Ni/SiO2 bimetallic catalysts with varied
Ni/Ag atomic ratios of 1, 0.5, 0.25, and 0.125 for the semi-hydrogenation of acetylene in an
ethylene-rich stream [50]. When the loading of Ni was relatively high (Ni/Ag = 1 and 0.5),
extremely low ethylene selectivity was displayed, similar to that of monometallic Ni/SiO2
catalyst. With the decreased loading of Ni, the ethylene selectivity gradually increased.
These authors analyzed the structure of Ag-Ni/SiO2 bimetallic catalysts to determine the
reasons for the enhanced ethylene selectivity. Scanning transmission electron microscopy–
energy dispersive X-ray spectroscopy (STEM-EDS) analysis of the AgNi0.5/SiO2 catalyst
with relatively high Ni loading revealed that Ni and Ag were not uniformly distributed in
the particles. It is known that it is difficult to form Ag-Ni alloy, and only a small amount of
Ni can be alloyed with Ag [51,52]. However, in the AgNi0.25/SiO2 catalyst with a relatively
low Ni content, most of the Ni interacted closely with Ag because of decreased Ni amounts.
Thus, the interaction between Ag and Ni was believed to be responsible for the enhanced
ethylene selectivity.

Transition metal silicides have unique chemical properties, such as the lower elec-
tronegativity of silicon compared to carbon and the strong modification of the electronic
structure around the Fermi level of transition metals [53,54]. However, there have been
few reports describing their catalytic applications. C. Liang and coworkers achieved the
selective hydrogenation of phenylacetylene to styrene by Ni-Si intermetallics [54]. Adding
Si altered the Ni coordination, leading to a strong modification of the electronic structure
around the Fermi level compared to metallic Ni; this electronic structure modification influ-
enced styrene adsorption. Ni-Si intermetallic compound prepared by direct silicification at
723 K showed excellent selectivity for styrene (approximately 93%) before the complete
conversion of phenylacetylene. Phenylacetylene was very strongly adsorbed on the catalyst
surface and blocked the sites for styrene hydrogenation. However, styrene hydrogenation
to ethylbenzene occurred when the concentration of phenylacetylene was significantly low.
C. Liang group extended the use of Ni-Si intermetallic compounds to other hydrogenation
reactions, as shown below.

3.2. Hydrogenation of Unsaturated Carbonyl Compounds

The depletion of fossil fuels and environmental deterioration have encouraged a shift
from fossil fuel use to biomass resource application [55,56]. Among biomass-derived plat-
form molecules, furfural (FFR) has recently garnered great attention because it can be used
as a precursor for many fuel additives and value-added chemicals via many catalytic pro-
cesses, including hydrogenation, hydrogenolysis, and decarboxylation (Scheme 1) [56–61].
Furfuryl alcohol (FFA) is well-known to be an important hydrogenation product used
for the synthesis of fuels and chemicals [55]. Therefore, chemoselective hydrogenation
of the carbonyl group in furfural is necessary. However, the hydrogenation of the olefin
group is kinetically and thermodynamically favorable compared with that of the carbonyl
group [62]. In fact, monometallic Ni catalyst showed low chemoselectivity for FFA because
of the formation of a number of byproducts [42].

Ni-Sn intermetallic catalysts (Ni-Sn(X), where X represents the Ni/Sn molar ratios of
3.0, 1.5, or 0.75) were reported to be effective for the chemoselective hydrogenation of FFR
to FFA [41]. In particular, Ni-Sn intermetallic phases, Ni3Sn and Ni3Sn2, were found to be
responsible for the chemoselective hydrogenation of the carbonyl group. The enhanced
chemoselectivity compared with monometallic Ni is most likely due to a better interaction
of the oxygen lone pair with the partially positive Sn species that are formed by electron
transfer between Ni and Sn atoms [63].
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Ni-In alloy catalysts supported on amorphous alumina (AA) were tested for the
hydrogenation of FFR [43]. Ni-In(2.0)/AA contained Ni2In as the major alloy phase, which
quantitatively yielded the desired product, FFA (Conversion >99%, Selectivity 99.9%).
Hereinafter, we abbreviate Conversion and Selectivity as Conv. and Sel., respectively.
According to X-ray absorption fine structure (XAFS) and DFT calculations by C. M. Li et al.,
the preferential hydrogenation of the carbonyl group can be explained by the charge transfer
from In to Ni [64]. When the hydrogenation of FFA was carried out over Ni-In(2.0)/AA, only
5.2% of FFA was transformed into tetrahydrofurfuryl alcohol (THFA). This result suggests
that the addition of In retards olefin hydrogenation by Ni, and consequently, further olefin
hydrogenation of the furan ring in FFR did not occur. The decreased adsorption of the
olefin group is due to isolation of active Ni sites by In [64].

The catalytic performance of a series of Ni-based bimetallic catalysts (Ni-M(X)HT-Y,
where M, X, and HT-Y represent electropositive metals such as Al, Ga, In, Co, Ti, and Fe,
the Ni/M molar ratio, and the hydrogen treatment at Y K, respectively) was evaluated for
the hydrogenation of FFR [42,65]. As shown in Table 2, modifying the parent active metal
with the second metals drastically enhanced the chemoselectivity to FFA. Ni-Fe(2.0)HT-673
catalyst with a higher Ni/Fe molar ratio showed a higher activity for the chemoselective
hydrogenation of FFR to FFA (Table 2, entry 8). The catalytic activity of the physically
mixed Ni-Fe catalyst was similar to that of Ni HT-673 (Table 2, entries 1 and 9), and the
synergistic effect between the two metals was not confirmed. Decreasing the hydrogen
treatment temperature to 573 K drastically increased the activity compared to that of Ni-
Fe(2.0)HT-673 (Table 2, entries 10 and 11). Fourier transform infrared spectroscopy (FT-IR)
study contributed to the elucidation of the mechanism and revealed that FFR has a tendency
to adsorb on the Ni-Fe surface through η1(O) configuration [65]. H. Li et al. revealed using
XPS analysis that metallic Fe partially donated electrons to Ni [66]. From this result, it can
be concluded that the electron-deficient Fe on the Ni-Fe surface attracts the oxygen lone pair
of the carbonyl group (Scheme 2). Then, Ni forms hydride-like species through homolytic
dissociation of molecular hydrogen, which selectively hydrogenate the carbonyl group.
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Table 2. Hydrogenation of FFR by various bulk (Ni-M) catalysts. Adapted from [65] with slight
modification.

Entry Catalyst Time/min Conv./%
Sel./%

FFA THFA

1 Ni HT-673 120 100 7 61
2 Ni-Al(1.0)HT-673 120 100 47 43
3 Ni-Ga(1.0)HT-673 120 99 48 24
4 Ni-In(1.0)HT-673 120 20 95 0
5 Ni-Co(1.0)HT-673 120 85 89 9
6 Ni-Ti(1.0)HT-673 120 64 72 20
7 Ni-Fe(1.0)HT-673 120 32 97 3
8 Ni-Fe(2.0)HT-673 120 74 95 5

9 a Ni-Fe(2.0)HT-673 120 100 13 75
10 b Ni-Fe(2.0)HT-673 180 99 96 4
11 b Ni-Fe(2.0)HT-573 30 90 92 8

Reaction conditions: FFR 1.1 mmol, FFR/Ni molar ratio = 2.0, 2-propanol 3.0 mL, temp. 423 K, H2 3.0 MPa.
a Physically mixed Ni-Fe(2.0) catalyst. b H2, 1.0 MPa.
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Next, we show a similar change in the adsorption configuration of FFR generated by
the addition of a second metal.

In addition to Sn-, In-, or Fe-containing Ni-based alloys, Ni-Cu alloys were also re-
ported to be effective for the chemoselective hydrogenation of FFR to FFA and exhibited
better catalytic performances (combined activity/selectivity) than their monometallic coun-
terparts [67]. The alloying of Ni with Cu modified the electronic structure of the two
metals, which may have changed the adsorption configuration of FFR on the catalyst
surface. The formation of NiCu alloy nanoparticles can increase the adsorption of FFR
via η1(O)-aldehyde configuration which usually occurs on monometallic Cu sites, while it
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can decrease the adsorption of FFR via η2(C,O)-aldehyde configuration which is typically
observed on monometallic Ni (Figure 3) [68,69].
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In addition to the chemoselective hydrogenation of unsaturated carbonyls to unsat-
urated alcohols such as FFR to FFA, the production of saturated carbonyls from their
corresponding unsaturated carbonyls also has industrial and biological applications [71].
Cinnamaldehyde (CMA) is an important unsaturated aldehyde that is used in industrial
applications, and its selective hydrogenation product, hydrocinnamaldehyde (HCMA), is
widely used in the fragrance industry, the synthesis of drugs for AIDS, and the development
of other pharmaceuticals (Scheme 3) [71,72].
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The Ni-Si intermetallic compounds prepared by C. Liang group were next investigated
for the hydrogenation of cinnamaldehyde [54]. All the Ni-Si catalysts exhibited much
higher catalytic performances than metallic Ni catalyst. The improved catalytic activity was
due to the abundance of low coordination sites (edge, stepped, and kink) on the catalyst
surfaces. The enhanced selectivity for HCMA may be explained by the repulsive force
between the silicon atoms in the nickel-silicide intermetallic and oxygen atoms in the
carbonyl group of CMA because both silicon and oxygen are electronegative (Scheme 4).
Taking advantage of the electrostatic effect, the one-pot tandem synthesis of imines and
secondary amines over intermetallic Ni2Si/CN was designed as described below. The
electron shift from nickel to silicon atoms also contributed to the increase in selectivity
for HCMA.
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H. Wang et al. prepared three types of Ni-P/SiO2 alloy catalysts with different Ni/P
ratios and reduction temperatures for the selective hydrogenation of CMA to HCMA [71].
The crystal structures were different depending on the preparation conditions. For ex-
ample, when the Ni/P ratio was 2/1.3, after the hydrogen reduction at 853 K, the X-ray
diffraction (XRD) pattern exhibited intense peaks of Ni12P5. We denoted this catalyst
as Ni12P5/SiO2. Increasing the reduction temperature to 1000 K transformed the crystal
structure from Ni12P5 into Ni2P. We denoted this catalyst as Ni2P/SiO2-1000. Finally, when
the Ni/P ratio was 1/1, after the hydrogen reduction at 853 K, the XRD pattern showed
not only intense peaks of Ni12P5 but also weak peaks of Ni2P. We denoted this catalyst as
Ni2P/SiO2-853. The catalytic activity of the Ni12P5/SiO2 catalyst was superior to that of
Ni2P/SiO2 with Ni/P molar ratios of 2/1.3 (Ni2P/SiO2-1000) and 1/1 (Ni2P/SiO2-853).
Ni2P/SiO2-1000 showed a higher activity than Ni2P/SiO2-853. As the only difference
between the two Ni-P alloy catalysts was the P content, excess P, which was present in
the framework of Ni2P/SiO2-853, covered some of the active sites, which led to decreased
activity compared to that of Ni2P/SiO2-1000. In the initial preparation step of Ni12P5/SiO2
and Ni2P/SiO2-1000, the same Ni/P molar ratio was used, but their activities were differ-
ent. C. Stinner et al. found that the shortest Ni-Ni distance of Ni12P5 and Ni2P was 2.53
and 2.61 Å, respectively, while that of Ni metal was 2.49 Å [73]. The shorter Ni-Ni distance
of Ni12P5 indicates that Ni12P5 shows more metallic property than Ni2P. This is the most
likely reason for the higher catalytic activity of Ni12P5/SiO2 than that of Ni2P/SiO2-1000.
Therefore, the authors clarified the influences of the P content and crystal structures on the
activity of Ni-P alloy catalysts. The selectivity of the three catalysts for HCMA was similar
after 480 h, although it was in the order of Ni12P5/SiO2 > Ni2P/SiO2-853 > Ni2P/SiO2-1000
at the initial stage of the reaction.

3.3. Hydrogenation of Unsaturated Nitro Compounds

Primary amines are useful building blocks in the synthesis of fine chemicals such as
polymers, dyes, agrochemicals, and pharmaceuticals [5,9]. Nitro compounds are one of
the most abundant starting materials used for the synthesis of primary amines for a long
history [74]. The chemoselective hydrogenation of nitro group in the presence of other
reducible groups in the same molecule is difficult to achieve; in particular, chemoselective
nitro hydrogenation in nitrostyrenes (NSs) is well-known to be the most difficult because
the olefin group is more easily hydrogenated than the other reducible groups, including the
nitro group [75]. The hydrogenation products are the desired aminostyrene (AS), undesired
ethylnitrobenzene (ENB), and over-hydrogenated ethylaniline (EA) (Scheme 5). Here, we
focus on the hydrogenation of nitroarenes, including nitrostyrenes, as these are the reactions
where Ni-based alloy catalysts can be used.
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prepare a homogeneous Ni-Au alloy because of the substantial different reduction poten-
tial and immiscibility of the two metals at low temperature [11]. H. Wei et al. used tert-
butylamine as a weak reducing agent in the second preparation step to form Ni nanopar-
ticles on the Au surface (Figure 5). Extended X-ray absorption fine structure (EXAFS) re-
sults revealed that a large fraction of Ni was alloyed with Au in the Ni3Au/SiO2 sample 

Scheme 5. Hydrogenation pathway of 4-NS.

The addition of more electropositive Sn to Ni influenced the hydrogenation path-
way of 4-NS [76]. As expected, monometallic Ni catalyst exhibited high activity but low
chemoselectivity for the desired 4-AS. The by-production of 4-ENB in the initial reaction
stage indicates that the monometallic catalyst could not discriminate between the nitro and
olefin groups. The addition of Sn led to a significant improvement in the chemoselectivity
for 4-AS. All the Ni-Sn intermetallic compound catalysts preferentially hydrogenated the
nitro group over the olefin group, which might be attributed to an interaction between the
oxygen lone pairs of the nitro group and the partially electropositive Sn [63]. The Ni3Sn2
intermetallic compound showed an excellent chemoselectivity of 99% at full conversion
after 26 h (Figure 4, blue diamond). When Ni3Sn2 intermetallic nanoparticles were loaded
on a variety of metal oxides, the catalytic activity improved in the order of Ni3Sn2/TiO2
> Ni3Sn2/Al2O3 >> Ni3Sn2/ZrO2 > Ni3Sn2/SnO2 > Ni3Sn2/CeO2 [77]. The order was
well correlated with H2 uptake but not intrinsic properties (e.g., acidic, amphoteric, basic,
reducible, and nonreducible) of the metal oxides used. TiO2-supported Ni3Sn2 was more
catalytically active than unsupported Ni3Sn2 and produced 4-AS in a remarkably high
yield of 79% at full conversion after 2.5 h (Figure 4, red diamond).
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Figure 4. Time profile for the chemoselective hydrogenation of 4-NS to 4-AS by TiO2-supported (red
diamond) and unsupported (blue diamond) Ni3Sn2.

SiO2-supported Ni-Au alloy nanoparticles with a variety of Ni/Au molar ratios were
applied for the hydrogenation of 3-NS and demonstrated higher activity or chemoselectivity
for 3-AS than their monometallic Ni/SiO2 counterparts, as shown in Table 3 (e.g., entry 1
vs. entry 4, entry 2 vs. entry 5, entry 3 vs. entry 6) [11]. In general, it is difficult to prepare
a homogeneous Ni-Au alloy because of the substantial different reduction potential and
immiscibility of the two metals at low temperature [11]. H. Wei et al. used tert-butylamine
as a weak reducing agent in the second preparation step to form Ni nanoparticles on the Au
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surface (Figure 5). Extended X-ray absorption fine structure (EXAFS) results revealed that
a large fraction of Ni was alloyed with Au in the Ni3Au/SiO2 sample after the hydrogen
reduction at 550 ◦C. The enhanced catalysis was because of a synergistic effect between the
two metals. Here, it was concluded based on H2 uptake that the formation of the Ni-Au
alloy enabled H2 molecules to be activated more easily, improving the catalytic activity for
chemoselective nitro hydrogenation. In the Ni-Au bimetallic catalysts, the activity greatly
increased with increasing Ni content, while the chemoselectivity remained unchanged at a
high conversion of 90% (Table 3, entries 1–3).

Table 3. Hydrogenation of 3-NS over various catalysts. Adapted from [11] with permission of
Elsevier, copyright 2015.

Entry Catalyst Time/min Conv./% Sel./% H2 Uptake a

1 Ni0.33Au/SiO2 310 90.5 96.4 12
2 Ni1Au/SiO2 160 92.5 92.1 27
3 Ni3Au/SiO2 70 90.8 93.0 15
4 0.46%Ni/SiO2 960 11.2 99.2 6
5 1.37%Ni/SiO2 480 17.3 97.8 3
6 4.11%Ni/SiO2 108 93.3 78.7 5

Reaction conditions: 0.1 catalyst, 0.5 mmol 3-NS, o-xylene, toluene, temp. 50 ◦C, H2 300 kPa. a µmol/g
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A. Corma and coworkers aimed to prepare an active and selective non-noble metal 
catalyst for the hydrogenation of 3-NS by the introduction of Ni into Co@C NPs [78]. Be-
cause of the high ability of Ni to dissociate H2, bimetallic CoNi@C catalyst showed four-
fold higher activity than Co@C catalyst while maintaining high chemoselectivity for 3-AS 
(>97%). The synergistic effect between Co and Ni accounts for the excellent catalytic per-
formance of CoNi@C NPs. 

In 2020, a core-shell structured Pt-Ni nanoframe@Ni-MOF-74 (Pt-Ni NF@Ni-MOF-
74) showed considerable 4-NS conversion and excellent chemoselectivity for 4-AS (Conv. 
100%, Sel. 92%) compared to the individuals, Pt-Ni NF and Ni-MOF-74 [79]. Pt-Ni NF 
exhibited the highest conversion but low chemoselectivity for 4-AS because it could hy-
drogenate both functional groups. Ni-MOF-74 exhibited low activity, and it seemed to 
preferentially hydrogenate the olefin group over the nitro group because of the presence 
of apical Ni active sites. The slightly decreased conversion in Pt-Ni NF@Ni-MOF-74 rela-
tive to that of Pt-Ni NF could be due to the restraint of the Ni-MOF-74 shell on the diffu-
sion rate of 4-NS to the Pt-Ni surface. The high 4-AS chemoselectivity was attributed to 
the electron transfer from Ni-MOF-74 to Pt suggested by XPS analysis; this electron trans-
fer makes the Pt surface electron-rich and leads to the preferential adsorption of electro-
philic nitro group. 

In addition to the hydrogenation of NSs, hydrogenation of the simplest nitroarene, 
nitrobenzene, was employed as a model reaction to evaluate the catalytic properties of Ni-
based bimetallic catalysts. 

When nitrobenzene was reduced to aniline by Fe metal under anaerobic conditions, 
a decrease in the reduction rate for nitrobenzene was observed, which was attributed to 
the precipitation of siderite on the Fe surface, thereby inhibiting the further reduction of 
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A. Corma and coworkers aimed to prepare an active and selective non-noble metal
catalyst for the hydrogenation of 3-NS by the introduction of Ni into Co@C NPs [78].
Because of the high ability of Ni to dissociate H2, bimetallic CoNi@C catalyst showed
four-fold higher activity than Co@C catalyst while maintaining high chemoselectivity for
3-AS (>97%). The synergistic effect between Co and Ni accounts for the excellent catalytic
performance of CoNi@C NPs.

In 2020, a core-shell structured Pt-Ni nanoframe@Ni-MOF-74 (Pt-Ni NF@Ni-MOF-74)
showed considerable 4-NS conversion and excellent chemoselectivity for 4-AS (Conv. 100%,
Sel. 92%) compared to the individuals, Pt-Ni NF and Ni-MOF-74 [79]. Pt-Ni NF exhibited
the highest conversion but low chemoselectivity for 4-AS because it could hydrogenate
both functional groups. Ni-MOF-74 exhibited low activity, and it seemed to preferentially
hydrogenate the olefin group over the nitro group because of the presence of apical Ni
active sites. The slightly decreased conversion in Pt-Ni NF@Ni-MOF-74 relative to that
of Pt-Ni NF could be due to the restraint of the Ni-MOF-74 shell on the diffusion rate of
4-NS to the Pt-Ni surface. The high 4-AS chemoselectivity was attributed to the electron
transfer from Ni-MOF-74 to Pt suggested by XPS analysis; this electron transfer makes the
Pt surface electron-rich and leads to the preferential adsorption of electrophilic nitro group.

In addition to the hydrogenation of NSs, hydrogenation of the simplest nitroarene,
nitrobenzene, was employed as a model reaction to evaluate the catalytic properties of
Ni-based bimetallic catalysts.

When nitrobenzene was reduced to aniline by Fe metal under anaerobic conditions, a
decrease in the reduction rate for nitrobenzene was observed, which was attributed to the
precipitation of siderite on the Fe surface, thereby inhibiting the further reduction of an
intermediate nitrosobenzene and successive usage [80]. To address this issue, D. R. Petkar
et al. prepared Ni-Fe nanoparticles, and their efficiency was evaluated for repeated use
in the transfer hydrogenation of nitrobenzene with NaBH4 as the hydrogen source [81].
The catalytic activity was kept constant up to six cycles (Conv. >99%, Sel. 100%). Such
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high efficiency was due to the presence of the adjacent Ni sites to suppress the surface
corrosion of the Fe site. The Ni sites also facilitated efficient flow of electron transfer
from Fe to the adsorbed nitrobenzene and significantly enhanced the catalytic activity of
Ni-Fe nanoparticles.

Polymer-supported nano-amorphous Ni-B acted as an effective catalyst for the hydro-
genation of nitrobenzene to aniline with hydrazine hydrate as the hydrogen donor [82].
Amorphous alloys have received much attention in the past two decades owing to their
physical, mechanical, and chemical properties, which are quite different from those of
crystalline alloys of the same composition [83]. Amorphous alloys have small particle
sizes, short-range order, and long-range disorder, which provides pathways to novel, more
active, and selective catalysts [83,84]. XPS analysis of the sample revealed that the binding
energy of elementary B shifted positively compared with that of pure amorphous B, which
indicates partial electron transfer from B to Ni. Electron-enriched Ni and electron-deficient
B promoted the adsorption of electron-deficient nitrogen and electron-enriched oxygen
in the nitro group. The nitro group was then hydrogenated into electron-enriched amine
group, which tended to desorb from the catalyst surface.

The two catalytic systems were also suitable for the chemoselective transfer hydrogena-
tion of a variety of substituted nitroarenes to their corresponding aminoarenes. However,
nitroarenes containing other reducible groups, such as vinyl and carbonyl groups, were not
used in their substrate scope.

3.4. One-Pot Reductive Coupling of Nitrobenzene and Benzaldehyde

Imines and their derivatives, such as secondary amines, which are important build-
ing blocks used in the manufacture of a variety of functional organic molecules, such as
pharmaceuticals, agrochemicals, surfactants, and bioactive molecules, can be synthesized
via dehydrogenative condensation between primary amines and carbonyl compounds in
the presence of Lewis acid catalysts [85–87]. From the viewpoints of green and sustainable
chemistry, one-pot reaction strategies have attracted great interest for their role in increasing
the efficiency of chemical synthesis and avoiding intermediate separation and purification
steps, thus saving energy and time [88,89]. Here, we report the one-pot chemoselective
synthesis of imines and secondary amines from nitro compounds and carbonyl compounds.
For the one-pot reductive amination to be successful, not carbonyl compounds but nitro
compounds should be reduced first, as shown in Scheme 6 (step I) [90]. Then, the coupling
between in situ-formed primary amines and carbonyl compounds occurs rapidly to pro-
duce intermediate imines, which are converted to secondary amines through the catalytic
hydrogenation of the C=N bond (steps II and III) [90].
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C. Liang’s group carried out the one-pot reductive coupling of nitrobenzene and
benzaldehyde to the corresponding arylamines (imine and secondary amine) using an inter-
metallic Ni2Si/SiCN catalyst pyrolyzed at 1273 K under argon/hydrogen atmosphere [88].
Such a high pyrolysis temperature allowed metallic Ni to react with the SiCN matrix to
form nickel silicide because of the reduction induction SMSI. The SMSI and the formation
of intermetallic Ni2Si modified the electronic structure of the metallic Ni active site, which
demonstrated high selectivity for arylamines, mainly the imine. The selectivities of the
imine and secondary amine were 82% and 10%, respectively, at >99% conversion of ni-
trobenzene. Samples prepared at different pyrolysis temperatures (673, 873, and 1073 K)
showed no single-phase Ni2Si in XRD analyses and converted the feedstock of benzalde-
hyde into benzyl alcohol, resulting in low selectivity for arylamines. To understand the
origin of the improved efficiency, the Ni2Si/SiCN-1000 catalyst was subjected to kinetic
experiments for nitrobenzene hydrogenation, benzaldehyde hydrogenation, and coupling
of benzaldehyde and aniline. The reaction rates of nitrobenzene and the coupling of ben-
zaldehyde and aniline were 1.68 and 3.17, respectively, which were much higher than
those of benzaldehyde hydrogenation (0.49). This result is due to the electronic repulsion
between the electronegative silicon atoms and carbonyl oxygen atoms [54]. In addition,
the active sites of Ni isolated by Si and electron transfer between Ni and Si atoms also
contributed to the modification of the metallic Ni active sites, which may have changed the
reaction pathway significantly.

D. Esposito and coworkers applied a carbonized filter paper-supported NiFe alloy
catalyst for the reductive amination of nitrobenzene and benzaldehyde, which afforded
the secondary amine in good yield (Conv. >99%, Sel. 83%), along with benzyl alcohol as a
byproduct [91].

In 2021, a more efficient Ni-based bimetallic system was developed for the one-pot
synthesis of the imine and secondary amine from nitrobenzene and benzaldehyde [92]. The
solvent effect on the catalytic performance of the Ni3Sn2/TiO2 intermetallic compound was
determined, and a clear relationship between the catalytic activity and solvent polarity was
obtained. The catalytic activity was higher in more polar solvent in the following order:
protic polar solvent > aprotic polar solvent > nonpolar solvent. Nonpolar mesitylene solvent
yielded the imine intermediate in 90% yield without the formation of any byproducts. By
prolonging the reaction time, the imine intermediate was successfully converted into the
corresponding secondary amine in 80% yield through the catalytic hydrogenation of the
C=N bond.

The reductive amination of benzaldehyde with reactive benzylamine was performed
using graphene-supported NiPd alloy nanoparticles, which quantitatively yielded the
corresponding secondary amine [93]. It is worth mentioning that no side reactions oc-
curred, such as amine dimerization of the reactive benzylamine and hydrogenolysis of the
secondary amine [88,94].

D. Esposito’s group subsequently used biomass-derivable aldehydes for reductive am-
ination with aminopropanol over the carbon-supported NiFe alloy catalyst [91]. Although
amine functionalization of lignocellulose-derived molecules is highly desirable to expand
the applicability of biobased chemicals, only a few examples have been reported [91,95].
When furfural and 5-hydroxymethylfurfural were used as the substrates, high conversions
and selectivities for their corresponding secondary amines were afforded (Conv. > 99%,
Sel. > 78%).

4. Conclusions

Through the present contribution, a general overview of the typical methodologies
to prepare Ni-based bimetallic systems with different surface and bulk structures and
their catalytic applications for the hydrogenation of organic molecules has been offered.
Specifically, we featured the selective hydrogenation of unsaturated compounds to desired
products (e.g., acetylene to ethylene, furfural to furfuryl alcohol, cinnamaldehyde to hy-
drocinnamaldehyde, nitrostyrenes to aminostyrenes, and nitrobenzene and benzaldehyde
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to the corresponding imine and secondary amine) because monometallic Ni catalyst hy-
drogenates any reducible functional groups. Ni-based bimetallic alloys and intermetallic
compounds showed superior catalytic performances to that of monometallic Ni catalyst.
Enhanced catalysis was found to rely on the geometric and/or electronic effects generated
by the addition of second metals. We hope that this contribution will provide useful in-
formation in this area, and consequently non-noble metal-based bimetallic nanoparticle
catalysts showing comparable or higher catalytic performances than those of noble-metal
catalysts will be developed in the future.
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