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Abstract: The mathematical study known as queueing theory has recently become a major point of 

interest for many government agencies and private companies for increasing efficiency. One such 

application is vehicle queueing at an international port-of-entry (POE). When queueing, fumes from 

idling vehicles negatively affect the overall health and well-being of the community, especially the 

U.S. Customs and Border Protection (CBP) agents that work at the POEs. As such, there is a need to 

analyze and optimize the border crossing queuing operations to minimize wait times and number 

of vehicles in the queue and, thus, reduce the vehicle emissions. For this research, the U.S.–Mexico 

POE located at The Gateway International Bridge in Brownsville, Texas, is used as a case study. Due 

to data privacy concerns, the hourly wait times for vehicles arriving at the border had to be extracted 

manually each day using a live wait time tracker online. The data extraction was performed for the 

month of March 2022. Using these wait times, a queueing simulation software, SIMIO, was used to 

develop an interactive simulation model and calibrate the service rates. The output from the SIMIO 

model was then used to develop an artificial neural network (ANN) to predict hourly particulate 

matter content with an R2 of 0.402. From the ANN, a predictive equation has been developed, which 

may be used by CBP to make operational decisions and improve the overall efficiency of this POE. 

Thus, lowering the average wait times and the emissions from idling vehicles in the queue. 

Keywords: queueing theory; port-of-entry; applied machine learning; artificial neural network;  

air quality 

 

1. Introduction 

Queueing theory is one subdiscipline of operations research (OR), which examines 

each component of waiting in a line, including the arrival process, service process, and 

number of servers, among other performance measures [1–3]. In an application sense, 

queueing theory is observed via a check-out counter, vehicles at a toll booth, and even 

passengers at an airport checkpoint. As a subdiscipline of OR, the goal of queueing theory 

is to study the service lines or queues, in order to analyze and predict the time experienced 

by the entities across all operations, e.g., customers, vehicles, passengers, users, etc., with 

given constraints, e.g., number of servers, maximum service rates, etc. Queueing theory 

is, therefore, the preferred method to analyze systems with single or multiple queues and 

with single or multiple servers. 

In the manufacturing or the service industry, queueing theory is used to evaluate and 

determine system performance measures. Once the current measures are determined, 
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optimization and operational techniques are employed to improve the overall system per-

formance. The system being analyzed is typically focused on a single operation or process 

at a time, where the line is formed from customers or products that need servicing or 

manufacturing. These entities wait in the queue to be serviced in a typically first-come, 

first-served fashion. The servicing operation is usually a machine or a server that provides 

the necessary activities for the entities in the line. Once the entity is served, it moves to the 

next server or queue for the next operation in the process. The entire time, the wait time 

plus service time, is typically what is reported as the time in the system. 

Once such queueing theory application in recent years has been focused around im-

proving the efficiency at ports-of-entry (POEs) between the U.S. and Mexico. The queue-

ing model in this system consists of vehicles, i.e., passenger cars and commercial trucks, 

that form a line at the POE to be processed and inspected in order to go across the border 

and continue the journey of their goods. 

The U.S. Customs and Border Protection (CPB) is part of the Department of Home-

land Security (DHS), one of the world’s largest law enforcement organizations, and it is 

charged with keeping terrorists and their weapons out of the U.S., while facilitating lawful 

international travel and trade. The mission statement of CBP is to “protect the American 

people, safeguard our borders, and enhance the nation’s economic prosperity” [4]. As the 

United States’ first unified border entity, CBP’s main task is to control customs and border 

security. 

Currently, vehicles native to Mexico that cross through a POE into the U.S. must meet 

federal Department of Transportation (DOT) regulations. The Federal Motor Carrier 

Safety Administration (FMCSA), under the DOT, is tasked with overseeing such regula-

tions. According to the FMCSA, “A Mexico-domiciled motor carrier that enters the U.S. 

must have a US DOT number, FMCSA-assigned MX number, a valid FMCSA Certificate 

of Registration for commercial-zone operations, or long-haul Provisional or Standard Op-

erating Authority Registration, regardless of the size/type of vehicle, distance traveled 

into the U.S. or frequency of trips” [5]. 

Once it is the turn of the commercial truck to go through the inspection booth, officers 

at the POE verify each vehicle’s documentation and cargo. A vehicle that fails to pass the 

primary inspection is subjected to secondary inspection. Figure 1 presents the layout of 

the checkpoint with one queue, two inspection lanes, and one secondary inspection lane. 

 

Figure 1. Layout of POE with two primary and one secondary inspection lanes. 
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A POE may be modeled as a queueing network, with each inspection officer as a 

server and one queue leading to the multiple servers. While the vehicles are queueing and 

waiting to be served, they are idling and releasing toxic gases into the surrounding air. 

The officers at each inspection lane shoulder a substantial exposure burden of various 

criterial air pollutants, such as atmospheric particulate matter (PM), that have a diameter 

of less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and toxic gaseous pollutants, such as 

benzene, toluene, and xylenes [6,7]. This can have severe health implications for the fed-

eral officers, in terms of high asthma rates, hypertension, and various cardiovascular 

health effects [7]. Since the majority of commercial trucks are diesel engines, some research 

also has been performed to study the feasibility of additional filters, including biofilters, 

to reduce pollutant emissions [8]. Additionally, some vehicles may require secondary in-

spection, which increases the service time and CBP resources (i.e., more inspection offic-

ers). 

The efficiency of a POE can be measured by the average time spent by vehicles in the 

queue (i.e., the waiting time to be served), which is dependent on the number of inspection 

officers (or servers). The emissions from idling vehicles in the queue may be correlated to 

health risks, namely for the inspection officers. 

This research focuses on the Gateway International Bridge (GIB) border crossing in 

Brownsville, Texas, as a case study. In particular, the following research questions will be 

answered in this paper: 

• Research Question 1 (RQ1): Can readily available online border crossing wait time 

data be used to predict the arrival rate of passenger vehicles at a border crossing? 

• Research Question 2 (RQ2): If the answer to RQ1 is “yes,” can a dynamic discrete 

event simulation model be developed in order to calibrate the service rates at a border 

crossing? 

• Research Question 3 (RQ3): If the answer to RQ2 is “yes,” can the simulation model’s 

predicted hourly wait time be used with other readily available parameters related 

to air quality, in order to predict the hourly particulate matter content (PM2.5)? 

• Research Question 4 (RQ4): How can the answers to the above research questions be 

used to construct a POE’s work schedule, so that enough inspection lanes are open 

in order to maintain the level of emissions to be below a baseline? 

The answer to RQ1 will be the hourly arrival rates at the GIB border crossing for a 

one-month period to be used in a baseline simulation model. The answer to RQ2 will be 

the calibrated average service rates of the servers at the GIB border crossing for the simu-

lation model. The answer to RQ3 will be a machine learning regression model, which 

makes use of the simulation model output from RQ2, as well as readily available air qual-

ity parameters, so that CBP may predict the air quality, with respect to the border crossing 

operational performance (i.e., wait time). In the future, sensors may be deployed to detect 

vehicle arrivals to a POE, so that CBP may then determine the number of inspection offic-

ers (i.e., servers) needed in order to stay below the desired emission baseline. 

This article is organized as follows. After this introduction, issues related to modeling 

POE operations and applied machine learning techniques are reviewed. This is followed 

by a description of the simulation model, data, and machine learning models, specifically 

as it relates to answering the research questions. This paper concludes by highlighting the 

findings, limitations, and future research. 

2. Review of the Problem and Related Works 

2.1. POE Applications 

The literature reviewed in this section provides an overview of queueing theory re-

lated to border crossing applications, but because there are many types of lines, queuing 

theory has applications in many areas. The types of lines include stationary, transient, 

deterministic, and stochastic, among others. Stationary queueing networks have been 

studied extensively in transportation systems [9–12]. Examples of studies in transient 



CivilEng 2023, 4 348 
 

 

queueing systems have been explored in hospital systems [13]. However, the type of 

queueing systems observed at the POEs are very specific and typically stochastic, non-

stationary, and time-dependent systems. 

To address these modeling challenges of the POE and evaluate the effects of security 

policies and procedures from CBP, research evaluating deterministic equivalent models 

has been performed [12]. The policies and procedures that CBP implements is also a sig-

nificant consideration for commercial trucks and enterprises. Research in this area has 

shown that the companies consider the wait times at the POE when making decisions, and 

these decisions affect companies’ operations and logistics when moving goods across the 

border [14]. Other research has also reported on the high economic impact of delays on 

cross-border supply chains [15]. Finally, the use of block chains has also been attempted 

to assess the challenges and opportunities of the border trade [16]. Coyle et al. [17] studied 

the effects of POE policies and operations in logistics south of the border, and it affected 

Mexican practices. Olvera et al. [18] studied ultrafine particle levels at another POE be-

tween the US and Mexico in El Paso, Texas. Although particle analysis and wait times 

have been studied at POE’s at the sea-port-gate-yard interface [19,20] and emission reduc-

tion methods have been studied in the past [21], to our knowledge, no research has incor-

porated particle analysis and border wait times in the decision-making models; however, 

more research needs to be performed. 

2.2. Machine Learning Techniques 

The literature reviewed in this section is related to the machine learning techniques. 

In this research, several supervised regression machine learning techniques are applied to 

answer RQ3. Linear regression is one of the most well-known algorithms used in super-

vised machine learning. More complex machine learning algorithms include decision 

trees, support vector machines, random forest, and artificial neural networks (ANNs). 

ANNs are highly interconnected networks that have robust computational and pattern 

recognition capabilities [22]. This machine learning technique has been widely used due 

to its ability to model non-linear relationships in a non-complex way. ANNs were origi-

nally developed to emulate the human brain, which has led to a growing usage of ANNs 

in the engineering field for numerical and statistical methods, in lieu of traditional linear 

regression. In general, a three-layer feed-forward backpropagation ANN with a sigmoid 

activation function and one hidden layer is the most common type of ANN [22]. In addi-

tion, one hidden layer is typically sufficient for solving most of the non-linear problems 

without network overfitting [22]. 

3. Methodology 

3.1. Discrete Event Simulation Model 

For this research, the Gateway International Border (GIB) POE in Brownsville, TX, 

was used as a case study. The first step was to develop a discrete event simulation model 

of the POE using SIMIO [23]. The POE consists of two lanes, which lead to five checkpoints 

(i.e., servers). Each checkpoint may be open or closed at hourly intervals. The overall foot-

print of the model within SIMIO was drawn to scale by importing a map of the border 

crossing using a geographic information system (GIS) [24]. Figure 2 presents the place-

ment of the five checkpoints, some online with vehicles being served and others offline 

(i.e., no officer at the booth). The two lanes on the bottom portion of the figure are vehicles 

from Mexico waiting to be served before entering the U.S. 
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Figure 2. GIB POE in SIMIO [23]. 

Most vehicle POE locations have three different levels of designated lanes available 

for travelers: general lanes, ready lanes, and Secure Electronic Network for Travelers 

Rapid Inspection (SENTRI) lanes. Anyone can use the general lanes, but it should be noted 

that the service rates are typically lower than other lanes. Ready lanes are dedicated lanes 

for travelers crossing the border that possess identification containing a radio frequency 

identification (RFID) chip. The ready lanes are typically faster than the general lanes and 

are the most used lane at most border crossings [25]. SENTRI is a paid program offered 

by the U.S. CBP allowing for pre-approved, low-risk individuals to pay a premium for 

priority crossing privileges and expedited clearance when entering the U.S. The SENTRI 

program costs $122.25 for five years of access [26]. 

Available data for this research was very scarce. Since the POE is operated by the 

CBP, available information pertaining to wait times, service rates, and the number of ve-

hicles passing through the border was very limited. Additionally, there was no SENTRI 

lane information available at all. As such, the SENTRI lanes were omitted from this study. 

The following data were collected and processed in the manner described below. 

The average hourly wait times for the general lane and the ready lane for the month 

of March 2022 were collected and documented using information available online from 

CBP’s border wait time website [27]. The website provides the current wait time, in 

minutes, for each lane at the border. Unfortunately, the website resets each night at 12:00 

AM, and there is no way to recover data from a previous day. Therefore, screenshots were 

taken each day at 11:00 PM throughout the month of March 2022 to collect a full month’s 

worth of wait time data. The data were manually entered into a database with a total of 

744 hourly wait time data points (31 days × 24 h/day). 

Then, the total number of vehicles that passed through the border during the month 

of March 2022 was also documented [28]. However, this was an aggregated total number 

of vehicles for the month and was not at lane level accuracies, nor as an hourly rate of 

vehicles. As such, the hourly arrival rate of general and ready vehicles was estimated by 

using 

𝐀𝐫𝐫𝐢𝐯𝐚𝐥 𝐑𝐚𝐭𝐞𝐭 = (
𝐰𝐚𝐢𝐭 𝐭𝐢𝐦𝐞𝐭

∑ 𝐰𝐚𝐢𝐭 𝐭𝐢𝐦𝐞𝐬𝟕𝟒𝟒
𝐭=𝟏

) × 𝐭𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐯𝐞𝐡𝐢𝐜𝐥𝐞𝐬 (1) 

where 

Arrival Ratet = arrival rate of vehicles at time t, (
vehicles

hour
); 

wait timet = hourly average wait time for a vehicle at time t, (minutes); 
∑ wait times744

t=1 = total wait time for all vehicles during study period (minutes); 

total number of vehicles = total number of vehicles during study period (vehicles). 
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Additionally, there were several general assumptions that were made during the 

data processing. These assumptions were as follows: 

• The minimum arrival rate for the general lanes were 30 vehicles/hour. 

• The minimum arrival rate for the ready lanes were 45 vehicles/hour. 

• Ready lanes have service rates that are approximately 20% faster than the service rate 

of general lanes [25]. 

• A total of 15% of the total number of vehicles passing through the border were SEN-

TRI level vehicles and were, thus, excluded from the usable data [26]. 

These assumptions were made for a number of reasons. The main reason being that 

the amount of available data pertaining to border crossing statistics was very limited. As 

such, these assumptions were made using deductive reasoning given the available data. 

The hourly arrival rates were then entered into SIMIO assuming a random Poisson distri-

bution (i.e., an exponential interarrival time). 

Once the hourly arrival rate was estimated and entered into SIMIO, the service rates 

for the general and ready passenger vehicles needed to be calibrated. This was performed 

simply by trial and error, as the ready lane service rates have a direct relationship with 

the service rate of the general lanes (i.e., 20% faster) [25]. Therefore, both service rates 

could be updated by trial and error until the SIMIO model’s overall total wait time 

matched the actual total wait time for the entire study period. The SIMIO model included 

the number of vehicles moving through the general and ready lanes each hour, the num-

ber of general and ready lanes opened during each hour, and the hourly schedule for the 

month of March 2022. SIMIO could add or remove active servers at hourly intervals. The 

calibrated service rates for the general and ready lanes were 11.5 s/vehicle and 9.0 s/vehi-

cle, respectively. A summary of the calibration values is presented in Table 1. 

Table 1. Summary of the calibration values. 

Available Online Data  

Total No. of General Vehicles in March 2022 [28] 109,203 vehicles 

Total No. of Ready Vehicles in March 2022 [28] 131,044 vehicles 

Total No. of Minutes Waited [27] 40,691 min 

Calibrated SIMIO Model Results  

General Lane Calibrated Service Rate  11.5 
seconds

vehicle
 

Ready Lane Calibrated Service Rate 9.0 
seconds

vehicle
 

Total No. of Minutes Waited (SIMIO Model) 40,566 min 

General Lane Average Arrival Rate  2.45 
vehicles

minute
 

Ready Lane Average Arrival Rate  2.94 
vehicles

minute
 

The general lane and ready lane service rates were adjusted and calibrated, such that 

the SIMIO model’s total output of 40,566 min was the same as the actual total wait time of 

40,691 min for the GIB during the month of March 2022. 

3.2. Development of Models to Predict PM2.5 

Once the SIMIO model was calibrated to accurately predict the average wait time in 

the queue, average wait time in the system, average number of vehicles in the queue, and 

average number of vehicles in the system at each hour, the next step was to make use of 

the SIMIO model’s predicted output of the hourly average wait time for a vehicle entering 

the queue, as well as other air quality parameters, in order to predict the amount of emis-

sions created by idling (i.e., queueing) vehicles at the GIB POE. In addition to the hourly 

wait time, the hourly relative humidity, hourly temperature, and hourly wind speed were 
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used as the four input parameters to predict PM2.5 content at the GIB POE. The function 

follows the form: 

𝐏𝐌𝟐.𝟓 = 𝐟(𝐰𝐚𝐢𝐭 𝐭𝐢𝐦𝐞, 𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐡𝐮𝐦𝐢𝐝𝐢𝐭𝐲, 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞, 𝐚𝐧𝐝 𝐰𝐢𝐧𝐝 𝐬𝐩𝐞𝐞𝐝 ) (2) 

where 

PM2.5 = amount of inhalable pollutant particles in the air at hour t (
micrograms

meter3 ) ; 

wait time = average wait time for a vehicle entering the queue at hour t (minutes); 

relative humidity = average relative humidity of the air at hour t (percentage); 

temperature = average air temperature at hour t (degrees Fahrenheit); 

wind speed = average wind speed at hour t (mph). 

The average wait time for a vehicle entering the queue was obtained directly from 

the SIMIO model at hour t. The average relative humidity, average air temperature, and 

average wind speed was gathered from [29] for each hour, t, during the entire month of 

March 2022. Equipment located at the Brownsville South Padre Island International Air-

port was used to collect these data [29]. 

The number of inhalable pollutants in the air was collected near the GIB POE location 

using BlueSky Low-Cost Sensors (Model: 8143 by TSI Inc., Shoreview, MN, USA) [30]. The 

BlueSky sensor was located approximately 0.04 miles from the GIB POE. This instrumen-

tation is easy to install and weighs about 0.35 lb. The sensor does not require much power, 

approximately less than 5W (5 VDC @ 1 Amp). The PM sensor included is pre-calibrated 

similarly to other high-quality TSI equipment, such as the DustTrak™ models (TSI Inc., 

Shoreview, MN, USA). Self-diagnostic tests are configured to daily cleaning intervals to 

attain high-quality data. The PM sensor measures from the range 0 to 1000 μg/m3, with a 

measurement resolution of 1 μg/m3 and a response time being 1 s [30]. For this study, the 

particulate matter readings were collected every hour for the entire study period. 

Extensive quality assurance and quality control (QA and QC) studies, conducted by 

the South Coast Air Quality Management District (South Coast AQMD) on BlueSky sen-

sors, have shown a good record of performance and evaluations, with the sensors show-

ing a moderate to strong PM2.5 (0.66 < R2 < 0.78) correlation with other federal equivalent 

method (FEM) instruments, such as FEM GRIMM and FEM Teledyne API T640, in the 

field [31]. 

The descriptive statistics for the data that was collected is presented in Table 2. 

Table 2. Descriptive Statistics of Data Collected. 

Parameter Wait Time 
Relative  

Humidity 
Temperature Wind Speed PM2.5 

Sample Size 744 744 744 744 744 

Units minutes % °F mph 
μg

m3
 

Min. 0 10.0 47.0 0 1.0 

Max. 270.0 87.0 112.0 41.0 40.0 

Mean 54.7 61.7 73.8 12.4 5.1 

Std. Dev. 45.6 20.6 12.1 7.8 4.5 

Based on the results presented in Table 2, some of the parameters from the dataset 

had a large range of values. For example, the number of minutes waited by vehicles 

ranged from 0 to 270 min, depending on the time of day and the number of servers that 

were open. This resulted in a standard deviation of 45.6 min. Likewise, the other parame-

ters also varied widely, thus resulting in a rather complex dataset. 

The next step was to develop a predictive model, which may be used by CBP, in order 

to predict the number of inhalable pollutants in the air near the GIB POE. Two common 
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machine learning models were considered: a simple linear regression model and a more 

complex, non-linear ANN model. 

The first model was a simple linear regression model, as it is the most common and 

simple machine learning technique, due to the interpretability of the results. The multiple 

linear regression results from this study are presented in Table 3. 

Table 3. Linear Regression Results. 

Input Parameters Coefficient 𝒕 Statistic 𝒑 Value 

Intercept  −10.3048 −6.7777 2.4972 × 10−11 

Wait Time −0.0050 −1.4795 0.1394 

Relative Humidity 0.1214 13.5983 9.4984 × 10−38 

Temperature 0.1068 6.6110 7.3158 × 10−11 

Wind Speed 0.0224 1.0812 0.2800 

R2 0.2157 

Observations 744 

As presented in Table 3, the intercept, relative humidity, and temperature parameters 

were all very statistically significant. The wind speed parameter was not very statistically 

significant, but with a positive coefficient, as expected. On the other hand, the wait time 

parameter, directly taken from the calibrated SIMIO model, was not statistically signifi-

cant and had a negative coefficient, which is counterintuitive. It is expected that, as the 

wait time at the GIB POE increases, the PM2.5 content should increase, as well. This could 

be one of the reasons for the low R2 value for the linear regression model of only 0.216. As 

such, a more complex machine learning algorithm, known as an artificial neural network 

(ANN), was used to create a more accurate model. 

The second model was an ANN. A three-layer, feed-forward backpropagation ANN 

with a sigmoid activation function and one hidden layer is the most common type of neu-

ral network [22]. In addition, one hidden layer is typically sufficient for solving most of 

the non-linear problems without network overfitting [22]. For the purpose of this study, a 

three-layer, feed-forward neural network, with a hyperbolic tangent activation function, 

a backpropagation-error calculation algorithm, and two neurons in the hidden layer, was 

utilized using MATLAB [32]. Figure 3 demonstrates the utilized network architecture for 

the study, and its main components may be summarized as follows: 

(1) Input layer (i) with four input neurons, one neuron for each independent input pa-

rameter (see Equation (2) and Table 2). 

(2) Weight factors (Wih) between the input layer (i) and the hidden layer (h). The weight 

matrix contained 8 different values, one value from each input to each hidden layer 

neuron. 

(3) Hidden layer (h) with two hidden neurons having a tan-sigmoid activation function 

and two biases values (bhi). 

(4) Weight factors (W’ho) between the hidden layer and the output layer. The weight ma-

trix contained two values, one value from each hidden neuron to the output neuron. 

(5) Output layer (o) with one output neuron for the dependent variable having a linear 

transfer function and single-bias value (Bo). 
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Figure 3. ANN Model Architecture. 

The developed model was trained utilizing the extracted 744 data points in MATLAB 

[32] by feeding the four input parameters in the input layer. Several ANN’s were trained 

with fewer hidden layer neurons; however, the model results were unsatisfactory. The 

number of hidden layer neurons was gradually increased until the ANN achieved satis-

factory results. The idea was, by using the minimal number of hidden layer neurons, the 

ANN and stand-alone equation (which will be discussed in a subsequent section) may be 

made as simple as possible. The final ANN architecture had only two hidden layer neu-

rons. 

Before feeding into the network, each input variable was normalized to fall within 

the range [−1,1]. Additionally, the output neuron predicts the normalized output, which 

also falls within the range of [−1,1]. The output from the output neuron is then denormal-

ized, so that the predicted PM2.5 value falls within an acceptable range (see Table 2 for 

minimum and maximum values). The training was conducted utilizing the Levenberg–

Marquardt backpropagation algorithm in MATLAB [32]. This training algorithm divides 

the data into three categories. A total of 70% of the data were randomly utilized for train-

ing the model, while the remaining 30% of the data were divided into model testing and 

validation data sets. The ANN model was developed using only the training data. The 

testing and validation data were unseen to the developed ANN model. As shown in Fig-

ure 4, as an effort to avoid overfitting and maintain network generalization, the training 

was stopped when the validation dataset root mean square error stopped decreasing 

[22,32]. 
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Figure 4. Number of iterations/epochs required for ANN model training. 

The model performance was evaluated in MATLAB, as shown in Figure 5, which 

demonstrates the ability of the model in the prediction of PM2.5. The ANN model yielded 

a relatively low coefficient of determination (R2) of 0.402 for the entire dataset (i.e., train-

ing, testing, and validation data). This means that the data possesses a high variability 

around the regression line, as presented in Figure 5. 
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(c) 

 
(d) 

Figure 5. Predicted vs. Actual particulate matter quantity for ANN model for: (a) training; (b) vali-

dation; (c) test; and (d) all data. 

Based on the results presented in Figure 5, the ANN model underpredicts the PM2.5 

content in all four datasets. The validation set yielded the highest R2 value. The overall 

dataset graph, being the entire dataset of all 744 data points, yielded an R2 value of 0.402. 

As such, using the ANN model developed here, it can be seen that the R2 value of the 

ANN model was almost double the R2 value of the simple linear regression, which had an 

R2 value of only 0.216. 

3.3. Extracted ANN Equation to Predict PM2.5 

Despite the fact that ANN is a reliable tool for analysis and data classification, many 

researchers considered it a black box, due to their inability to have a clear understanding 

of what is happening inside the model. Essentially, inside the model, first each input var-

iable is normalized to fall within the range of [−1,1]. This is recommended for most ANN’s 

developed, so that the link weights and biases do not become very small [22]. Utilizing 

the minimum and maximum values in Table 2, each variable is normalized to fall within 

the range of [−1,1]. 

Then, the normalized input variables are then multiplied by the link weights to both 

of the hidden layer neurons. Therefore, both hidden layer neurons have an input of each 

normalized input variable multiplied by its respective link weight. The bias for each hid-

den layer neuron is then added to the equation to obtain one final input value to each 

hidden layer neuron. Next, the hyperbolic tangent activation function is used to truncate 

each hidden layer’s output to fall within the range of [−1,1]. Each hidden layer output is 

then multiplied by its respective weight to the single output neuron. The output neuron 

receives the output from each hidden layer multiplied by its respective link weight, as 

well as a bias term. This produces the normalized output, which falls within the range of 

[−1,1]. This is because the input variables used also fell within the range of [−1,1] when 

normalized. The output neuron value is then denormalized, so that it falls within the cor-

rect range for the predicted PM2.5 (see Table 2 for the minimum and maximum ranges). 

From the utilized ANN structure, as shown in Figure 3, it can be concluded that the 

weights from the input layer to the hidden layer, the bias values in the hidden layer, the 

weights from the hidden layer to the output layer, and the bias values in the output layer 

are needed to extract a stand-alone equation from the trained ANN network. The values 

of the weights and biases are emphasized below, as extracted from MATLAB [32]. 
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Wih = [
 0.079 0.721 −0.041 −0.848

−1.962  27.346  47.696  0.344
] 

W’ho = [
0.139
0.170

] 

bih = [
−0.726

−15.501
] 

bho = [−0.675] 

Using these link weights, the following extracted equation was developed as a way 

of representing the ANN model in the form of an equation. This was performed so that 

the ANN model may be used by anyone outside the MATLAB environment. This equa-

tion also allows for future data points to be used in predicting new outputs. 

ANN Output = 2.7006265 tanh(0.00058a + 0.01862b − 0.00125c − 0.04138d − 0.75637) 

+ 3.3024915 tanh(−0.01453a + 0.70643b + 1.46778c + 0.01677d − 165.14774) + 

7.3079335 

(3) 

where 

ANN Output = predicted output from ANN model of inhalable pollutant particles in the 

air (
μg

meter3); 

a = average wait time for a vehicle entering the queue at hour t (minutes); 

b = average relative humidity of the air at hour t (percentage); 

c = average air temperature at hour t (degrees Fahrenheit); 

d = average wind speed at hour t (mph). 

The generated stand-alone equation yields the same output as the ANN. Further-

more, it should be noted that, in order to use Equation (3), the input parameters should 

fall within the [min,max] range, as presented in Table 2. In Equation (3), the two neurons 

may be seen, each of which use the hyperbolic tangent activation function. The coefficients 

to both hidden layer neurons are the link weights from the hidden layer to the output 

layer, and the bias from the output layer may also be seen in the stand-alone equation. 

The coefficient and bias to the entire equation are used to denormalize the output from 

the output neuron to fall within the correct range for an acceptable PM2.5 prediction. 

4. Results and Discussions 

4.1. Research Question 1 

The first research question asked if readily available online border crossing wait time 

data may be used to predict the arrival rate of vehicles at a border crossing. The answer 

to this research question is “yes.” Readily available wait time data and aggregated total 

vehicle data were gathered online from [27,28] to estimate the hourly arrival rate of vehi-

cles at a border crossing using Equation (1). For this research, the GIB POE in Brownsville, 

Texas, was used as a case study. 

4.2. Research Question 2 

The second research question asked, if the answer to RQ1 is “yes,” can a dynamic 

discrete event simulation model be developed in order to calibrate the service rate at a 

border crossing. The answer to this research question is also “yes.” Using the estimated 

hourly arrival rates from RQ1, SIMIO [23] was used to calibrate the general and ready lane 

service rates, such that the SIMIO model’s total predicted wait time for the entire month 

of March 22 was the same as the actual total wait time during the same month (see Table 

1). The calibrated service rates for the general and ready lanes were 11.5 s/vehicle and 9.0 

s/vehicle, respectively. 



CivilEng 2023, 4 357 
 

 

4.3. Research Question 3 

The third research question asked, if the answer to RQ2 is “yes,” can the simulation 

model’s predicted hourly wait time be used with other readily available parameters re-

lated to air quality in order to predict the hourly particulate matter content PM2.5. The 

answer to this research question is also “yes.” Once the SIMIO model was calibrated as 

part of RQ2, the hourly wait times for the month of March 2022 were used in conjunction 

with the average hourly relative humidity, average hourly air temperature, and average 

hourly wind speed to predict the number of inhalable pollutants in the air near the GIB 

POE location. This was performed using a simple multiple linear regression model, as 

well as a more complex, non-linear ANN model. Because the ANN results, with an R2 = 

0.402, were greater than the simple multiple linear regression model, an equation was ex-

tracted from the ANN, so that it may easily be used by CBP officials to predict the number 

of inhalable pollutants in the air near the GIB POE location. This was presented as Equa-

tion (3). 

4.4. Research Question 4 

The fourth research question asked if the answers to the above research questions 

can be used to construct a POE’s work schedule, so that enough inspection lanes are open 

in order to maintain the level of emissions to be below a baseline. The answer to this re-

search question is also “yes.” Because a relationship between the ambient air properties 

and vehicle wait time at the GIB POE has been established, CBP officials may now con-

struct a work schedule using the SIMIO discrete simulation model and Equation (3), both 

presented as part of this paper, in order to minimize the number of inhalable pollutants 

in the air near the GIB POE location. 

5. Conclusions 

5.1. Major Findings and Recommendations 

The overall objective of this research was to demonstrate a clear correlation between 

long vehicle queueing times, as well as the number of emissions and hydrocarbon parti-

cles found in the air at these congested POEs. By analyzing the daily traffic patterns and 

improving the overall efficiency of certain border crossings, such as the one examined in 

this research, the number of emissions from idling vehicles in the queue could be signifi-

cantly decreased, which may be correlated to certain health risks. Thus, optimizing and 

streamlining the border crossing process could prove to have major societal benefits, with 

regards to vehicle emissions and the health of the CBP agents. 

5.2. Future Research 

As with all research, there are limitations. One of the main limitations of this research 

is that the actual general and ready vehicle arrival rates were estimated based on limited, 

yet readily available, wait time data and aggregated vehicle crossing data online [27,28]. 

Access to data also limits the ability to accurately model POE operations, including sec-

ondary inspection, which is beyond the scope of this paper. In the future, actual general 

and ready vehicle arrival rates, as well as service rates, should be used in order to develop 

a queueing model, such as the one presented in this paper using SIMIO. Further sensitiv-

ity analysis could also be conducted to analyze the performance of the calibrated SIMIO 

model and extracted ANN equation under different scenarios at the GIB POE (e.g., very 

high arrival rates, less servers online, etc.) and at other POE’s. We recognize that raw data 

has homeland security implications and, thus, look forward to future research and collab-

oration with DHS and DOT. 

Furthermore, the number of data points presented to the ANN model was very lim-

ited at only one month of data. By providing the model with more data points, the train-

ing, validation, and testing sets would all be larger, thus resulting in a more accurate 

model. Moreover, the addition of more hidden neurons into the ANN model could also 
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potentially result in a more accurate model. Doing this usually results in a better R2 value; 

however, more hidden layer neurons result in a much longer extracted equation. With a 

more accurate simulation model and ANN equation, sensors may be deployed to detect 

vehicle arrivals at a POE, so that CBP may then determine the number of inspection offic-

ers (i.e., servers) needed in order to stay below the desired emission baseline. 
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