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Abstract: The construction industry holds the worst safety record compared to other industrial sectors,
and approximately 88% of accidents result in worker injury. Meanwhile, after the development and
wide application of deep learning in recent years, image processing has greatly improved the accuracy
of human motion detection. However, owing to equipment limitations, it is difficult to effectively
improve depth-related problems. Wearable devices have also become popular recently, but because
construction workers generally work outdoors, the variable environment makes the application of
wearable devices more difficult. Therefore, reducing the burden on workers while stabilizing the
detection accuracy is also an issue that needs to be considered. In this paper, an integrated sensor
fusion method is proposed for the hazard prevention of construction workers. First, a new approach,
called selective depth inspection (SDI), was proposed. This approach adds preprocessing and imaging
assistance to the ordinary depth map optimization, thereby significantly improving the calculation
efficiency and accuracy. Second, a multi-sensor-based motion recognition system for construction
sites was proposed, which combines different kinds of signals to analyze and correct the movement
of workers on the site, to improve the detection accuracy and efficiency of the specific body motions
at construction sites.

Keywords: sensor fusion; motion recognition; hazard prevention; inertial measurement unit;
depth camera

1. Introduction

The concept of a “Smart City” has been widely known by people around the world
for many years. Its main purpose is to use information technology to help to improve
city services. Currently, the smart city concept is being applied in transportation, citizen
management, and urban resource allocation, all with good performance compared with
traditional methods. Along with the rise of the smart city, the concept of “smart con-
struction” [1] has also been proposed recently, in which many well-applied methods from
other fields are exported to the construction area. However, owing to the differences in
management mode and implementation, these approaches have not performed well. Thus,
there is much room for the improvement in the development of smart construction.

This lackluster performance is especially concerning in light of the construction in-
dustry field currently holding the worst record for safety compared with other industries:
approximately 88% of workplace incidents in the construction industry are caused by
unsafe behaviors [2]. For example, in Japan, the average number of fatalities in construc-
tion accidents is over 300 people per year [3], and this performance has not improved
well during the last 20 years [4]. In comparison with other developed countries, accident
monitoring efficiency in Japan is the main reason that injured workers cannot be identified
and rescued in time.

After the development and wide application of deep learning in recent years, image
processing has greatly improved the accuracy of human motion detection. However, single
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visual sensor detection still has its unreliability, it is easily affected by changes in the
surrounding environment and the location of the measured object.

Meanwhile, wearable devices have become increasingly popular recently. Some simple
devices such as watches can perform basic body path or state detection. However, if these
devices are the only angle of detection, they lack reliability. Complex special clothing with
hundreds of detection points can perform extremely detailed tracking. However, because
of its inconvenience, worker resistance, and high cost, it is not suitable for use in ordinary
construction environments.

In construction sites, the main causes of worker injury and death are related to health
issues such as heat stroke, physical injuries from falling, contacting, and mental injuries.
Some of the injuries are caused by accidents, and some of them are caused by unsupervised
unsafe acts taken by workers as a result of cost limitations, time pressure, and other reasons.
Normal monitoring systems, such as web cameras, require manual operation and are
inefficient because of human neglect, visual obstacles, and other factors. A more efficient
and accurate safety management and monitoring method is needed.

Camera-based monitoring methods are widely used and researched around the world
because of their many benefits, such as low cost and ease of assembly. However, unavoid-
able disadvantages are more numerous, such as low accuracy when it is too far away
from the visual sensor or in poor lighting conditions. Some approaches concentrate on
changing the RGB frame to an RGB-D frame by adding depth to pictures with machines
such as Kinect [5] and RealSense [6]. RGB-D is more accurate for detecting humans and
objects compared with RGB pixel cropping, and it also works well even under poor lighting
conditions. However, owing to the limitations of working distance, reflective surfaces, and
relative surface angles, depth maps in RGB-D frames always contain significant holes and
noise, and these errors limit the practical use of RGB-D frames in real applications. Thus,
depth maps for filling holes and removing noise are necessary steps in depth camera-based
monitoring systems. Because of the high error rate of depth measurement over wide areas
and long distances, depth scanning of large areas also increases the calculation demands.
Therefore, an approach that can effectively achieve an in-depth analysis of designated areas
is needed.

Monitoring methods based on inertial measurement unit (IMU) sensors have also been
gaining attention in recent years because of their clear benefits compared with other meth-
ods, such as those relying on visual cameras. IMU sensors are non-intrusive, lightweight,
and portable measuring devices that, when attached to a subject, can overcome the sensor
viewpoint to detect activities in a non-hindering manner [7-9]. After preprocessing of
the motion for recognition, discriminative features are then derived from time and/or
frequency domain representations of the motion signals [10] and used for activity clas-
sification [11]. Although there are many benefits of IMU sensors, there are also some
disadvantages. First, their output is not intuitively understood and not amenable to man-
ual rechecks. Second, model complexity is hard to control, especially when precise motion
capture is needed. Generally, construction workers stay outdoors, and the changing envi-
ronment there makes them more resistant to accepting a huge number of wearable devices,
such as some complex special clothing with hundreds of detection points on it. Therefore,
reducing the burden on workers while stabilizing detection accuracy is an issue that needs
to be resolved.

The construction site is a complex environment which includes many corners, blind
spots, and isolated spaces. If only one kind of sensor (such as a visual sensor) is used,
due to the effect of lighting, shooting angles, etc., the detection accuracy can be largely
changed. For example, once the object or human is outside the optimal recognition area of
the visual sensor, auxiliary recognition from other kinds of the sensor will be needed to
ensure efficiency. In conclusion, a multi-sensor-based recognition method is needed.

To solve the problems discussed above, we propose an advanced hazard prevention
method for workers based on multiple sensor networks. This approach aims at using
worker data obtained from different kinds of sensors to detect human motion and move-
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ment more accurately, including RGB cameras, depth cameras, and IMUs, and combining
them cooperatively to increase the detection accuracy of special motions of workers, and
improve efficiency for accident alert and injury rescue.

To address the research gap, the purpose of this study was to examine the application
of deep learning to the labor-intensive and time-consuming removal of unwanted features
in images of repetitive infrastructure. The effect of unwanted-feature removal on the
structure-from-motion process was also investigated. First, a new method, called selective
depth inspection (SDI), was proposed. This approach adds preprocessing and imaging
assistance to the ordinary depth map optimization, thereby significantly improving the
calculation efficiency and accuracy. Second, a multi-sensor-based motion recognition
system for construction sites was proposed, which combines different kinds of signals to
analyze and correct the movement of workers on the site, to improve the detection accuracy
and efficiency of the specific body motions at construction sites.

The remaining sections are organized as follows. A literature review is provided in
Section 2, including camera-based, depth camera-based, and IMU-based methods. The
proposed methodology is introduced in Section 3, where visual sensor- and IMU-based
human recognition and the sensor fusion approach are introduced. The simulation and
experiment details and hardware parameters are introduced in Section 4. Discussion of this
research is given in Section 5. Finally, conclusions are drawn in Section 6.

2. Literature Review
2.1. RGB Camera-Based Human Modeling

RGB camera-based motion recognition is inexpensive and can be widely distributed, but
because of its photosensitivity, its applicable environment is narrow and easily affected [12].

Commercial camera-based human detection systems require subjects to wear mark-
ers and depend on multiple cameras’ calibration around the environment [13], which is
inconvenient. To overcome these constraints, other researchers have focused on develop-
ing markerless approaches using multiple cameras, but some of these methods require
offline processing to obtain high-quality results [14,15]. While other real-time approaches
have been proposed [16], these approaches often combine a skeletal model with image
data. Other real-time approaches include combining generative and discriminative meth-
ods [17]. However, multi-view methods require stationary and well-calibrated cameras,
and therefore, they are not suitable for mobile scenarios.

2.2. Depth Camera-Based Depth Map Restoration and Human Modeling

Most motion recognition based on depth cameras is performed at a short distance, so
its range of practical application is relatively narrow and cannot be easily expanded [18,19].

As for regular cameras, RGB-based depth prediction normally relies on a large body
of literature and is trained with ground truth data only [20-24]. As for depth cameras,
many approaches have been proposed to restore depth maps with Kinect; among these
methods, two types can be divided: methods that are based on filtering and methods that
are based on reconstruction. Approaches based on filtering use different kinds of filters to
restore captured depth maps. A median filter is proposed to recursively fill holes in a depth
map [25]. However, the sharpness of the edges is too blurred. To keep sharp edges, a joint
bilateral filter is iteratively applied in a depth map [26]. Ref. [27] considered using temporal
information to restore the depth map, but this approach incurs a delay because it uses
multiple consecutive frames for the restoration. Methods that are based on reconstruction
use image inpainting to fill missing values in depth maps. The fast-marching method
(FMM) is proposed for depth value reconstruction [28]. A texture-assisted approach is also
proposed, in which the texture edge information is extracted to help the restoration of the
depth value [29]. These methods can remove noise and fill small size holes in in-depth
maps, but when it comes to big holes in in-depth maps, the results are unsatisfactory.

To address human modeling, a method named shape completion and animation of
people (SCAPE) is proposed [30], which is a data-driven approach to 3D human model
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building from both shape and pose aspects. They showed that, with a high-resolution
depth image from a single viewpoint, the SCAPE model can obtain the observation data.
Based on the SCAPE-parameterized model, Ref. [31] combined low-resolution scans and
views of a person from different angles to construct an accurate human 3D model. Ref. [32]
proposed a monocular depth camera 3D human modeling approach based on referring to
some previous human body pose and shape approaches that it mentioned.

2.3. IMU-Based Human Modeling

Roetenberg et al. [33] used 17 IMUs with the function of magnetometers, gyroscopes,
and 3D accelerometers, which were fused by a Kalman filter. Supposing the measurements
are with no noise and no drift, the 17 IMUs can define the full pose of the subject (in
standard skeletal models). However, 17 IMUs are too numerous and very intrusive for the
subject. Problems and inconveniences, such as long setup times and placing a sensor in the
wrong position, commonly occur, which makes this approach difficult to reproduce.

Marcard et al. [34] computed accurate 3D poses with only six IMUs. They placed
synthetic IMU sensors on a skinned multi-person linear body model in a generic way. They
solved for the sequence of body poses that matched the observed actual measured sequence
by optimizing the entire sequence [35]. However, this approach relies on computationally
expensive offline optimization, which is also hard to reproduce.

Wearing a large number of sensors is not suitable for long-term outdoor work and
increases the computing burden [36]. Therefore, a smaller number of IMU sensors and less
computation complexity is key to IMU-based human modeling and motion detection.

A body pose recognition system based on IMU sensors for upper body identification
of workshop workers was proposed by [37]. To obtain more accurate motion data, two
IMU sensors were, respectively, placed on the experimenter’s arms, one on the neck, and
one on the waist (a total of 6 sensors) to achieve pose recognition for fixed movements.
Although a high level of precision was achieved, including detection of posture angles, the
system only supported two movements, standing, and bending.

Ref. [38] implemented motion command analysis for an electric wheeled walker using
only one IMU sensor, which analyzed acceleration and drove emergency behaviors such
as electric wheel braking to ensure the safety of the carrier. However, the study still had
significant limitations in terms of application object and diversity of motion.

Ref. [39] proposed a fatigue testing framework based on the construction industry
using a single IMU and forearm electromyography. Since the primary evaluation indicators
were physiological information, the application was relatively narrow. The authors of [40]
identified construction workers” activities using information from three IMU sensors and
achieved high recognition accuracy. However, due to the placement of sensors only on one
arm, there were limitations in recognizing some complex limb movements.

3. Proposed Methodology
3.1. Overview

In this paper, we propose an integrated sensor network method for the hazard pre-
vention of construction workers. As shown in Figure 1, this approach mainly uses a
depth camera and IMU sensors to collect data from workers and construct a human model
to analyze motions and gestures. In the visual-based motion recognition step, we use
image-processing-based real-time monitoring as a preprocessing step, to improve the ac-
curacy of depth optimization. In the IMU-based motion recognition step, depending on
the application environment, the number of wearable devices is reduced to a minimum
to increase practicality while maintaining the detection accuracy of basic and relatively
complex actions. This method concentrates on multi-sensor cooperation using different
kinds of sensors to decrease the errors caused by sensor defects increase the detection
accuracy and improve efficiency.
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Figure 1. Overview of the proposed methodology.

3.2. Human Recognition by SDI

In typical depth detection, the depth camera has a high error rate over a long distance;
for example, for RealSense D435i, the root means square (RMS) error increases when the
object is 4 m or farther away from the camera. Meanwhile, the long-distance depth analysis
will significantly increase the calculation burden, and the result of depth detection may
have a high error rate. The proposed SDI method can divide depth detection into two steps.
The first step is to use image processing to identify the monitoring area to find out whether
it contains humans. The second step is to perform depth recognition and optimization in
the selected areas. Preprocessing can effectively reduce the computational burden during
depth optimization. At the same time, owing to depth optimization, the depth detection of
a specific area can increase the effective recognition distance, to achieve longer-distance
detection and reduce recognition errors caused by specific actions.

Regarding the preprocessing stage of the selected area, we use a variety of image
recognition methods. The first is human recognition based on TensorFlow Lite [41]. This
method can quickly identify a possible human shape in the scene through real-time analysis.
Based on different training sets, the accuracy of human body recognition is also different.
Another approach is skeleton recognition by PoseNet, which is also based on TensorFlow
Lite [42]. This method can perform rough bone recognition through an RGB camera,
thereby improving the detection accuracy during depth analysis and optimization. In
our proposal, we use a microcomputer as our terminal, to ensure recognition efficiency;
the above models are adopted, and though they are a little outdated, they can meet our
experimental requirements of a low-consumption terminal, and at the same time, they can
provide an acceptable recognition fluency.

When a human signal appears in the monitoring range, the RGB camera will detect
the body frame, and only the depth data inside the selected area will be collected. The raw
depth information collected may cause too many holes and defects owing to factors such
as distance and environmental interference. To fix the hole problem and other interference,
depth information optimization is needed at this time. This optimization can fill in the
missing depth information at a long distance to effectively increase the effective distance of
depth motion recognition.

Yin et al. [43] proposed a two-stage stacked hourglass network based on Varol et al. [44]
to obtain high-quality results for human depth prediction. Instead of using RGB images
directly, this approach uses RGB images and human part segmentation together to predict
human depth. It consists of convolution layers, a part-segmentation module, and a depth
prediction module. First, the RGB image input goes through the convolution layer and
is converted into heat maps, after which it enters the part-segmentation module. Then,
the heat maps are converted into human part-segmentation results, and these heat maps
are summed as the input of the following depth prediction module with the features of
previous layers. Finally, human depth prediction results are output.

Algorithm 1 above is called Gradient Fast-Marching Method (GradientFMM) [43], and
it propagates the depth from known pixels to unknown pixels. After the process, every
pixel in the unknown region of a depth map will be assigned a depth value. In this study, to



CivilEng 2023, 4

209

extend the detectable distance of the selected area, the GradientFMM algorithm is applied
for depth information optimization.

Algorithm 1: Gradient Fast-Marching Method (GradientFMM)

Procedure GradientFMM (depthmap)
Known < all pixels with known values in depthmap
Unknown < all unknown pixels adjacent to Known in depthmap
insert all pixels in Unknown into min-heap
while Unknown not empty do
p < root of min-heap
calculate p values using depth value equation
add p to Known
remove p from Unknown
perform down heap
for each neighbor g of A do
if g not in Known and Unknown then
add g to Unknown
perform up heap
15. end if
16. end for
17. end while
18. return Known
19. end procedure

RN NN o

— =
=]

[
=W

The depth camera produces images with a resolution of 848 x 480 pixels at a framerate
of 30 frames per second. As shown in Figure 2, in the optimization process, we first apply
the GradientFMM algorithm to analyze each frame to fix undetected points of selected
human areas, and then the area is considered as 3D coordinates by cooperation with the
skeleton detection processing from the previous step. Finally, the depth information as a
three-dimensional coordinate of each point of interest from the possible human shape can
be obtained. The points of interest include but are not limited to the hands, elbows, head,
waist, knees, and feet.

‘ RGB skeleton assist

N - - Output

Depth motion
optimizing -

finding
Figure 2. SDI method process.

3.3. Portable Computing Terminal

Some hazard prevention schemes are based on sensors placed on helmets, and the
information collected by sensors on helmets can be analyzed only after workers end their
shifts and remove their helmets. This kind of analysis method is relatively inefficient and
cannot provide timely accident alerts.

In this study, as shown in Figure 3, a portable computing terminal is used to divide
the processing and perform data analysis for each small sensor locally, thereby reducing
the transmission of data for large images and improving processing efficiency.
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Figure 3. Portable computing terminal.

Recently, Raspberry Pi [45] has become one of the most popular microcomputers in
the world owing to its portability, size (of a credit card), extremely low power consumption,
and complete internal structure. In addition, Raspberry Pi uses the open-source Linux
system as its main operating system, which makes it extremely scalable, and it can realize
the required functions with the help of many open-source projects.

However, Raspberry Pi also has some shortcomings. For example, because of its low
power consumption, it cannot drive some large GPUs for deep learning training, and the
integrated graphics card that it carries cannot do this work as well. Thus, in this research,
the Neural Compute Stick 2 (NCS2) produced by Intel was used as an external neural
network accelerator to make up for this shortcoming. This device can accelerate neural
network inference operations at relatively low operating power. NCS2 needs to be used
in conjunction with OpenVINO [46]. This is an open-source software developed by Intel,
which mainly includes the Model Optimizer and an inference engine to receive neural
network architecture and weight information.

Another important part is the visual information collection unit. In this study, the
RealSense R435i depth camera produced by Intel was used to collect 2D image information
and 3D depth information.

Compared with centralized computing, the portable computing unit has better scalabil-
ity and reduces the requirements for data transmission. It can perform real-time processing
at the sensor and transmit the results to the central processing unit for rapid analysis. In
some large construction sites, where a large number of sensors need to be deployed, the
computational burden on the central processing unit can be effectively relieved. At the
same time, because of the mobile computing unit’s high portability, real-time processing,
and early warning capabilities, it can be deployed at the dead ends of construction sites,
blind areas of large operating vehicles, and other accident-prone areas, thereby speeding
up rescue after accidents and reducing secondary injuries.

3.4. IMU-Based Human Motion Recognition

This section introduces IMU-based human motion detection, in which IMUs measure
triaxial (3D) accelerations and triaxial angular velocities. This approach can also easily
obtain information directly without numerous restrictions.

In our proposal, we mainly consider motion capture during work activities, so the
body’s four limbs are the observation focus. The limbs can express most of the essentials
of movements. Despite minimizing the number of wearable devices, we still maintain the
detection accuracy of basic and relatively complex movements.

IMU motion recognition is based on Dehzangi et al. [47], who introduced a human
activity recognition method in the normal environment; the activities they considered are
walking, walking upstairs, walking downstairs, sitting, standing, and sleeping. In our
proposal, because our subjects were construction workers, new motions are added: lifting
objects (one or two arms are elevated), picking up heavy objects (the swing amplitude of
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both arms is reduced and stiff), holding up heavy objects (the arms are partially angled
and stiff), raising arms (arms are at right angles to body), regular cyclical movement (arms
making a circular motion), bending over (leaning forward or backward), and kneeling (one
or both knees).

The framework of the IMU-based human motion recognition system is as follows.
First, relevant data are collected from users. Each motion is divided according to the time
axis, and information such as the acceleration changes in the four sensors during the time
is obtained. At the same time, for different motions, feature extraction is performed on the
path changes in each sensor, and the activity label is created. Finally, by comparing the new
action with the label data in the database, the action with the highest similarity is output as
the result.

Each worker wears 4 sensors, and each sensor owns a separate port identification
code. The combined data group from the 4 sensors will be judged as one worker. All
four IMU sensors continuously record data from each worker, and the motion recognition
method analyzes amplitude changes. At the same time, when a motion process changes
dramatically, the differences between triaxial accelerations and angular velocities before
and after the change are counted and recorded as change graphs. Finally, the differences
are compared with a motion database to identify the best match. The sensors can not only
collect motion data, but they can also collect information about the workers’ surrounding
environment, such as temperature, height, and air pressure, by exchanging data with
environmental sensors to ensure that workers are in a proper working environment.

3.5. Multi-Sensor Fusion and Analysis

Normally, because visual signals and IMU electronic signals are quite different, it is
difficult to make a comparison between them. In our proposal, both the depth camera-
based method and IMU sensor-based method can obtain results independently, but when it
comes to some specific circumstances, such as self-occlusion, using only one kind of signal
will cause a high error rate and affect the whole system.

In this research, two kinds of signals are cooperatively used by reducing the advan-
tages and disadvantages of each to further improve accuracy. The detection area of the
depth camera is considered a huge 3D coordinate system. The depth camera is placed on
one side of the system, and IMU sensors are also calibrated before loading to make sure
they are consistent at time 0.

As described above, when recording starts, both the camera and IMU sides generate
constant 3D coordinate changes. For the depth camera side, the variation and value of spe-
cific points are obtained from the coordinates in the depth map and frame platform. For the
IMU sensor side, during movement the three axes change with different accelerations, and
using the origin set at time 0, the path changes and distance are calculated by Equation (1).

S = /(/(Z)dt)dt, (1)

= —
where S represents directional distance and a represent average acceleration during time
period t. Although the units, distance, and size are quite different between depth map
coordinates and IMU sensor coordinates, we can describe the change amplitude curve between
each set of specified coordinate points (in this case, points of two elbows and two knees) by
considering the weight of each kind of sensor. Thus, a more accurate result is output for
comparison with our database, resulting in higher reliability for human motion recognition.
The final degree of change is shown in Equation (2).

AP, APy
va AIX + T?Aﬁ

AP =~ @)
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where AP; is the change in motion from the visual side, AP; is the change in motion from
the IMU sensor side, PS and P? are the initial states of the current time segment, and « and
B are weight coefficients for visual and IMU sides, respectively.

In this study, since the effectiveness of existing sensors cannot be evaluated in advance,
in this experiment, the weight distribution between different sensors is relatively ideal, and
in this experiment, they are distributed into 50%, 50%.

Figure 4 shows a flow chart of the cooperative method for fusing both data streams. The
key point of this research is how to compare the data of the visual sensor and IMU sensor at
the same latitude. In this experiment, a concept called “degree of change” was proposed; it
is described as the change amplitude curve between each set of specified coordinate points
(in this case, points of two elbows and two knees) by considering the weight of 2 kinds of
sensors. The recognition based on the visual sensor will mark the interest points through
skeleton detection, and the pixel path in 3d coordinates can be calculated. The recognition
based on the IMU sensor will collect the acceleration and angular velocity, by using the double
integration method, the distance and path in 3d coordinates can be calculated. Finally, the
degree of change formula is used to obtain the degree of change in each interest point, to
compare with the database and find the best match.

e

¥ v
[ Visual recognition ] [ IMU recognition J
¥ v
Human area detection Sensor attachment
; + o : :
Area segmentation and Movement change
extraction collection
SDI method ~ 7 g ~ 3 g
Depth data collection of Path change calculation
selected area

[ v
IMU -based ]

motion output

"

depth optlmlzatlon

GradlentFMM based ]

points of |nterest
¥
Visual-based ]

motion output

[ Path trackmg of

Sensor-fusion-based
motion output

Figure 4. Flow chart of the proposed multi-sensor-based motion recognition.

4. Experimentation

This section describes a simulation to validate the feasibility of our proposal. It
includes the following aspects:

(1) We use a depth camera along with the SDI method to identify possible humans in an
area and detect the human skeleton, optimize the depth map of the human area, and
collect the path change in interest points in a 3D coordinate environment.

(2) We use attached IMU sensors to detect the human skeleton based on four points of
interest, and to record the coordinate differences to identify different motions.

(8) Our weight-based multi-signal fusion correction approach generates coordinate differ-
ences from each frame and frequency and then outputs accurate position information.
To obtain the depth maps of subjects, a portable computing terminal was constructed

from a Raspberry Pi 4 as a computing unit, an NCS2 as a training accelerator, and an
Intel RealSense D435i depth camera as a data collecting unit positioned at one side of our
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experiment area. This camera can achieve smooth video streaming with 848 x 480 pixel
resolution at 30 frames per second. The possible depth detection ranges from 0.5 to 16 m.

To obtain the 3D motion data of subjects, four WitMotion IMU sensors were attached
to both elbows and knees of each subject. At the outset of this experiment, sensors were
selected with the goal of detecting worker safety from multiple angles, including envi-
ronmental factors such as high-temperature work (heat stroke) and high-altitude work
(falling, etc.). This consideration led to a different selection of sensors. Sensors for elbows
are closer to the heart and head, so models that detect altitude, temperature, barometric
pressure, and location information are used. For the knees, a functionally simpler model
was used. The choice of the sensor did not affect the results of this experiment. The knee
sensor model was BWT901CL; this sensor supports USB and Bluetooth 2.0 as its transmis-
sion method, and the detectable distance can reach 10 m at most. The baud rate of it is
115,200 Bd, and the sampling rate of it is 60 Hz. Meanwhile, the battery life of this sensor
is about 4 h, which is suitable for most workers. We used the WTGAHRS?2 sensor for the
elbows; it can provide a more accurate 3-axis inspection than the knee sensor; the baud rate
of it is 9600 Bd, and the sampling rate of it is 30 Hz. Yet, the elbow sensor does not have
a Bluetooth module; this problem can be solved by connecting to an external Bluetooth
device. Currently, the diversity of collected data is balanced with its low portability; in the
future, this sensor will be considered to change to a more portable kind. Each IMU will
provide a three-axis acceleration detection, giving four of them together 12-dimensional de-
tection on the object. These IMU sensors can detect the above parameters plus air pressure
and elevation, which can help to verify that the environment surrounding workers is stable
and comfortable. A picture of the IMU sensor architecture is shown in Figure 5.

Elbow sensor module Elbow sensor module
r

IV-GPSIMY T

—_—— e e — —_—— e e —

b _ il

Jd
Knee sensor module Knee sensor module

Figure 5. IMU sensor architecture.

In this experiment, the visual sensor is directly connected to the microcomputer via
USB, to provide stable large-capacity image and video transmission. The IMU sensors are
connected via Bluetooth, through the built-in and external Bluetooth module, to collect
motion data in real-time. Each microcomputer can be considered as a local terminal; in the
real world, environment, multiple local terminals will be connected by Wireless Local Area
Network (WLAN), to provide multi-point monitoring.

Before the beginning of the experiment, a database of actions is tested, which is also
considered the comparison group. In this experiment, several motions were considered,
including normal motions such as standing, sitting, and lying down, and motions specific
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to construction work, such as lifting objects, picking up heavy objects, holding up heavy
objects, raising arms, regular cyclical arm movements, bending over, and kneeling. The
reason to apply these motions is, in actual work, the possible motions of workers will be
more complicated than in daily life, and many accidents also arise because of these actions
(injuries to hands, waist, knees, etc.). By strengthening the monitoring and identification of
the special motions, it is possible to effectively and quickly find out workers who continue
to be in abnormal motion, thereby avoiding more serious accidents.

Here, we give a detailed description of the considered motions. Of these 10 motions, 3
are normal motions and 7 are specific to construction. All motions are considered as starting
from facing ahead. Among the normal motions, we have standing, sitting, and sleeping
(lying down), which are also commonly seen in other studies. Construction motions are
motions that are commonly seen at construction sites, especially when workers are working
in narrow areas or when they must reach a height that a normal standing person would
find hard to reach. A mirror schematic diagram of these motions is shown in Figure 6,
where the yellow circles in the figures are the points of interest where sensors are attached.

Jﬁ Standing is described as the arms drop Holdin 5 n Holding up heavy objects s desprlbed
( : . g -~ | as embracing the heavy object with both
. i | naturally, swing slightly, the legs are . g
Standing | | up heavy /| hands, the body Is leaning forward, and
I stand and relaxed, and the body is not . K liahtly b d the bod
e stifr object T nees are slightly bent, and the body is
| Ny stiff.
Sitting is described as sit down naturally, L. . .
sittin Jf facing forward with a chair underneath, Raising . E:tlzlrr;\gll a\::; Ea(rjfjsscrnat?s:da:‘srg:snbdoth
9 57 | with legs at right angles, and arms arms ¥ . 4 )
] sides, flush with shoulders.
\ - | hanging down naturally 1
| =SS =
s Regular cyclical movement is described
Lyin Lying down is described as all body parts Regular Iy == as lean forward slightly, fix the object with
d);wg are touched or close to the floor and lie cyclical F < the left hand, and make a circular motion
on the ground. movement 'g with the right elbow at the up/down and
A ._EJ front/back angles.
N Y J Lifting objects is described as stand Bending over i1s described as similar to a
Lifting relaxed and raise hands naturally, with Bending ¥ ) bowing motion, lean forward, and
objects \ E elbows approximately flush with position over /| naturally close hands at body sides,
4 | of ears. 7,; showing a movement that Is not too rigid.
== iy
g
ur:::chke:\gry V) Picking up heavy objects is described as Kneelin ° Kr_ure]EItl]l_lghls d_elzlscnbeld as k_m;e\ natfura_l\y,
¥ ) ) g with thighs still nearly straight up, facing
. F lifting heavy objects with both hands. SN -
object i -~ _ e forward, and leaning forward slightly.

Figure 6. A detailed description of detected motions.

The data collecting and experiment area are shown in Figure 7. The portable comput-
ing terminal was placed at the front of the whole area, the IMU sensors were attached to
the subject’s elbows and knees, and then the workers made the 10 motions (Table 1) in front
of the depth camera.

Table 1. Description of simulation situations.

Detecting Distance Application of SDI Method
Situation 1 4-6m X
Situation 2 8-10 m X
Situation 3 8-10m v

The experiment procedure is as follows:

1. First, the sensors were attached to the experiment subject (worker surrogate), and the
subject stood in different positions inside the experiment area to test the effectiveness
of the SDI method.
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280m —» 4+—— 250m —»

Next, the subject performed the 10 motions in order, with a short pause between every
two motions. (The data-collecting process is performed during the construction of the
dataset.)

Then, on the visual side, the possible human area was detected, and the depth
information inside the selected area was collected. Depth optimization based on
GradientFMM filled in empty points inside the selected area and labeled points of
interest. The coordinate amplitude of points of interest was also recorded.

Next, on the IMU side, data changes from the four sensors were measured during the
process, and a low-pass filter was employed to eliminate redundant noise.

Then, the acceleration changes in each sensor were used to calculate path changes by
the double-integral method.

Changes in the points of interest, human elbows, and knees, from both the visual side
and IMU side, were calculated separately to obtain the degree of change within a
certain period.

The degree of change from both the visual and IMU sides was used to calculate the
average weighting, and the result was compared with the database to find the best
match.

Finally, the similarity from the visual side, IMU side, and sensor fusion side were
compared to determine whether the sensor fusion method showed the best result.

“ 10.00m »

r d

[ Portable computing terminal
IMU sensor

Figure 7. The experiment area layout (top view and 3D front view).

To process the degree of change measured by the IMUs, we set the experimental data

processing environment as follows:

1.

Calibration procedure: The output offset component of the acceleration sensor was
removed because of the presence of static acceleration (gravity). Then, the acceleration
was averaged when the accelerometer was not detecting motion (the collection of
more samples improved the accuracy of the calibration result).

Low-pass filtering: Signal noise in the accelerometers (both mechanical and electronic)
was eliminated to decrease the error while integrating the signal.

Mechanical filtering: When in a stationary state, small errors in acceleration were
treated as constant speeds, which indicates a continuous movement and unstable
position, affecting the actual motion detection. A mechanical filtering window helped
to distinguish these small errors.

Positioning: The acceleration of each time period was known, and we used the double-
integral method to obtain distance information. The first integral gain speed and the
second gain distance were applied to obtain the position.
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In the simulation, the 10 motions were expected to have their unique degree of change,
including vector changes from the left and right elbows and knees:

T - = = =
Mn - |:A1’l/ Bl’l/ Cl’l/ 1’1:|/n S [1/ 10]/ (3)
%
Wy = (Ax,ZV, AyY, Azzv),w = A,B,C,D, )

where A, B,C, and D represent the left elbow, right elbow, left knee, and right knee,
—

respectively, and W,, represents the change in motion from the four points of interest.

From the visual side, the collected point of interest data included pixel position
and depth information, which output a vector change. From the IMU side, through the
acceleration of three axes and time, Equation (1) was used to obtain the distance in all
directions, thereby obtaining the vector change. Then, a weighting coefficient was assigned
to the visual and IMU sides through a standard normal distribution. Next, we used
Equation (2) to calculate the integrated vector change:

Ay A By B Cy C Dy D
A—gA(x + A—(I’)A[S B—gAac + B—(I’)A/B C—nga + CTI’A'B D—ngz + D—(IQAﬁ -
2 ’ 2 ’ 2 ’ 2 ’

where A, is the left elbow vector change on the visual side, and A is the left elbow vector
change on the IMU side. F is compared with M; to Mg in Equation (3) to find the highest
similarity.

Regarding the construction of the dataset, we recorded motion data from 5 male
adults between the age of 20 and 30. For each motion, 50 pairs of coherent and clearly
behaved data from the perspective of visual and IMU sensors are collected. This process
is performed twice because the data from two different distance intervals are required.
From the visual aspect, each motion is labeled based on the features such as the coordinate
change in points of interest and depth information, from the IMU aspect, each motion is
labeled based on the path change in each sensor attached.

This study used the same simulation method that was used in our previous paper [48].
For each motion, 100 pairs of sample data from each distance interval were prepared. The
sample data were generated based on our dataset by adding random interferences and
white noises, to simulate deviations caused by the effects of real data collection. Weight
coefficients obeyed a standard normal distribution.

As shown in Table 1, three situations for human motion detection were considered in
this simulation. To determine whether the SDI method applied to human motion detection
can succeed at a relatively long distance, the results for these three situations are compared
and discussed.

By combining the visual pixel changes based on the depth camera and acceleration
path changes based on IMU sensors, we generated graphs with the highest similarity of
each set of sample data. Some typical motion captures and their results of similarity are
shown in the following figures.

Figure 8 shows the result obtained during situation 1, in which the subject stood at a
highly detectable distance (around 4-6 m away from the camera), and the SDI method was
not applied. The formulas for recall and precision are shown below.

TP
Recall : Roe = ———
el Ree = TpFp ©)
TP
Precision: Pre = ———— (7)

TP+ FN
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al motion . . lying |lifting |picking up holding up raising [regular cyclical |bending . .

Detected mofi standing sitting down |objects |heavy objects |heavy objects |arms [movement over kneeling | Precision
standing 93 1 1 2 1 1 93.94%
sitting 97 100.00%
lying down 98 8 97.03%
lifting objects 87 5 7 2 86.14%
picking up heavy 4 4 87 3 88.78%
objects

holding up heavy 3 2 8 5 89 5 79.46%
objects

raising arms 1 93 98.94%
regular cyclical 95 3 96.94%
movement

bending over 4 97 1 95.10%
kneeling 2 96 97.96%
Recall 93%| 97%| 98% 87% 87% 89% 93% 95% 97% 96%|  93.27%

Figure 8. Simulation result for situation 1.

A recall is for the original sample, which indicates how many positive examples in the
sample are predicted correctly. There are also two possibilities: one is to predict the original
positive class as a positive class (TP), and the other is to predict the original positive class
as a negative class (FN). Precision is for the prediction results, and it indicates how many of
the predicted positive samples are true positive samples. Then, there are two possibilities
for predicting positive instances, one is to predict the positive class as the positive class
(TP), and the other is to predict the negative class as the positive class (FP).

We can learn from Figure 8 that most of the motions can be correctly identified, but
in some motions, some points of interest have similar paths, which can be confused with
other motions, resulting in wrong outputs. Figure 9 shows the example group of optimized
depth motion captures for situation 1.

Standing Sitting Lying down (ﬂ;?;?s

Picking Holding up Raising Regglar
up heavy heavy arms cyclical
object object movements

Figure 9. Example group of optimized depth motion capture for situation 1.

Figure 10 shows the result obtained during situation 2 when the subject stood at a
relatively long distance (around 8-10 m away from the camera) and the SDI method was
not applied. We can learn from Figure 11 that when people stand a long distance away
from the camera, the depth detection does not perform well, especially when the detection
requires the identification of similar motions with different depth changes, such as bending
over, regular cyclical movement, lifting, and picking up or holding heavy things. The
reason for this is that the further the object is from the depth camera, the higher the RMS
error will be; even after optimization, some of the motions still cannot be identified because
of errors and interference. If the fusion results are not corrected by the IMU sensor results,
the accuracy could be lower.
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. . . i . . regular .

al n'.10t|on standing sitting lying Ilft.mg picking u.p holding u_p raising cyclical bending kneeling |Precision

Detected mo down |objects |heavy objects |heavy objects |arms over
movement

standing 90 2 2 2 3 1 1 3 86.54%
sitting 84 2 7 4| 86.60%
lying down 95 100.00%
lifting objects 3 75 10 7 8 72.82%
picking up heavy 4 15 65 19 63.11%
objects
holding up heavy 3 6 8 22 68 5 60.71%
objects
raising arms 1 86 98.85%
regular cyclical 1 a2 13 85426
movement
bending over 8 2 17 7 11| 66.96%
kneeling 8 85| 96.59%
Recall 90%|  84%| 95% 75% 65% 68% 86% 82% 7% 85%| 81.07%

Figure 10. Simulation result for situation 2.

Standing Sitting
Picking Holding up
up heavy heavy
object object
Bend Kneel
over

Lying down

Raising

arms

Lifting
objects

Regular
cyclical
movements

Figure 11. Example group of optimized depth motion capture for situation 2.

Figure 12 shows the result obtained during situation 3 when the subject stood at a
relatively long distance (around 8-10 m away from the camera), but the SDI method was
applied. We can learn from Figure 13 that some depth-based errors are well corrected by
the SDI method using RGB person scale finding, and skeleton assistance based on PoseNet,
which provide good separation for bending over and kneeling, and improve the identification
between lifting and holding up or picking up heavy objects. There are still some problems
while using the SDI method due to the long distance, and the skeleton or object scale is
sometimes poorly constructed. In addition, the conflict between and misjudgment of some
points of interest may lead the result to a completely unrelated motion, such as bending over,
which was misidentified as five different motions several times.

al motion . L lying |lifting |picking up holding up raising [regular cyclical |bending . .
Detected moti standing sitting down |objects|heavy objects |heavy objects [arms |movement over kneeling |Precision
standing 98 2 2 4 2 90.74%
sitting a7 3 97.00%
lying down 98 3 97.03%
lifting objects 91 4 4 2 2 88.35%
picking up heavy 1 5 89 3 2 89.00%
objects
holding up heavy 1 1 2 3 89 3 2 88.12%
objects
raising arms 2 95 3 95.00%
regular cyclical 88 4 95.65%
movement
bending over 2 1 7 87 1 88.78%
kneeling 1 96 98.97%
Recall 98%| 97%| 98% 91% 89% 89% 95% 88% 87% 96%| 92.80%

Figure 12. Simulation result for situation 3.
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Lifting

Standing objects

Holding up
heavy
object

Regular
cyclical
movements

Picking
up heavy
object

Figure 13. Example group of optimized depth motion capture for situation 3.

5. Discussion

As for the validation of the result, we considered the measure of precision and recall.
Precision is based on prediction results; it indicates how many of the “predicted positive
instances” are truly positive, how recall is based on original samples, and how many
positive instances are predicted correctly. As the final criterion, we adopted the F1-measure
approach, which is the weighted harmonic average of precision and recall. In Figure 8,
the recognition result shows that the precision and recall are 93.43% and 93%, and the F1-
measure is 93.27%, the similar results suggest a good classification outcome. The evaluation
standard in Figures 10 and 12 is the same as in Figure 8. In Figure 10, the precision, recall,
and Fl-measure are 81.76%, 81%, and 81.07%, respectively; in Figure 12, the precision,
recall, and F1-measure are 92.86%, 93%, and 92.80%, respectively, which also supports the
good classification outcome.

A comparison of the different detection situations is shown in Figure 11, from which
we can see that when the subject is far from the camera without the assistance of the SDI
method, the visual side detection rate is much lower than that of the other situations.
Because the Bluetooth transmission quality of the IMU sensor is also affected at long
distances, the final accuracy is not very high. With the SDI method applied, long-distance
motion detection can reach the accuracy of short-distance detection, and the lack of depth
information is effectively compensated by image processing.

Our experiment shows that the average accuracy of motion recognition by multi-sensor
fusion at a short distance (situation 1) and relatively long distance assisted by optimization
from the SDI method (situation 3) can reach 93.27% and 92.80%, compared with situation 2,
the accuracy improved about 12%. Although the number of samples is not large, this result
shows that our proposed SDI method based on multi-sensor fusion makes it possible to
realize high-precision motion recognition beyond the optimal recognition distance of the
depth camera, and it can detect the different kinds of motions used at construction sites.
Figure 14 showed an accuracy comparison between different detecting situations.

Currently, the assumed applicable environment of our proposed method can be de-
scribed as some medium-sized indoor area of the construction site or buildings; some
corners or blind spots of the construction site. Due to environmental limitations, the work-
ers that work in a blind spot or in a closed or semi-closed area can be easily ignored, yet
the danger occurrence rate of these places is very high, and because of the remote location,
the rescue is not timely as well. Due to the different prerequisites, the proposed method is
different from the mainstream construction site monitoring approach, and the available
situations are relatively limited, but the importance is still not to be ignored.
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Comparison of different detecting situations

95.0%
90.0%
85.0%
80.0%
75.0%
70.0%

65.0%
60.0% -

Situation 1 Situation 2 Situation 3

Accuracy

Simulation situation
M visual only multi-sensor

Figure 14. Comparison of different detection situations.

6. Conclusions

This paper proposes a novel method for motion recognition and hazard prevention
of construction workers using an integrated sensor network. Our objective is to achieve
a better observation of workers” potentially dangerous motions in dead ends and blind
areas of different construction situations by monitoring workers. To effectively ensure
the safety of workers in the complex environment of a construction site, we extended the
detection distance of a normal depth camera. We improved the depth camera-based motion
recognition with SDI, which uses preprocessing on human scale finding and depth map
optimization methods to effectively reduce the detection errors and calculation burden of
a broad range of depth data, while at the same time enhancing the recognition distance
and accuracy of the depth camera in a selected area. We also used a portable computing
terminal instead of a single depth camera to achieve local analysis, avoiding the computing
burden caused by transferring a large amount of data to a central processing unit. We also
demonstrated that using different types of sensors to recognize human motion improves
the accuracy of motion recognition.

The proposed methodology has some limitations. To simplify the problem, we limited
the considered motions in our motion recognition method to detect only 10 selected types of
motion. Additionally, owing to the hardware limitations of the microcomputer, the current
configuration of the SDI method cannot achieve real-time detection. The experimental data
and results of the simulation were collected over time but analyzed at one time. In practical
applications, data collection and analysis will be processed in a short period of time, so
that even if workers experience abnormal conditions, they can be quickly discovered
and rescued. At present, the result of this approach only represents its performance in a
simulated environment. Although the function is basically realized, it is not yet mature
enough to be applied. Our next step will be focusing on real-time realization, improving
the efficiency of recognition, and the application in the real construction site environment.
The results collected from an actual construction site environment are expected to have
lower accuracy due to interferences.

During the simulation process, we discovered several problems, such as the points
of interest for some actions having similar trajectories, resulting in some misjudgments.
Therefore, finding out how to use other methods to determine and classify similar actions
more accurately to improve the performance of motion recognition will be the focus
of future work. Future work will also include adding a real-time warning based on
motion recognition to the detection system to realize the original intention of this method,
specifically, improved construction hazard prevention.
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