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Abstract: Anchorages of non-rectangular configuration, though not covered by current design 
codes, are often used in practice due to functional or architectural needs. Frequently, such anchor 
groups are placed close to a concrete edge and are subjected to shear loads. The design of such 
anchorages requires engineering judgement and no clear rules are given in the codes and standards. 
In this work, numerical investigations using a nonlinear 3D FE analysis code are carried out on 
anchor groups with triangular and hexagonal anchor patterns to understand their behavior under 
shear loads. A microplane model with relaxed kinematic constraint is utilized as the constitutive 
law for concrete. Two different orientations are considered for both triangular and hexagonal an-
chor groups while no hole clearance is considered in the analysis. Two loading scenarios are inves-
tigated: (i) shear loading applied perpendicular and towards the edge; and (ii) shear loading applied 
parallel to the edge. The results of the analyses are evaluated in terms of the load-displacement 
behavior and failure modes. A comparison is made between the results of the numerical simulations 
and the analytical calculations according to the current approaches. It is found that, similar to the 
rectangular anchorages, and also for such non-rectangular anchorages without hole clearance, it 
may be reasonable to calculate the concrete edge breakout capacity by assuming a failure crack from 
the back anchor row. Furthermore, the failure load of the investigated groups loaded in shear par-
allel to the edge may be considered as twice the failure load of the corresponding groups loaded in 
shear perpendicular to the edge. 

Keywords: anchor groups; non-rectangular configurations; shear behavior; finite element analysis; 
microplane model; crack patterns; parallel loading; perpendicular loading 
 

1. Introduction 
The current standards and guidelines for the design of anchorages in concrete con-

struction such as EN1992-4 [1], ACI 318 [2], or fib Bulletin 58 [3] provide direct design 
guidance only for anchor groups with rectangular anchor pattern and maximum three 
anchors in a row. This is primarily due to the fact that the current provisions for the design 
of anchorages are based largely on semi-empirical formulations and therefore, must be 
limited to the scope of the tests they are calibrated and validated for [4]. Anchorages are 
designed to transfer tension and shear forces in concrete that result from any combination 
of applied loads on the component connected by the anchorage. The concrete breakout 
failure modes often dominate the design of anchorages especially when the anchorage is 
placed close to an edge. The design of anchorages loaded in shear perpendicular and to-
wards the edge, against concrete edge breakout, is performed following the CCD method 
[5,6]. For the anchorages where the shear load is applied parallel to the edge or inclined 
to the edge, a modification factor is used to calculate the resistance [1,6]. 
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Although the design of non-rectangular anchorages is not covered explicitly by the 
codes and standards, they are rather frequently used in practice due to functional or ar-
chitectural requirements. In particular, anchorages with six or more anchors arranged in 
a circular pattern or three anchors in a triangular pattern are commonly used (Figure 1). 
The design of these anchorages is made based on the engineering judgement in absence 
of the clear design rules. Often, such anchorages are placed in the vicinity of an edge and 
therefore the concrete edge breakout failure under shear loads might govern the design 
capacity. For evaluation of the concrete edge breakout capacity according to the CCD 
method [5], the pre-judgement for where the failure crack will initiate from must be made. 
There is no consensus in the fastening community for the location of initiation of the fail-
ure crack even for rectangular groups [7–9] and no guidance is available for non-rectan-
gular groups.  

   
Figure 1. Examples of non-rectangular anchor groups used in practice (photos by author). 

Very limited tests are available on the behavior of anchorages of non-rectangular 
configurations. Cook et al. [10] tested anchor groups with 12 anchors under torsion load-
ing to simulate the conditions for anchorages of sign (billboard) structures. Bokor et al. 
[11] tested anchor groups of rectangular and non-rectangular configurations under ten-
sion loads based on which they developed a nonlinear spring model for the design of 
anchorages failing in concrete cone breakout under tension loads [12]. Furthermore, an-
chorages of triangular and hexagonal configurations under shear loads perpendicular to 
the edge were tested in [13]. The tests were carried out with bonded anchors and the an-
nular gap between the anchor rods and the hole in the base plate was not filled. The an-
chorage was thereby tested with random hole clearance pattern. The typical test setup 
used by Bokor et al [13] is shown in Figure 2. Further details of the tests can be found in 
Bokor [14]. 

  

(a) (b) 

Figure 2. Test setup used by Bokor et al. [12] for conducting shear tests on anchorages of (a) trian-
gular configuration and (b) hexagonal configuration (photos by author). 
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The tests were carried out for the triangular configuration with the anchor pattern as 
shown in Figure 2a (Tri-A: two anchors in the front and one in back row) and also turned 
around by 180 degrees (Tri-B: one anchor in the front and two anchors in back row). Sim-
ilarly for the hexagonal groups, two configurations were tested, as shown in Figure 2b 
(Hex-A: two anchors in the front and back row, total three rows) and also turned by 90 
degrees (Hex-B: one anchor in front and last row and two anchors in the middle rows, 
total four rows). It was shown that the behavior of the anchorage is strongly dependent 
on the anchor configuration as well as the hole clearance pattern (defined by how much 
annular gap exists between the anchor and the hole in the loading plate for different an-
chors). The influence of the hole clearance pattern on the shear behavior of anchorages 
were also shown by Unterweger et al. [15] and Lachinger et al. [16]. 

Currently, the information on the shear behavior of non-rectangular anchor groups 
is rather limited and the reported test results are influenced by the hole clearance (in gen-
eral). The hole clearance pattern does not only govern which anchors take up the forces 
first but also influences the rotational stiffness of the group. To understand the behavior 
of the anchorages tested by Bokor et al. [13] in non-cracked concrete without the influence 
of hole clearance, in this work, 3D finite element numerical simulations are carried out 
considering a perfect connectivity between the base plate and the anchors. The numerical 
simulations are carried for anchorages loaded perpendicular and towards the edge as well 
as loaded parallel to the edge under static loads. 

In the paper, the numerical program, numerical modeling procedure, and the mate-
rial parameters are first described (see Section 2). The numerical modeling procedure has 
been validated against tests on single anchors at different edge distances by Bokor [14]. 
The results of the numerical analyses performed on non-rectangular anchor groups are 
reported and discussed in detail in Section 3. In Section 4, the results of the numerical 
analyses are compared with the existing analytical methods extended suitably for the an-
chor configurations analyzed in this work. It is found that similar to the rectangular an-
chorages, also for such non-rectangular anchorages without hole clearance, it may be rea-
sonable to calculate the concrete edge breakout capacity by assuming a failure crack from 
the back anchor row. Furthermore, the failure load of the groups loaded in shear parallel 
to the edge may be considered as twice the failure load of the corresponding groups 
loaded in shear perpendicular to the edge. 

It should be noted that the design of anchorages is generally carried out assuming 
cracked concrete conditions. This is since, due to the notch effect of the anchor holes, it is 
very likely that the anchors would be intercepted by a crack when cracks form [4]. Based 
on the structural and anchor configuration, however, it is very probable that only some of 
the anchors of a group are intercepted by a crack [13,14]. The crack patterns depend also 
on environmental (external) influences [17]. However, the main aim of this paper is to 
investigate the behavior of non-rectangular anchor groups under shear loads in non-
cracked concrete and under static loads only. Additionally, it was aimed to investigate 
whether the current design rules could be extended for application to non-rectangular 
anchor group configurations as well. Therefore, the numerical investigations are carried 
out in non-cracked concrete by applying static shear loads without any eccentricity. 

2. Numerical Investigation 
2.1. Description of Cases Analyzed 

The anchor groups of triangular and hexagonal configurations as tested by Bokor et 
al. [13] were numerically analyzed in this work. Note that in the tests, due to practical 
reasons, a certain hole clearance (annular gap) was always present between the anchors 
and the holes of the base plate. However, in the analyses, a perfect connection between 
the plate and the anchors is considered. The main geometric parameters for each of the 
four analyzed configurations are summarized in Table 1. For each case, the load was ap-
plied perpendicular to and towards the edge (as shown in the second column of Table 1) 
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as well as parallel to the edge. The effective embedment depth of the anchors was hef = 120 
mm and their nominal diameter was d = 20 mm. The base plates used for triangular groups 
were of size 200 mm × 200 mm and the dimensions of the plates used for hexagonal groups 
were 250 mm × 250 mm. The thickness of the base plate was 50 mm in every case. 

Table 1. Main geometric parameters of the cases analyzed in this work. 

Series ID Anchor Configuration 
Edge Distance of the Corresponding  

Anchor Row [mm] Anchor Spacing, 
s [mm] c11 c12 c13 c14 

Tri-A 
 

120 240 - - 139 

Tri-B 
 

120 240 - - 139 

Hex-A 
 

101 171 240 - 80 

Hex-B 
 

80 120 200 240 80 

2.2. Numerical Modeling 
The finite element Code MASA developed at the Institute of Construction Materials, 

University of Stuttgart, was used to perform the nonlinear 3D numerical analyses. The 
software is capable of performing 3D nonlinear finite element analysis of structural ele-
ments made of quasi-brittle materials such as concrete, using a microplane model with a 
relaxed kinematic constraint as the constitutive law [18]. The material (concrete) is char-
acterized by the relation between the stress and strain components on planes of various 
orientations (pre-defined directions) in the microplane model. The microplanes may be 
imagined to represent the damage or weak planes in the microstructure, such as those that 
exist at the contact between the aggregate and the cement matrix [18].  

The microplane strains are assumed to be the projections of macroscopic strain tensor 
εij. On the microplane, one normal (σN; εN) and two shear stress-strain components (σK, σM; 
εK, εM) are considered. The normal microplane stress and strain components are further 
decomposed into volumetric and deviatoric parts (σN = σV + σD, εN = εV + εD) as shown in 
Figure 3. The microplane stresses are calculated using uniaxial constitutive laws of each 
microplane component (volumetric, deviatoric, and shear). In the model, the tensorial in-
variance restrictions do not need to be directly enforced. By employing virtual work ap-
proach, the macroscopic stress tensor is obtained as an integral over all predefined 21 mi-
croplane directions (symmetric part of the unit sphere shown in Figure 3 using Equation 
(1). 

3 ( ) ( ) ( )  
2 3 2 2

ij K M
ij V ij D i j i j j i i j j i

S

n n k n k n mn m n dS
δ σ σσ σ δ σ

π
 

= + − + + + + 
 

  (1)

where, S denotes the surface of the unit radius sphere and δij denotes Kronecker delta and 
ki and mi are directions of shear microplane components. It has been shown that this is an 
optimal number of integration points that still yields acceptable accuracy [19]. Further 
details of the model can be found in [18]. Damage and cracking are modeled in the frame-
work of the smeared crack continuum. To assure the objectivity of the analysis with re-
spect to the size of the finite elements, the crack band method is used according to Bažant 
and Oh [20]. For creating the 3D finite element model and for the evaluation of the nu-
merical results, the commercial pre- and post-processing software FEMAP (Siemens) was 
used. 
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Figure 3. Concept of the microplane model: integration point with microplanes (left) and decompo-
sition of strain vector on the specified microplane (right)—Figure taken from [16]. 

The modelling procedure used in this work has been well-proven to realistically sim-
ulate the behaviour of anchorages in concrete by various researchers in the past [14,21–
27]. The mesh size, modelling procedure, constitutive law, etc., used in this study corre-
sponds well with those used in the past validated investigations. 

The geometry and material properties of the numerical model corresponded to the 
parameters used in the experiments reported in [13,14]. The length and width of the con-
crete block as well as the boundary conditions were kept such that full concrete edge 
breakout body could form in all cases. The height of the concrete block was maintained at 
500 mm to allow the formation of the unrestricted concrete edge breakout body for the 
largest edge distance of the back anchor row (240 mm). The base plate and the anchor 
were considered to be rigidly connected and no hole clearance was modeled.  

The various components of the numerical model are depicted in Figure 4 for the case 
of Tri-A (refer to Table 1). The concrete specimen was modeled using solid 4- node tetra-
hedral elements while the steel base plate and anchors (steel rods) modeled using solid 8-
node hexahedral elements, contact layer between anchor and concrete, contact layer be-
tween base plate and concrete, and two types of bar elements. One type of bar elements 
implemented in MASA can take up both compressive and shear stresses and are used to 
model bond (mortar) between anchors and concrete. The other type of bar elements can 
transfer only compressive stresses and are used to model contact between base plate and 
concrete surface. Contact bar elements, which can take up only compressive stresses, were 
used in the interface between the concrete surface and base plate to simulate a PTFE layer, 
which was used in the experiments to minimize friction between steel and concrete. For 
the given problem, an element size of 5–10 mm is considered as optimal for realistic cal-
culation results. To reduce the calculation time of the models, this element size was only 
generated in the load application areas i.e. in the area of the anchors. A mesh size of 10-30 
mm was used in the regions, where no cracking was expected in the concrete. 
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(a) (b) 

(c) (d) 

Figure 4. (a) 3D finite element model of GS-Tri-A, (b) base plate and anchos, (c) contact between anchor and concrete and 
contact between the base plate and concrete surface, (d) bond type bar elements along the anchor shaft and contact type 
bar elements below the base plate. 

2.3. Material Parameters 
As mentioned above, the nonlinear behaviour of concrete was modelled using the 

microplane model for relaxed kinematic constraint [18]. The model utilizes a set of so-
called microplane parameters that are derived based on the macroscopic material proper-
ties. The macroscopic concrete properties used for modelling of concrete behaviour corre-
sponded to a cylinder compressive strength, fc = 20 MPa. The compressive strength of con-
crete corresponded to standard cubic compressive strength of 25 MPa and the other pa-
rameters were derived using the following expressions. 

The modulus of elasticity of concrete was calculated according to ACI 318-19 as: 𝐸௖ = 4730ඥ𝑓௖ = 4730ට20 𝑁 𝑚𝑚ଶൗ = 21150 𝑁 𝑚𝑚ଶൗ  (2)

The mean concrete tensile strength was calculated according to Karihaloo [28] as: 𝑓௧ = 0.3 ∙ 𝑓௖଴,଺଻ = 0.3 ∙ 20 𝑁 𝑚𝑚ଶൗ ଴.଺଻ = 2.2 𝑁 𝑚𝑚ଶൗ  (3)

The fracture energy of the concrete was calculated according to Karihaloo [28] for a 
maximum grain size diameter of 16 mm, αF is assumed to be 7. 𝐺௙ =  𝛼ி ∙ 𝑓௖଴.଻ = 7 ∙ (20 𝑁 𝑚𝑚ଶൗ )଴.଻ = 57 𝑁𝑚 𝑚ଶൗ  (4)

The Poisson's ratio of concrete is assumed to be 0.18. 
The behaviour of the base plate and the anchors were assumed to be linear elastic. 

The modulus of elasticity for steel was 210 GPa and the Poisson's ratio was taken as 0.33. 
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The bar elements used to model bond behaviour of epoxy mortar were assigned a 
bond stress-slip curve as shown in Figure 5. Based on the results of confined tension tests 
(pull-out) on single anchors, the following parameters are used: compression modulus = 
2500 MPa, peak bond strength τmax = 32.5 MPa, residual bond stress τR = 8 N/mm², values 
of slip s1 = 0.01 mm, s2 = 0.2 mm, and s3 = 2 mm. Note that the bond stresses remained 
within the linear range for all the analysis cases. 

The dimensions of the concrete block were decided such that a clear concrete edge 
breakout body can form in each case. The thickness of the concrete block was 500 mm in 
every case. The horizontal dimensions from the outermost anchors of the last anchor row 
to the support were kept as twice the edge distance of the last anchor row. 

 
Figure 5. Idealized bond stress-slip relationship used to model the behavior of epoxy mortar. 

The analysis was carried out in displacement control using secant stiffness matrix 
approach. The target convergence in the analysis was 1%. The numerical modeling proce-
dure was validated against the tests on single anchors at an edge distance of 80 mm, 160 
mm and 20 mm by Bokor [14]. The results displayed an agreement within 5% of the test 
results for all the cases. 

3. Results and Discussion 
In this section, the results of numerical analyses performed on triangular and hexag-

onal anchor groups are presented and discussed in detail. 

3.1. Triangular Anchor Groups 
3.1.1. Group Tri-A 

The shear load vs. displacement curve obtained from numerical analysis for Group 
Tri-A loaded perpendicular and towards the free concrete edge is shown in Figure 6. The 
curve shows a typical concrete edge breakout dominated load-displacement response 
characterized by an ascending branch, a relatively sharp peak followed by a gradual de-
scending branch.  
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Figure 6. Load-displacement curves obtained for triangular groups from numerical analysis. 

The numerically obtained failure load of the group TRI-A was 96.8 kN. In compari-
son, when the same anchor group is subjected to shear load parallel to the edge, a peak 
load of 213.4 kN is recorded, which is 2.2 times the failure load of the group loaded per-
pendicular to the edge. This agrees well with the regulations given in current standards 
that recommend that the concrete edge resistance of an anchor group loaded parallel to 
an edge may be considered as twice the concrete edge resistance of the same anchor group 
loaded perpendicular to the edge. Note, however, that the initial stiffness of the anchor 
group loaded parallel to the edge is rather similar to the stiffness of the group loaded 
perpendicular to the edge. This agrees well with the observations from the literature that 
showed that the shear stiffness of the anchor is independent of the edge distance provided 
that all other installation parameters are the same [9,13,14,29]. 

The numerically obtained failure crack pattern for the case of group Tri-A loaded 
perpendicular to the edge is shown in Figure 7. The cracks are visualized by plotting the 
principle tensile strains with a legend where the red color represents a critical crack width 
of 0.3 mm or more. Figure 7a shows the developed cracking at the ultimate load that 
shows a small crack at the front. However, it is clear that the failure crack originates from 
the back anchor and the small damages at the front row do not influence the force distri-
bution significantly at the back anchor. Figure 7b depicts the crack pattern in the post-
peak phase with a major crack coming from the back anchor and also a secondary tensile 
crack is visible behind the back anchor. The crack pattern is very similar to the crack pat-
tern obtained in the tests [13,14]. A clear concrete edge breakout body is visible with a 
crack from the back anchor row propagating at an inclination of 1:1.5 (~35 degrees). The 
observations match well with the tests on anchorages performed without hole clearance 
in [7,9] that showed that the failure crack of such anchorages would initiate from the back 
anchor row. 
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(a)    

(b)    

Figure 7. Crack pattern obtained from numerical analysis for Group Tri-A loaded perpendicular to the edge (a) at peak 
load, and (b) in post-peak phase. 

For the same group, when the load is applied parallel to the concrete edge, the first 
crack appears from the anchor close to the edge and behind as shown in Figure 8a. Note 
that the shear load is applied from right to left. At peak load, two major cracks appear 
from the back anchor, one propagating parallel to the edge and another crack propagating 
perpendicular to the edge (Figure 8b). The section cut (Figure 8b, right) shows that a crack 
appears from the embedment depth of the anchor and propagates inclined upwards to 
the back side. The failure mode appears as a mix of concrete edge breakout and pryout 
failure. The final breakout body shows several cracks coalescing together and crushing of 
concrete in front of the anchors. 
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(a)   

(b)   

(c)   

Figure 8. Crack pattern obtained from numerical analysis for Group Tri-A loaded parallel to the edge (a) first cracks, (b) 
at peak load, and (c) post-peak phase. 

3.1.2. Group Tri-B 
Group Tri-B was a mirror image of the Group Tri-A with one anchor in the front and 

two anchors in the back row. Group Tri-B displayed same initial stiffness as for Group 
Tri-A due to the same number of anchors in the group. This is understandable since the 
shear stiffness of the anchors in normal concrete is considered fairly independent of the 
edge distance provided that all other installation parameters are the same [9,13,14,29]. 
However, due to different orientation of the anchors, this group reached a higher failure 
load. The load-displacement curve given in Figure 6 shows that both the groups display 
a similar load-displacement response qualitatively. For the group Tri-B loaded perpendic-
ular to the edge, the failure load was 107.9 kN, which is approximately 11% higher than 
the value obtained for Group Tri-A when loaded perpendicular to the edge. This differ-
ence can be explained by the fact that in series GS-Tri-B, the back anchor row can activate 
more concrete due to the presence of two anchors. The crack pattern obtained from the 
numerical analysis is depicted in Figure 9. We can see that the failure crack developed 
from the back anchor row, and there is only a small concrete crushing visible at the front 
anchor. In addition, a vertical crack has developed from the front anchor in the post-peak, 
and a secondary crack is visible behind the back anchor in the post-peak phase.  
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(a)    

(b)    

Figure 9. Crack pattern obtained from numerical analysis for Group Tri-B loaded perpendicular to the edge (a) at peak 
load, and (b) post-peak phase. 

For the case of Group Tri-B loaded parallel to the concrete edge, the ultimate load 
was obtained as 230.4 kN, which is approximately 2.1 times the failure load of the Group 
Tri-B loaded perpendicular to the edge. The first crack appears from the right back anchor 
even if it is further away from the edge than the front anchor (see Figure 10a). At peak 
load, a major crack appears from the back anchor that propagates perpendicular to the 
edge and another crack that propagates parallel to the edge (Figure 10b). Furthermore, a 
crack appears from the embedment depth of the anchor and propagates inclined upwards 
to the back side. The post-peak breakout body shows several cracks running parallel and 
perpendicular to the edge and crushing of concrete in front of the anchors. The failure 
mode appears to be a mix of concrete edge breakout and pryout failure. This is similar to 
the failure mode observed for Group Tri-A loaded parallel to the edge. 

(a)   

(b)   
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(c)    

Figure 10. Crack pattern obtained from numerical analysis for Group Tri-B loaded parallel to the edge (a) first cracks, (b) 
at peak load, and (c) post-peak phase. 

3.2. Hexagonal Anchor Groups 
3.2.1. Group Hex-A 

Group Hex-B had six anchors arranged in a regular hexagonal pattern and oriented 
in a way that three anchor rows were formed with two anchors each in every row (refer 
to Table 1). The shear load vs. displacement curves obtained from numerical analysis for 
Group Hex-A loaded perpendicular and parallel to the edge are depicted in Figure 11. 
The numerically obtained failure load of the group Hex-A loaded perpendicular to the 
edge was 109.2 kN, which is rather close to the failure load obtained for the case of group 
Tri-B under similar loading scenario. This can be explained by the fact that the edge dis-
tance of the back anchor row is same for both the cases (see Table 1). It was observed that 
the anchor spacing of the last anchor row is somewhat larger for group Tri-B (120 mm) 
than for group Hex-A (80 mm). Nevertheless, the failure load obtained for group Hex-A 
is slightly larger than group Tri-B, which may be attributed to the higher number of an-
chors resulting in lower pressure in front of the anchors for group Hex-A than for group 
Tri-B. 

The influence of having a greater number of anchors in the group can be seen by 
comparing the failure load of the group Hex-A loaded parallel to the edge (260.7 kN), 
which was approximately 2.4 times the failure load for the same group loaded perpendic-
ular to the edge. Thus, the current regulations stating that the concrete edge failure load 
of an anchor group loaded parallel to the edge may be taken as twice the concrete edge 
resistance of the same group loaded perpendicular to the edge seems valid (although a bit 
conservative) for hexagonal groups as well. Once again, the initial stiffness of the group 
appears to be independent of the direction of shear loading. 

 
Figure 11. Load-displacement curves obtained for hexagonal groups from numerical analysis. 
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The numerically obtained failure crack pattern for group Hex-A loaded perpendicu-
lar to the edge is depicted in Figure 12 for (a) peak load, and (b) the post-peak phase. The 
failure crack originates from the back anchor row and the crack propagates horizontally 
in between the anchors of the back row and further outward at an angle of approximately 
35 degrees. The crack pattern is very similar to the crack pattern obtained in the tests [14]. 
The view inside the concrete display the crack propagating from the back anchor row 
towards the front edge at an angle of approximately 35 degrees as well. These crack pat-
terns match very well with the assumption of the CCD method [5] if the failure crack 
appearing from the back anchor row is considered. 

(a)   

(b)    

Figure 12. Crack pattern obtained from numerical analysis for Group Hex-A (a) at peak load, and (b) Crack pattern in the 
post-peak phase. 

In case of the anchor group Hex-A loaded parallel to the edge, the first crack appears 
to join the back three anchors (Figure 13a), while at peak load, radial cracks appear from 
back three anchors. A horizontal crack joining the side anchors appears from the embed-
ment depth (Figure 13b) and then propagates inclined upwards to the concrete surface. 
This is enhanced in the post-peak phase (Figure 13c) that display several cracks, concrete 
crushing and a breakout body with the concrete cone forming behind the anchor group 
(with respect to the loading direction). The same as in case of triangular anchor groups, 
for this case also the failure mode can be considered as a combination of concrete edge 
breakout and pryout failure.  

(a)   
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(b)   

(c)   

Figure 13. Crack pattern obtained from numerical analysis for Group Hex-A loaded parallel to the edge (a) first cracks, 
(b) at peak load, and (c) post-peak phase. 

3.2.2. Group Hex-B 
Group Hex-B had the geometry identical to Group Hex-A, but rotated by 90 degrees. 

This orientation resulted in 4 anchor rows with one anchor each in the first and the last 
anchor row and 2 anchors each in second and third anchor row (compare Table 1). The 
peak load obtained from the analysis for group Hex-B when loaded perpendicular to the 
edge was 97.8 kN, which is comparable to the failure load obtained for group Tri-A loaded 
perpendicular to the edge. This is expected since both the groups have only one anchor at 
the last anchor row with the edge distance of 240 mm. The load-displacement curve given 
in Figure 11 shows similar characteristics as that for other groups, suggesting a concrete 
edge breakout failure mode. This is confirmed by the crack pattern obtained from the nu-
merical analysis as depicted in Figure 14. Again, the failure crack developed from the back 
anchor row (single anchor in the row), and propagates at an angle of approximately 35 
degrees to the horizontal. 
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(a)   

(b)   

Figure 14. Crack pattern obtained from numerical analysis for Group Hex-B (a) at peak load, and (b) Crack pattern in the 
post-peak phase. 

For group Hex-B loaded parallel to the edge, the peak load attained by the group is 
236.2 kN (2.4 times the failure load of the group loaded perpendicular to the edge). The 
first cracks appear from the two anchors in the back row (with respect to the loading di-
rection) perpendicular to the edge and perpendicular to the loading direction (Figure 15a). 
At peak load (Figure 15b), a horizontal crack between the anchors appearing from the 
level of embedment depth is visible that inclines upwards behind the anchor group (with 
respect to the loading direction). The cracking enhances in the post-peak phase (Figure 
15c). The failure mode appears to be a mix of pryout and concrete edge breakout. 

(a)    

(b)    
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(c)   

Figure 15. Crack pattern obtained from numerical analysis for Group Hex-B loaded parallel to the edge (a) first cracks, (b) 
at peak load, and (c) post-peak phase. 

4. Comparison with Analytical Models  
The numerical simulations performed on anchor groups with anchors arranged in a 

triangular or hexagonal pattern show that for the investigated anchorages loaded perpen-
dicular to the edge, where no annular gap exists between the base plate and the anchors, 
the failure crack appears from the back anchor row. This is in agreement with the previous 
research [6,7,9,30,31], which showed that, when an anchor group having a ratio of anchor 
spacing to edge distance (s1/c1,1) less than 1.0 and loaded in shear perpendicular to the 
concrete edge, the crack origination from the front row is suppressed by the compression 
field that originates from the back anchor row. Therefore, it is attempted to calculate the 
failure load of the anchorages analyzed in this work by adapting the models given in 
EN1992-4 [1] (considering the failure crack from the front anchor row) and fib Bulletin 58 
[3] (considering the failure crack from back anchor row).  

Based on the EN 1992-4 [1] and fib Bulletin 58 [3], the mean shear resistance of an 
anchorage in case of concrete edge failure can be calculated as  𝑉ோ௠,௖ = 𝑉ோ௠,௖଴ ∙ 𝐴௖,௏𝐴௖,௏଴ ∙ ௦,௏ ∙ ௛,௏ ∙ ௘௖,௏ ∙ ఈ,௏ ∙ ௥௘,௏ (5)

where, 𝑉ோ௠,௖଴   is the mean basic resistance in case of concrete edge failure of a single anchor 
in uncracked concrete without any influences and is calculated according to Equation (6) 𝑉ோ௠,௖଴ = 1.33 ∙ 2.4 ∙ 𝑑௡௢௠ఈ ∙ 𝑙௙ఉ ∙ ඥ𝑓௖௠ ∙ 𝑐ଵଵ.ହ (6)

𝛼 = 0.1 ∙ (𝑙௙ 𝑐ଵൗ )଴.ହ (7)𝛽 = 0.1 ∙ (𝑑௡௢௠ 𝑐ଵൗ )଴.ଶ (8)

where,  𝑑௡௢௠ nominal anchor diameter;  𝑙௙ effective embedment depth; 𝑙௙ =  ℎ௘௙  in case of a uniform diameter of the 
shank of the headed  fastener and a uniform diameter of the post-installed fastener; 𝑓௖௠ mean concrete cylinder compressive strength measured on concrete cylinder 
of ø =150 mm and h = 300 mm, which is convertible from fcc,150 (mean cube compressive 
strength with side length of a = 150 mm) 𝑓௖௠ = 0.8 ∙ 𝑓௖௖,ଵହ଴; 𝑐ଵ edge distance (c1 = edge distance of the front row according to EN1992-4 [1] and 
or edge distance of back row according to fib Bulletin 58 [3]); ஺೎,ೇ஺೎,ೇబ  ratio, takes into account the geometrical effect of spacing as well as of further 

edge distances and partly the effect of thickness of the concrete member on the resistance. 𝐴௖,௏଴  reference projected area, 𝐴௖,௏଴ = 4.5 ∙ 𝑐ଵଶ; 
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𝐴௖,௏ area of the idealised concrete breakout body, limited by the overlapping con-
crete cones of adjacent fasteners (𝑠 ≤ 3 ∙ 𝑐ଵ) as well as by edges parallel to the assumed 
loading direction (𝑐ଶ ≤ 1.5 ∙ 𝑐ଵ) and by member thickness (ℎ ≤ 1.5 ∙ 𝑐ଵ); 

௦,௏ takes account of the disturbance of the distribution of stresses in the concrete 
due to further edges of the concrete member on the shear resistance; 

௛,௏ takes account of the fact that the concrete edge resistance does not decrease 
proportionally to the member thickness as assumed by the ratio ஺೎,ೇ஺೎,ೇబ ; 

௘௖,௏ takes into account a group effect when different shear loads are acting on the 
individual fasteners of a group (eccentric loading); 

ఈ,௏ takes account of the influence of a shear load inclined to the edge under con-
sideration on the concrete edge resistance; 

௥௘,௏ takes account of the effect of reinforcement located on the edge 
Since the models given in [1] and [3] are valid for rectangular groups only, the calcu-

lations were done based on following modifications. For the calculation of mean concrete 
edge resistance according to EN1992-4 [1], only the front anchor row was considered, 
while applying Equation (5) through Equation (8). Similarly, for the calculation of the 
mean concrete edge breakout capacity according to fib Bulletin 58 [3], only the back an-
chor row was considered. For example, for Group Tri-A, c1 is taken as 120mm (corre-
sponding to front anchor row, see Table 1 for calculations according to EN1992-4, while 
for calculations according to fib Bulletin 58, c1 is taken as 240 mm (corresponding to back 
anchor row, see Table 1). 

The failure loads thus calculated are summarized and compared with the results of 
the numerical analyses in Table 2. It can be seen that for all the cases, considering the 
failure crack from back anchor row on the basis of fib Bulletin 58 results in values similar 
to those obtained from the analyses. On contrary, considering the failure crack from the 
front anchor row according to EN1992-4 results in rather conservative estimates of failure 
loads. Therefore, for such anchorages, considering the failure crack from the back anchor 
row seems reasonable. However, it must be noted that these observations are valid only 
for the cases where no annular gap exists between the anchor and the base plate (zero-
hole clearance). It has been shown by Bokor [14] that the hole clearance pattern can have 
a significant negative influence on the load-displacement behavior as well as the concrete 
edge breakout capacity of the anchorages. 

Table 2. Comparison of numerical results with analytically obtained failure loads for the investi-
gated anchor groups loaded perpendicular to the edge. 

Series ID 

Failure Load 
from Numerical 
Analysis, Vu,num 

[kN] 

Analytical Mean Failure 
Loads, Vu,calc 

Ratio  
Vu,num/Vu,calc  

EN1992-4 [1] 
[kN] 

fib Bull. 58 [3] 
[kN] 

EN1992-4 [1] 
[-] 

fib Bull. 58 [3] 
[-] 

Tri-A 96.8 49.5 88.4 1.96 1.10 
Tri-B 107.9 35.7 105.4 3.02 1.02 

Hex-A 109.2 21.4 88.4 5.10 1.24 
Hex-B 97.8 36.3 98.2 2.69 1.00 

Furthermore, the results of the numerical analysis obtained for the cases with loading 
parallel to the edge are compared with the corresponding analytical values calculated as-
suming that the resistance of an anchorage loaded parallel to the edge is twice the re-
sistance of the same anchorage loaded perpendicular to the edge (Table 3). It can be seen 
that this assumption followed in the current norms fits rather well also for the results 
obtained for triangular and hexagonal anchorages investigated in this work. Once again, 
the failure loads calculated according to fib Bulletin 58 (assuming the failure crack from 
back anchor row) fit the results of numerical analysis quite well. The resistance calculated 
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assuming the failure crack from the front anchor row (approach given by EN1992-4) is 
rather conservative in all the investigated cases. 

Table 3. Comparison of numerical results with analytically obtained failure loads for the investi-
gated anchor groups loaded parallel to the edge. 

Series ID 

Failure Load 
From Numerical 
Analysis, Vu,num 

[kN] 

Analytical Mean Failure 
Loads, Vu,calc 

Ratio  
Vu,num/Vu,calc  

EN1992-4 [1] 
[kN] 

fib Bull. 58 [3] 
[kN] 

EN1992-4 [1] 
[-] 

fib Bull. 58 [3] 
[-] 

Tri-A 213.4 99.0 176.8 2.16 1.21 
Tri-B 230.4 71.4 210.8 3.23 1.09 

Hex-A 260.7 42.8 176.8 6.09 1.47 
Hex-B 236.2 72.6 196.4 3.25 1.20 

5. Summary and Conclusions 
In this work, 3D finite element numerical simulations were carried out on anchor 

groups with bonded anchors arranged in a triangular and hexagonal pattern and loaded 
in shear perpendicular to the edge or parallel to the edge. The target failure mode for the 
investigations was concrete edge failure. The following major conclusions could be drawn 
from this work: 

1. In all of the cases loaded perpendicular to the edge, a failure crack appeared from 
the back anchor row. This is attributed to the fact that the anchor groups were considered 
without any hole clearance and the spacing to edge distance was limited to 1.0. 

2. It seems reasonable to calculate the concrete edge resistance of the group by as-
suming the failure crack appearing from the back anchor row and considering the number 
of anchors and the anchor spacing in the back anchor row. 

3. The failure load of the groups loaded in shear parallel to the edge can be considered 
as twice the failure load of the corresponding groups loaded in shear perpendicular to the 
edge. 

Note: The conclusions given above are based purely on the results of the numerical 
analysis on the limited configurations considered in this work. This includes only trian-
gular and hexagonal configurations subjected to shear loads without any hole clearance 
and without any eccentricity. Furthermore, the ratio of anchor spacing to the edge distance 
is limited to 1.0.  

Experimental investigations are needed to confirm the findings of this work as well 
as to verify the influence of various aspects on the shear behavior of non-rectangular an-
chorages. In general, a displacement-based approach is required that can consider the in-
fluence of important aspects such as the anchorage geometry, loading position, hole clear-
ance pattern, etc. on the performance of anchorages under shear loads. One such approach 
has been worked out by Bokor [14] and will be presented in a future publication. 
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