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Abstract: Hydraulic models were used in practice to predict the effect of human intervention during
extreme conditions. However, the accuracy of such predictions remains untested. In this study,
we compare a simulated trend in water levels covering a twenty-year period of large-scale human
intervention with a thirty-year observational record. The results show that the observed water levels
display a linearly decreasing trend attributed to channel bed erosion. A deviation from this trend,
which would be an indication of the effect of human intervention, was not observed. We propose that
the most likely explanation for this is that any effect observable at lower discharge is hidden in the
uncertainty of the rating curve. Given the inherent uncertainties associated with making predictions
about a changing system for conditions with a low period of return, we argue that model uncertainty
should be considered in intervention design.

Keywords: human intervention; hydraulic analysis; probabilistic analysis; post-project assessment;
uncertainty analysis

1. Introduction

In January 1995, high discharge on the River Rhine prompted the evacuation of more
than two hundred thousand people from flood-prone regions in The Netherlands. Although
flood defences ultimately held, this event was instrumental to green-lighting a large-scale
program to revise the Dutch Rhine branches. This program, which would become known as
“Room for the River”, consisted of 39 coordinated interventions in the river system between
1995 and 2017 (Figure 1). It differed from previous efforts to increase flood safety in that
the interventions did not focus on the primary flood defences (i.e., the dikes) but on spatial
interventions that increased the conveyance capacity of the system by lowering the water
levels during a design discharge. Examples of such interventions include side channels [1],
flow-parallel longitudinal training dams instead of flow-orthogonal groynes [2,3] and other
interventions [4,5]. The design of these spatially complex interventions was to a large extent
based on model simulations [6], which presupposes a certain trust in their output.

The credibility of model simulations is in part based on proven accuracy by comparing
model output with observations of reality. Hydraulic models used in Room for the River
were optimised (calibrated) on available observations, resulting in adequate accuracy
under observed conditions. However, it could be argued that historical evidence is still
insufficient to claim a high accuracy for intervention designs because this requires both
extrapolation to extreme discharges and extrapolation to changed conditions (i.e., the
assumption of stationarity of model error [7–9]).
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Figure 1. A selection of interventions carried out in the River Waal between 1995 and 2017. The River Waal splits from the
River Rhine at 51.872◦ latitude, 6.038◦ longitude.

The use of model simulations based on limited empirical support in decision making
has come under increased scrutiny at the turn of the century [10,11]. There has since
been broad scientific consensus that an uncertainty analysis is indispensable in model-
supported decision making, especially when models are used to predict the future [12–14].
In the literature, the uncertainty quantification of river models for extreme discharges is
generally performed by propagating uncertainty in model assumptions to model the output
by way of Monte Carlo simulation [15,16]. Berends et al. [4] extended this approach to
uncertainty quantification for simulated hydraulic effects of human intervention. However,
it is still unknown how well models are able to predict the hydraulic effects of changes in
river systems.

In this paper, we study an unprecedented hydraulic and geographical data set of
twenty years of human intervention in the River Waal (Figure 1). These interventions were
designed to reduce flood levels, following the near-flood of 1995. In this paper, we analyse
long-term trends in water levels using observations and hydraulic modelling. Our objective
is to find out to what extent the predicted reduction in flood levels by hydraulic models
can be verified using the observational record. First, we describe the simulated changes to
flood water levels over time, including parameter uncertainty. Next, we construct Bayesian
rating curve models from available observations to provide an independent analysis of
water level trends over time. Finally, the simulated and observed trends are compared.

2. Data

In this section, we describe the available geographical and hydraulic data. For both
data sets, meta-information is obtained from documentation and from an interview with
experts from Rijkswaterstaat (English: Directorate-General for Public Works and Water
Management; part of the Dutch Ministry of Infrastructure and Water Management).

2.1. Case Study

The River Waal is the largest (by discharge) and economically most important contin-
uation of the River Rhine in the Dutch Delta (Figure 1). It is a lowland river with a gentle
slope of 10−4 m/m, a total length of 85 km, and a single channel with an average width of
about 250 m. The Waal draws about two-thirds of the discharge from the River Rhine, with
the rest going to the smaller distributary rivers Nederrijn and IJssel, which results in an
average discharge of about 1600 m3s−1. In 1995, major rainfall in Europe led to a record
discharge of nearly 7850 m3s−1 in the River Waal, which brought about a mass evacuation
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of cities along the River for fear of a dike breach. In response, the Dutch Government
instituted the “Ruimte voor de Rivier” (customarily translated as “Room for the River”)
programme to increase the flow capacity of the Rhine. The objective of this programme
was to lower flood levels with such an amount that, during an even higher discharge (the
design discharge was 16,000 m3s−1 for the Rhine or 10,165 m3s−1 for the Waal), the dikes
would not overflow.

2.2. Geographical Database

A database containing detailed geographical information of the Dutch Rhine branches
was made available by Rijkswaterstaat. This GIS database is part of the ‘Baseline’ in-
formation system, which is both a protocol for encoding GIS information and software
for visualisation, manipulation and building hydraulic models [17]. Baseline has been
built for bookkeeping of the changes to the river system following the Room for the River
programme, and use of the Baseline is mandatory for new intervention designs [18]. The
database consists of a description of the 1995 river system, including a digital elevation
model, land-use map and information on structural elements such as dikes, embankments,
measurement stations and groynes. Furthermore, the database includes a list of 289 identi-
fied changes to the Dutch Rhine system between 1995 and 2016, of which 104 are attributed
to the River Waal. Individual changes are either autonomous (e.g., aggradation of the
flood plains following a flood event) or anthropogenic (e.g., the construction of a new
side channel). Although the list of changes is comprehensive, experts stressed that the list
is not exhaustive. The list is limited to known changes and may lag behind reality. For
example, measurements of the dike relocation and side channel construction at Nijmegen
were executed between 2012 and 2015 but was only included in the Baseline database after
its finished date in 2015. Therefore, the effects on the river flow during the construction
phase are not visible in simulations but may have affected flood levels in reality.

Other, mainly autonomous changes that occurred in the river system are updated
periodically, with an interval of one or more years, even though the actual changes happen
gradually. Between 1995 and 2009, bed level changes were not updated. Bed levels
before 2009 were based on a single-beam data set. From 2009 onwards, bed levels were
annually updated based on multi-beam measurements. The vegetation maps were updated
periodically, in 2005, 2008 and 2012. Due to the rate of update, some changes that are either
seasonal or dependent on the timing of maintenance in reality are represented as a sudden
change in vegetation. For example, during the growth season, meadows (low grass) may
develop herbaceous vegetation, which offers significantly more resistance to flow, in a time
span of weeks. This is expected to lead to a discrepancy between the observations and the
model simulations.

2.3. Hydraulic Data

At six points along the River Waal, water levels relative to the Amsterdam Ordnance
Datum (NAP) have been continuously measured on a daily basis since 1901. Measurements
are currently taken using automatic float-driven shaft encoders [19]. The measurement
stations are located near the cities of Vuren, Zaltbommel, Tiel, Dodewaard and Nijmegen
with an additional one at the Pannerden bifurcation (see Figure 1).

Discharges are infrequently derived from measured flow velocities, first using me-
chanical hydrometric current meters (Specifically, a helical Ott device; ’Ott mill’) and later
(starting from 2002) hydroacoustically (ADCP). These observations were made available by
Rijkswaterstaat, covering a period from 1988 to 2018. The data set includes 1257 observa-
tions, with an average of 42 observations per year. The maximum number of observations
was recorded in 2008 (87 observations), while some years have less than 10 observations
(1992 (8), 1994 (9) and 1997 (5)). Over the entire data set, most observations (51%) were
carried out in the first four months (January through April). An overview of the available
measurements is given in Table A2 (Appendix B).
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3. Methods
3.1. General Outline

The general outline of this paper is shown in Figure 2.
In the practice of the Room for the River designs, the effect of flood mitigation mea-

sures in the Waal were projected using hydraulic simulations forced by design conditions.
These design conditions were defined as the steady design discharge with a return period
of approximately 1250 years, which for the Waal is 10,165 m3s−1 [20]. It should be noted
that the choice for a steady discharge and not a discharge wave (which would introduce
significant uncertainty with regard to its shape) is conservative, as any discharge wave
would experience attenuation through dissipation, which both lowers the peak discharge
as well as the peak water levels.

Here, we followed the approach taken in practice to calculate the trend in design flood
water levels over 20 years, with two notable exceptions. First, we did not calibrate our
models. The most important reason for this decision is to maintain independence between
observations and model simulations. If the model was calibrated on the same observations
used to corroborate model results, it would be obvious to any reader that the presented
argument has very little merit. However, we also decided not to calibrate them because we
look at the general trends, not precision, in the model simulation. To illustrate this point,
we fully expected that a dike relocation, which increases the flow capacity of a river, would
result in a prediction of decreased water levels (ceteris paribus) whether the model was
calibrated or not. Compounding this issue, the ability of calibrated hydraulic models to
remain accurate after significant change to the system has not yet been demonstrated.

The second deviation from the approach taken in practice is that we propagated
parameter uncertainty in hydraulic roughness through the model. Berends et al. [4] showed
that parameter uncertainty can result in significant uncertainty in the predicted effect
depending on the type of intervention, but this does not change the sign of the effect: flood
mitigation measures mitigate, although the precise amount of mitigation is sensitive to
parameter uncertainty. However, since this study involves the superposition of multiple
human interventions that lower flood levels as well as non-anthropogenic changes that are
expected to increase flood levels (e.g., vegetation growth and sedimentation), the net effect
is expected to be sensitive to parameter uncertainty.

The simulated trend is compared to rating curves (discharge–water level relationship),
which are estimated for each year separately. These rating curves are referred to as the
“observed trend”, as they are derived from observations.

Geographical database Hydraulic data 

Water level Discharge

Hydraulic modelling

Comparison of trendsSimulated trend

Rating curves

Observed trend

D-Flow FM
CORAL

Baseline

PyMC3

Figure 2. Schematic outline of the methodology. The software used is indicated with red, italicised
labels.

3.2. Hydraulic Modelling

The River Waal was modelled using the Delft3D Flexible Mesh Suite (D-Flow FM)
modelling software [21]. The numerical grid was curvilinear, with a grid size of approx-
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imately 20 m by 40 m in the main channel and 40 m by 50 m in the floodplains. The
upstream boundary lies at the Pannerden bifurcation, and the downstream boundary lies
at the Merwede bifurcation (see Figure 1).

The geographical model input (bed levels, sub-grid elements and roughness classifica-
tion) was derived from the Baseline database. First, the geographical Baseline database
was updated to the most recent (v. 6.1) protocol, which includes support for the D-FM
modelling software. We then created a database for each year from 1995 up to and includ-
ing 2015, with the exception of years in which no changes are recorded (1996, 2004 and
2006). For each of those years, the geographical input data for the hydraulic model were
generated. All operations were performed with the Baseline software, and a total of 18
hydraulic models were created. Each of these hydraulic model represents a snapshot of the
state of the river for a given year.

All models were forced by a constant discharge of 10,165 m3s−1 and a downstream
water level computed from a stationary stage–discharge relationship at the Hardinxveld
downstream boundary condition (Figure 1).

For the selection of parameters considered uncertain, we followed Warmink et al. [16,22],
who concluded that hydraulic roughness and discharge are the most sensitive parameters.
However, since discharge is not a variable in our analysis, we limited ourselves to hydraulic
roughness, which is governed by 38 parameters related to the various land classes such as
vegetation species and channel types. Uncertainty in hydraulic roughness is accounted
for by varying the vegetation parameters and the roughness of channels and other water
bodies, using the distributions by Berends et al. [4] (see Table A1 in Appendix A). The
water level for the reference situation (1995) was quantified using a quasi-random Monte
Carlo simulation with 500 samples. The uncertainty of the output water levels for all
years except 1995 were quantified using CORAL [23,24]. CORAL is a Monte Carlo-based
uncertainty quantification method that reduces the number of required simulations by
mapping the joint probability distribution of the reference model to the distribution of the
changed models (i.e., all models after 1995) using a correlation model. Here, we used a
linear correlation model and 20 samples for each year.

3.3. Rating Curve Construction

In the River Waal, similar to most rivers, water levels are continuously measured but
discharges are not. To extend the observational record, hydrologists use rating curves to
estimate discharge from water level measurements. Rating curves are empirical models that
express the water level in terms of discharge, usually based on the basic equation for steady,
uniform flow in a wide rectangular channel using the Manning–Strickler formulation:

Q = An−1S1/2
b (z− zb)

5/3 (1)

with water level z (m+NAP; NAP stands for the Amsterdam Ordnance Datum or mean sea
level), bed level zb (m+NAP), discharge Q (m3s−1), cross-sectional area A (m2), roughness
coefficient n (sm−1/3) and bed slope Sb (m/m). In practice, Equation (1) is simplified as
follows:

Q = a(z− b)p (2)

where parameters (a, b, p) are determined on the available data. However, this model is
based on a rectangular geometry. Actual rivers have more complex geometry, featuring
pool-riffle sequences, groyne fields and floodplains. This can be accounted for by extending
the simple model using a divided-channel approach. Here, the discharge is computed from
a summation following the division of the channel cross section in the subsections. Each
subsection represents a certain flow regime, e.g., main channel flow and floodplain flow.
The general form is given as follows:

Q =
N

∑
i=1

ai(h− bi)
+pi (3)
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where N is the number of divisions and the positive part operator +. For the River
Waal, we used three divisions, roughly corresponding to the main channel, groyne fields
and floodplains.

Mansanarez et al. [25] showed that changes in the rating curve due to system changes
can be modelled through changes in the model parameters ai, bi and pi. Following other
authors [25–27], we estimated the model parameters using a Bayesian inference formalised
in Bayes’ theorem:

p(Θ|O) = p(O|Θ)p(θ)C−1 (4)

where the posterior distribution p(Θ|O) of the parameter Θ given observations O is
computed as the product of the prior distribution p(Θ), the likelihood of the observations
given the parameters p(O|Θ) and a scaling term C to ensure unity. The likelihood term is
determined by the adopted Gaussian error model. We assumed a Gaussian error model
that is proportional to the discharge:

Q(z|θ) ∼ N ( f (z|θ), ς f (z|θ)) (5)

In this model, the parameters Θ in (4) consists of the model parameters θ = [a0 . . . an,
b0 . . . bn, p0 . . . pn] and the variance factor ς. Here, f (z|θ) is the deterministic rating curve
model (3), which returns the discharge for water level z given the vector of parameters θ.
This means that, for a total of three stages, we had ten parameters.

Within the Bayesian framework, all parameters (θ, ς) are stochastic variables. This
means that they are described by probability distributions instead of scalar values. Prior to
inference, the initial distributions should be chosen such that they cover the region where
we expected the model to be accurate. After looking at the data, we had a better idea of
what parameter value results in an accurate model.

For most situations, solving for the posterior is nontrivial and is accomplished using
numerical methods. Here, we use a Markov Chain Monte Carlo (MCMC) algorithm to
sample from the posterior, using the hamiltonian No-U-Turn sampler (NUTS) [28]. For the
prior distributions, we chose the following (see Table 1 for an overview):

• For a, a moderately informative prior with a normal distribution was centred on the
values obtained from deterministic optimisation.

• For b, a uniform distribution was chosen such that the values of b cannot overlap. This
is necessary as the terms of (3) otherwise become interchangeable and therefore not
identifiable by the algorithm.

• For p, an informative prior was centered on 1.7, following from rounding up from the
expected value for p based on the Manning equation (1.666 . . . ).

• For ς, a non-informative half-Cauchy following [29].

We inferred the unknown parameters for every year (1988 to 2018) using the same set
of parameters. In this way, no information from earlier years was used to determine the
rating curve of a new year. The advantage of this approach is that (sudden) changes in
the rating curve are easier to identify. However, the disadvantage is that years with little
observations or with observations within a limited discharge range cannot benefit from
previous measurement campaigns and result in higher model uncertainty.

Table 1. Prior distributions. The notationN (µ, σ) stands for the normal distribution with mean µ and
standard deviation σ. U (xl , xu) stands for the uniform distribution with lower bound xl and upper
bound xu, and the HalfCauchy(γ) is the truncated Cauchy distribution with scale parameter γ.

Parameter Prior Parameter Prior Parameter Prior

a0 N (100, 20) b0 U (2, 6) pi N (1.6, 0.25)
a1 N (150, 20) b1 U (6, 12) ς HalfCauchy(2)
a2 N (200, 20) b2 U (12, 14)
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4. Results
4.1. Simulated Trend

Figure 3 shows the median values of the simulated water levels for each location and
year along the River Waal. The uncertainty of water levels is not shown in these figures but
are discussed later. Both figures show the same data but are annotated differently.

(a)

(b)

Figure 3. Simulated changes in the water level at a constant 10,165 m3s−1 since 1995. (a) Annotation on how an intervention
affects the water levels in time and space. (b) Annotation of the major changes to the river system.

In Figure 3a, we highlight how a single intervention affects water levels upstream
from the intervention through backwater and into the future. In the figure, we observe
that the median water level both increases and decreases over time. These changes are
attributed to changes in the geographical database because the upstream discharge and
downstream water level are constant and equal in all years.

The simulated changes in water levels are thus interpreted as the result of geographical
changes. In Figure 3b, we annotate what measures may explain the major changes visible in
the simulated water level differences. Notable changes include the update to the vegetation
map in 2005 that coincides with a general increase in the median water level compared
to 1995. This overall water level increase can only be attributed to the vegetation map
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update, as the only two other small scale interventions that year were local and expected
to decrease water levels. Major interventions that decreased the water levels are mainly
implemented in the simulation model of 2015.

Clearly visible interventions include the large-scale dike relocation and construction
of an island and side-channel at Nijmegen, which was completed in late 2015 but was
under construction for several years prior. The floodplain excavation at Munnikenland was
officially opened in June 2016, but since most of it had been completed in 2015, we added
the intervention to the 2015 changes. Another large scale intervention was the rehabilitation
of the Millingerwaard floodplain, near the upstream boundary. We did not incorporate
this intervention in the simulations because this intervention was only completed in May
2017. The Millingerwaard floodplain rehabilitation would likely lead to significant water
level decrease starting from km 872 and with a maximum at 868, which is right at the
Pannerden bifurcation.

The water level differences between 1995 and 2015 (Figure 4) show that the simulated
flood water levels decreased overall, with the notable exception between measurement
stations Zaltbommel and Tiel Waal (km 914–km 934). The increase in flood level is attributed
to updated vegetation maps (Figure 3). This area of the River Waal contains the St. Andries
river bend, at which point the dikes constrain the river, creating a bottleneck [4]. Figure 4
also shows that major changes in the simulated water levels are not reflected at the location
of the measurement stations. The stations where changes in flood level are most likely to
be observed are ‘Nijmegen haven’ and ‘Pannerdensche Kop’.

Pannerdensche Kop

Confidence interval

Very high (90%)

High (80%)

Medium (50%)

Low (20%)

Very low (10%)

Figure 4. Simulated change in flood water level in 2015 compared to 1995. The location of the water level measurement
stations are annotated.

The changes in simulated water levels through time are shown in Figure 5 for the
two measurement stations where we expect the largest change as well as for the more
downstream Tiel Waal station.

The bandwidth in Figures 4 and 5 shows relatively small uncertainty in the simulated
change in water levels. For these three stations, the update to the vegetation map in 2005
not only increased the median water level but also increased the size of the confidence
intervals as well. Generally speaking, an increase in model uncertainty in effect studies is
caused by increasing deviance in the model response compared to the reference model [23].
Therefore, the uncertainty is small for 2003 because the model changes were small while
the increase in 2005 shows a more significant system change. Subsequent updates to the
vegetation maps in 2008 and 2012 did not result in further increases in water level but
did increase the size of the confidence intervals. This can be regarded as an artefact of the
underlying data having infrequently updated vegetation maps rather than an accurate
prediction of reality. The size of the confidence intervals increases over time following
increasing changes to the system, but the jumps following changes to the vegetation maps
in 2005; 2008; and to lesser extent, 2012 indicate that the increase in model uncertainty is, to
a large extent, caused by the vegetation maps.
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Figure 5. Confidence intervals for the simulated change in flood levels since 1995 (projected on the primary (left) axis) and
the size of the 90% interval, projected onto the secondary (right) axis.

4.2. Rating Curves

For each year, from the start of the data set in 1988 to the the last observations in 2018,
a probabilistic rating curve was obtained through Bayesian inference. The resulting rating
curves are depicted in Figure 6 for the first and final years in the data set. Both years have
observations spanning a large range of discharges, including measurements from the range
of the three flow regimes (main channel flow, submerged groynes and floodplain flow).
Two 95% confidence intervals, for model uncertainty and total uncertainty, are shown for
each year. The model uncertainty interval envelops 95% of the rating curves derived from
the rating curve model (3), given the posterior distribution of θ. Model uncertainty arises
from fitting the rating curve model for a limited number of measurements. Therefore,
the interval is smallest if measurements are dense but gradually increases for sparse or
unobserved ranges.

The total uncertainty interval includes both the model uncertainty and the Gaussian
error term in (4). The difference between the model uncertainty and total uncertainty can be
interpreted as the predictive uncertainty, which represents the variance in the observations
that cannot be explained by the rating curve model. A non-exhaustive list of causes for
this variance include seasonal changes, hysteresis effects or measurement error. In well-
measured ranges (e.g., from 1000 m3s−1 to 2000 m3s−1), the model uncertainty is small
relative to the total uncertainty. However, for extreme discharges (>8000 m3s−1), the model
uncertainty dominates the total uncertainty.
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Rating curve at Pannerdensche Kop observation station

Figure 6. The rating curves constrained on available data for 1988 (blue shaded area) and 2018
(orange shaded area), showing overall lower water levels in 2018 for the same discharge.

It is clear that the water levels for lower discharges in 2018 have decreased since 1988
because the water levels in 2018 fall well below those for 1988 in Figure 6 for discharges
up to 4000 m3s−1. For higher discharges, this trend seems less well pronounced, although
overall, the 2018 rating curve is still projected to be below the 1988 rating curve. For extreme
discharges (>8000 m3s−1), Figure 6 does not show a discernable decrease in water levels,
which expresses that the model uncertainty related to extrapolation is too large.

It should be noted that both 1988 and 2018 are years with a high number of measure-
ments (50 and 44 respectively) and large range of measured discharges (1988: 914 m3s−1 to
6296 m3s−1; 2018: 584 m3s−1 to 4814 m3s−1). However, such extensive measurements are
not available for every year. In Figure 7, we show the results for 1997, which had only five
measurements over a limited range (860 m3s−1 to 1460 m3s−1). Here, we see that, while
the model uncertainty is small in the limited measured discharge range, the uncertainty
bands rapidly grow beyond those ranges. Compared to the relatively well-constrained
intervals in Figure 6, here we see much larger intervals at higher discharges.
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95% Total uncertainty interval
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Rating curve at Pannerdensche Kop observation station

Figure 7. Years with fewer measurements have comparatively large uncertainty intervals, especially
in extrapolation. Shown here is the rating curve for 1997 (five measurements).
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4.3. Long-Term Trends

Rating curves, such as those shown in Figures 6 and 7, were generated for all 30 years.
We used these models to project the water levels at various discharges at the Pannerdensche
Kop measurement station for each year, as shown in Figure 8. Four discharges were selected
to monitor trends. At the lowest selected discharge of 1000 m3s−1, the observed water
levels are well below the start of the second regime (submerged groyne fields, around
10.5 m+NAP), indicating main channel flow without a strong influence of the groynes. A
strong downward linear trend is observed with a rate of 2 cm per year lowering of the
water levels. This rate is consistent with ongoing channel bed erosion in many parts of the
River Rhine since 1934 [30]. At 2000 m3s−1, the water levels are between 10 m+NAP and
11 m+NAP. At these discharges, the flow is still constrained to the main channel but is now
influenced by the groynes, which represent the second flow regime. A linear downward
trend is still observed, albeit at a slightly smaller rate of 1.7 cm/year.

The third discharge is 5000 m3s−1, with average water levels between 13.5 m+NAP and
15 m+NAP. At these levels, river flow is high enough to extend to the floodplains yet low
enough for there to be recent observations. Nonetheless, at various years (especially 1989,
1992, 1996, 1997, 2006 and 2017), the uncertainty intervals are higher due to extrapolation,
a small number of measurements or a combination of both. The results show a decreasing
trend of about 1.4 cm/year. Although work on the river carried out in the Room for the
River programme are expected to affect water levels in this regime, Figure 8 does not
clearly show deviations from the linear trend. An apparent outlier is 2017, which does
not markedly deviate from the linear trend at lower discharges but does seem to indicate
decreased water levels at 5000 m3s−1. However, the maximum measured discharge in 2017
was 2249 m3s−1, and the projection extrapolates from there. Given the large uncertainty
intervals for 2017 and the return to the linear trend in 2018, no deviation from the linear
trend can be concluded based on our results.

At the extreme discharge of 10,165 m3s−1, no measurements are available. Therefore,
all projections with the rating curve model are based on extrapolation. The 95% confidence
intervals are quite large (around 3 m), with the notable exception of 1995 (about 0.7 m) and
2001 (about 1.2 m). Both of these years featured high discharges (1995: 7844 m3s−1; 2001:
6186 m3s−1). A linear trend can still be observed, although the rate (1 cm/year) is likely
subject to significant uncertainty, given the high variance of the means.

A direct comparison of the trends from the rating curve model and hydraulic model
for 10,165 m3s−1 does not yield clear evidence of changes in the rating curves that deviate
from the linear trend, as would be expected for the Room for the River interventions. This
is especially so for the Nijmegen Lent dike relocation in 2015, which seems to have had no
discernable effect on the measured water levels at 5000 m3s−1. Figure 8 serves to stress the
importance of the 2018 measurements in supporting these findings. The years during con-
struction and completion of the Nijmegen Lent dike relocation project have seen relatively
low measured discharges (see Table A2), resulting in uncertainty when extrapolating to the
floodplain flow regime. The 2018 data set, including the highest recorded discharge since
2011 (2011: 5451 m3s−1; 2018: 4818 m3s−1), is the first measurement after the completion
of Room for the River in 2015, with discharges higher than 4000 m3s−1. The results show
water levels consistent with the linear trend.
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Figure 8. Water levels trends for main channel flow (1000 m3s−1), bankful flow (2000 m3s−1), floodplain flow (5000 m3s−1)
and extreme (10,165 m3s−1) discharge at Pannerdensche Kop. Note the break in the vertical axis to prevent overlap of the
uncertainty intervals at 5000 m3s−1 and 10,165 m3s−1.

5. Discussion
5.1. Explanations for the Discrepancy between Simulated and Observed Trends

The results of the hydraulic model simulations, accounting for uncertainty in rough-
ness parameters, clearly show a significant effect of the Room for the River interventions.
The Nijmegen Lent dike relocation and side channel is projected to locally reduce the water
level, with more than 0.5 m and with almost 0.4 m at the Pannerdensche Kop at extreme
discharge (Figure 5). However, from the analysis of measurements, we found no clear
evidence of a reduction in water levels that can be attributed to Room for the River. Here,
we reflect on some explanations for this discrepancy.

First, it is plausible that the effects of Room for the River only become significant at
discharges higher than those currently observed. The interventions were designed for
discharges with a return period of about once in 1250 years. However, the Nijmegen side
channel is already active at much lower discharges. In January 2018, discharges in the
River Waal reached almost 5000 m3s−1 and caused flooding of the newly constructed side
channel (This event was reported by national news outlets, e.g., https://nos.nl/video/22
11253-dronebeelden-zo-ziet-hoogwater-bij-nijmegen-eruit.html, accessed on 13 July 2021).

https://nos.nl/video/2211253-dronebeelden-zo-ziet-hoogwater-bij-nijmegen-eruit.html
https://nos.nl/video/2211253-dronebeelden-zo-ziet-hoogwater-bij-nijmegen-eruit.html
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Therefore, some effect on the rating curve was expected, although perhaps less pronounced
compared to extreme discharges.

To further explore this, we made a number of exploratory hydraulic model simulations
with the 1995 and 2015 models, forced with lower discharges, using the mean values for
all stochastic variables and plotted the results over the rating curves for 1995 and 2018
(Figure 9). We note that the distribution of the main channel roughness parameter was
determined for extreme discharges and is therefore expected to overestimate the roughness
because the geometry and roughness of bed forms scale with discharge. The (uncalibrated)
simulation results fall within the uncertainty intervals of the rating curves. However, for
1995, the simulations skirt the upper interval boundary, while they skirt the lower interval
boundary for 2018. There are two ways to interpret this. First, one source of rating curve
uncertainty is due to the fact that the water level is not only dependent on the discharge
but also on the shape and phase of the flood wave. This is not captured by the rating
curve model and may cause the true effect to be hidden in the rating curve uncertainty.
Put differently, if the same hydrograph were to have occurred each year, such that the
only difference between years was the change in geometry and roughness, we might have
seen an effect. Second, there might not be enough informative data for the third stage in
the rating curve to suggest the strong flattening of the curve for high discharge ranges as
suggested by hydraulic model simulations. If this is the case, only discharges approaching
the 1995 event are likely to produce the expected effect. The 1995 event is relatively rare (a
once in 70 to 100 year event [31]), so it would follow that the probability of observing the
effect is low.
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Figure 9. Comparing hydraulic model simulations with the rating curves for 1995 and 2018 shows
that the model results fall within the uncertainty intervals of the rating curves. The decrease in water
level due to human intervention may not be visible in the rating curves due to the uncertainty in
extrapolation.

Another possible explanation can be found in the uncertainty of the observations.
Discharge measurements are generally not precise, and observational errors are likely
to increase for high-discharge events [27,32,33]. In order for measurement uncertainty
to change our findings qualitatively, i.e., other than increasing the uncertainty intervals,
the error model for the measurement error has to be non-stationary. More precisely, the
discharge measurement error has to be biased because of the system change. Given the
estimated rating curves, this measurement bias has to be in the order of 500 m3s−1 or about
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10% to account for 0.4 m at the peak of the 2018 discharge wave. We consider such a bias
an implausible single explanation for the apparent discrepancy between measurement and
model.

Alternatively, one could argue that the reason for the difference is because we did
not calibrate our models to maintain independence between observations and model
simulations. While it is true that hydraulic models are calibrated in practice, we argue
that our uncalibrated model simulations are quite plausible (9) and that it is exceedingly
unlikely that any calibration would result in the Nijmegen side channel having no effect on
water levels at all.

5.2. Improvements to the Rating Curve Model

In this study, we used a relatively simple yet widely used rating curve model, which
is conceptually based on steady, uniform flow and a three-stage channel. Despite its
simplicity, the model does a good job explaining the observations. Improvements to the
model, e.g., the Jones’ correction for hysteresis [34], would be aimed at reducing the part of
the total uncertainty not covered by model uncertainty. However, the results show that
a significant part of the total uncertainty—especially for the floodplain flow regime—is
dominated by model uncertainty. Model uncertainty can be reduced by more observations
or by reducing the number of parameters to be estimated. Introducing more complex
models is therefore more likely to increase uncertainty than to decrease it.

Another way to decrease model uncertainty is to pool observations from multiple
years. In this study, we assumed independence between the years, estimating a rating
curve for each year without taking into account observations from previous years. The
disadvantage of this approach is that well-gauged years but with a limited range of
measured discharges will have high model uncertainty intervals for unseen high-discharge
ranges. Model uncertainty can likely be reduced if measurements of previous years are
taken into account. Given the non-stationarity of the rating curves, this would require a
model for the time-dependence of the rating curve parameters. Here, we briefly discuss
two possible approaches: (i) stability periods and (ii) hierarchical sub-models.

The key idea of stability periods is that rating curves can be considered stable for
a certain period, after which a sudden change to the system forces a new rating curve.
Within stable periods, all data can be pooled to estimate the parameters of the rating
curve, thereby increasing the number of observations for parameter estimation. This
approach has mainly been applied to rivers that undergo sudden (morphological) change
following floods [25,35]. The challenge would be in objectively determining the boundary
of these periods, considering that some intervention may already be effective during
their construction.

A second approach is to adopt sub-models for some or all parameters in θ, effectively
creating a hierachical probabilistic model. For example, the gradual change attributed to
channel bed erosion observed in Figure 8 could be modelled by assuming that the offset
parameter of the lowest flow regime (b0) is linearly dependent on time. However, the
introduction of such parametric constraints to the model should be conducted with care, as
unexpected changes may not be detected. A nonparametric approach was proposed by
Reitan and Petersen-Øverleir [26], who used the Ornstein–Uhlenbeck stochastic process as
a sub-model for the rating curve parameters. For the long-term, yearly changes in our case
study, the AR(1) stochastic process [36] is a suitable candidate for future study.

However, even careful pooling of data may not result in an effect. In the previous
paragraph (Section 5.1), we remarked that the model simulation suggest a flattening of the
rating curve at very high discharges. These ranges are dominated by the third stage of the
rating curve. It is likely that the available discharge record just does not contain enough
informative data to result in this flattening, regardless of the pooling strategy chosen.
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5.3. Reducing the Uncertainty of the Hydraulic Model

The input and parameters of the hydraulic models were derived from measured quan-
tities such as geometry, vegetation density distributions and river dune dimensions. No
parameters were calibrated on water levels or discharges. Therefore, the model simulations
provide an independent estimation of the rating curve. Agreement between measurements
and the uncalibrated model results is strong evidence that model simulations provide a
credible projection of the effect of interventions.

In practice, calibration is often seen as a way to reduce model uncertainty by con-
straining model parameters to observed discharges [37]. In this paper, we showed that
a relatively simple rating curve model with ten parameters exhibits model uncertainty.
These uncertainty intervals are considerable, given both the relative change over the years
and the absolute water levels: at the Pannerdensche Kop, the outer embankments have an
approximate height of 18 m+NAP, at which the maximum water depth would be 15 m. The
hydraulic model has more parameters, and previous studies have shown that the majority
of those are not likely identifiable through probabilistic methods [38]. Therefore, parameter
estimation may increase uncertainty instead of decreasing it. Nonetheless, hydraulic mod-
els should outperform statistical models in extrapolation to unseen and future conditions
because they are constrained by the physical processes that underlie the mathematical
model. Extrapolation to unseen conditions is generally tested using a differential split-
sample test [39]. However, the ability of environmental models to extrapolate changing
conditions is considered an open question in hydrology [7,9,40]. The data set presented in
this paper provides an interesting case study to test hydraulic river models under changing
conditions.

5.4. Interpreting the Implications of This Study

Although it is beyond the scope of this paper, we would like to make a note on the
potential policy implications of our results to prevent our results from being misinterpreted.
We emphasise that the results do not suggest that Room for the River had no effect. Not
only is the absence of evidence not evidence of absence but also all of our hydraulic model
simulations as well as our common sense and hydraulic theory tell us that water levels will
be reduced by such large-scale interventions.

However, one might philosophise the relative importance and perceived precision of
hydraulic model simulations in intervention design. In their opinion piece, Saltelli et al. [41]
lay out five principles for mathematical modelling to remain useful to society. One of these
is to assess uncertainty: to not “project with more certainty than (. . . ) models deserve”.
Therefore, we stress the importance of explicitly quantifying uncertainty, discussing model
and data (in)adequacy, and working towards a good modelling practice for model-based
intervention design.

6. Conclusions

The objective of this paper was to study to what extent the predicted reduction of
flood levels by hydraulic models can be verified using the observational record.

The simulations of water levels show a general decrease in water levels since 1995
following the Room for the River program. Changes in water levels could be attributed
to large-scale interventions (decrease) and periodical updates to the vegetation maps
(increase). The results also show that the largest change in water levels occurred in between
measurement stations, which complicates a verification of the model projections. The water
level observations generally showed a linear decrease in water levels of about 1–2 cm per
year, which is attributed to channel bed erosion. Clear deviations from the linear trend,
which would indicate the effects of human intervention, were not found. We argued that the
effect of the intervention may be hidden in the rating curve uncertainty and that, therefore,
more measurements at high discharges may reveal a deviation from the autonomous linear
trend. In our discussion, we emphasised that our results do not suggest that Room for
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the River had no effect but, rather, that our results reveal a challenge to incorporating
uncertainty in the model-based design of human intervention.
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Appendix A. Table of Stochasts

Table A1. Parameters of the floodplain roughness class distributions. Codes marked with an asterisk
* are not used in the Waal model.

Class Code Name Parameters

Empirical distribution
612–637 Alluvial bed

Uniform distribution
n/a Classification map

Triangular distributions min mean max
102 Deep bed 0.025 0.03 0.033
104 Natural side channel 0.03 0.035 0.04
105 Side channel 0.025 0.03 0.033
106 Pond / Harbor 0.025 0.03 0.033
111 Sand bank 0.025 0.03 0.033
121 Field 0.02 0.03 0.04

Lognormal distributions µhv σhv µnv σnv

1201 Production meadow −3.18 0.47 2.40 0.77
1202 Natural grass and hayland −0.74 0.53 −2.64 0.93
1203 Herbaceous meadow −1.64 0.32 2.59 0.33

1211 * Thistle herb. Veg. −1.29 0.33 1.05 0.43
1212 Dry herbaceous vegetation −0.59 0.39 −3.06 0.65

1213 * Brambles −0.67 0.21 −0.73 0.36
1214 * Hairy willowherb −1.89 0.56 −0.25 0.49
1215 * Reed herb. Veg. 0.60 0.22 −1.83 0.27
1221 Wet herb. Veg. −1.08 0.38 −1.49 0.44

1222 * Sedge −1.32 0.67 0.04 0.63
1223 Reed-grass −0.92 0.86 −2.19 0.16
1224 Bulrush −0.81 0.67 0.04 0.63

1225 * Reed-mace 0.37 0.23 −1.12 0.57
1226 Reed 0.94 0.13 −1.14 0.42
1231 Softwood shrubs 1.81 0.24 −2.20 0.79

https://www.helpdeskwater.nl
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Table A1. Cont.

Class Code Name Parameters

1232 Willow plantation 1.05 0.43 −3.23 0.62
1233 Thorny shrubs 1.48 0.64 −1.73 0.41

1241 * Hardwood production forest Deterministic Deterministic −4.68 0.67
1242 Softwood production forest Deterministic Deterministic −4.72 0.66

1243 * Pine forest Deterministic Deterministic −4.18 0.54
1244 Hardwood forest Deterministic Deterministic −3.45 0.77
1245 Softwood forest Deterministic Deterministic −3.04 0.99
1246 Orchard low 1.10 0.10 −3.72 0.25
1247 Orchard high 1.78 0.21 −4.61 0.12
1250 Pioneer vegetation −2.87 0.18 −1.93 0.50

Appendix B. Table of Measurements

Table A2. Overview of discharge measurements from the hydraulic database.

Discharge [m3s−1]
Year n Min. Max.

1988 50 914 6296
1989 53 708 2042
1990 41 741 4881
1991 29 628 4258
1992 8 889 1434
1993 20 1039 6958
1994 9 1231 4388
1995 26 1056 7844
1996 19 865 1835
1997 5 860 1461
1998 24 918 6077
1999 29 1184 5397
2000 38 1232 3736
2001 71 1150 6186
2002 55 1124 4652
2003 68 565 5863
2004 30 891 4623
2005 34 816 3740
2006 11 891 1596
2007 47 873 3690
2008 87 1042 2812
2009 62 688 2804
2010 66 1048 3894
2011 73 655 5451
2012 76 904 4440
2013 29 1245 3881
2014 40 932 2092
2015 31 755 3050
2016 38 768 3006
2017 44 735 2249
2018 44 584 4818
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