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Abstract: The behaviour of façade anchors in high performance fiber reinforced concrete (HPFRC) has
not been investigated in sufficient detail in recent years. The regulations in the European Technical
Approvals also do not fully describe the load-bearing capacity of anchor systems. Due to the increase
in the production of HPFRC elements, it is necessary to analyse the impact of added fibers in the
concrete composition on the behaviour of anchors. In particular, the behaviour of anchors in filigree
façade elements, which is one of the main application areas of the programme of polypropylene (PP)
fiber-reinforced concrete, is therefore analysed. With a sufficient content of PP fibers surrounding
the steel anchors oriented in an optimal direction, the fibers may enhance both the load-bearing
capacity of anchors and the ductility of concrete. However, unfavourable effects on the installation
process or even on the load-bearing capacity may also occur due to unfavourable fiber orientation.
Therefore, tensile and punching tests were carried out in uncracked concrete with different types of
anchor systems containing a tension anchor and an adjustable spacer bolt. The PP fiber content of the
concrete component varied during the tests.

Keywords: high performance fiber reinforced concrete (HPFRC); polypropylene fiber (PP); façade
anchors

1. Introduction

The façade separates the interior from the exterior, ensuring a comfortable indoor
climate. As an intermediate element, the façade is thus exposed to internal and external
factors and serves as protection against wind, rain and heat. Therefore, the façade has an
impact on the energy efficiency of the building. Furthermore, the façade is an important
design element affecting the appearance of the building and can be realised in many
different forms and styles [1].

Façade cladding is a rapidly growing product group for the pre-cast concrete industry.
It is therefore of great interest to optimise the load-bearing capacity and economic efficiency
of these façade systems [2]. As a rule, the façade panels of the façade systems should have
exposed concrete properties, i.e., they should remain in uncracked condition under load.
To meet this quality requirement in concrete façade panel, the HPC and UHPC were, in
the recent years, the focus of research investigations [3]. Innovations and developments
included the understanding of material properties and the production process of the façade
elements. In the centre of attention are reduction in façade thickness and therefore the
limitation of CO2 emission during the cement production. The environmental benefits are
also provided by reducing the amount of steel reinforcement in non-structural as well in
structural applications [4]. Schultz-Cornelius [5,6] characterised UHPC as the material for
concrete wall panels under different exposure and geometric influences. Unfortunately, the
ductility of the material decreases with the increasing concrete strength. To improve the
macroscale structural performance of concrete members, different fibers are dosed into the
concrete mix [7]. The positive effect of fiber addition in concrete is fracture toughness [8],
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which is visible in the form of prevention from crack formation and propagation in loaded
elements [9]. The thin façade panels made of fiber concrete meet the current architectural
and environmental requirements. By omitting conventional reinforcement, it is easier to
create complex façade shapes and geometries based on slim elements [10]. Likewise, this
system can be used to create large façade surfaces that are easily adapted to different design
possibilities.

The development of standards and regulations has accelerated over the last decades
due to the increased use of fiber concrete. A closer look at the standards and regulations
quickly reveals that although the design models are similar, not every model is optimised
for every application [11–14]. The main reason for using fibers in HPC is to increase the
material ductility and reduce the brittleness [15]. Moreover, the different fiber content will
allow resources to be saved in the concrete elements. The material optimisation is affected
by dosages of fiber in concrete matrixes [16]. Mechanical parameters cuch as compressive,
bending and tensile strength of HPFRC and the optimal behaviour of the steel anchor in
uncracked condition enables the optimised design of filigree, safe and lightweight elements.
Baby at al. [17] draws attention to the durability of HPC elements, which is ensured by
the small size of additives in concrete. They allow better compactness of the hardened
concrete.

Innovations and developments in the research of concrete façades allow for the use
of new anchoring systems. More details about the requirements of anchoring systems are
provided in research by Pahn [10] and by Carstens [18]. Figure 1 presents two possible
anchoring systems for façade elements, which differ from each other by their connection
parts. The first group contains point-supported panels and the second group contains
edge-supported panels. Figure 1a presents point-supported façade panels, which are
connected to the structure at no less than four points. The point-supported façade panels
can be designed with considerably more anchoring points. Point-supported panels may
be realised either by long rod-shaped fasteners made of glass fiber reinforced plastic or
steel by undercut anchors with a combination of a substructure made of aluminium or by a
combination of suspended access anchors as well as tensile and compressive spacer bolts.
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Figure 1. (a) Point-supported façade panels with tension anchor and adjustable spacer bolt [19]. (b) Schematic depiction of
the edge support of a façade with GFRP-bars [5].

For edge-supported façade panels (detail Figure 1b), the load is transferred over the
edges of the panel. In this case the façade is fixed in a metal frame. On this frame, the
façade panel is connected to the existing wall at certain intervals with rod-shaped fasteners
made of glass fiber reinforced polymers (GFRP) and aluminium brackets [5].

While several papers have been published in recent years in the field of anchoring
in masonry structures and concrete slabs, the behaviour of façade anchors in HPFRC has
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not been actively studied. Nonetheless, few research have been gathered to explore the
properties of anchor system in hardened concrete. Klug et al. [20] tested undercut anchors
in steel fiber reinforced concrete. Concrete was classified based on its compressive strength
and assigned to a maximal strength class C50/60. Kurz et al. [21] studied different kinds of
anchor systems in noncracked concrete. Tension tests were carried out using the varied
content of steel fibers. In the laboratory tests, Ivorra et al. [22] examined the anchoring
systems of their mechanical characterisation. In their research, the results were compared
with the analytical models developed by the Finite Element Method (FEM). Steel anchors
were also investigated by Poveda et al. [23]. Their research investigated the mechanical
response and the failure modes by analysing crack propagation. In their paper, Dizhur
et al. [24] investigated the failure mode of adhesive anchor connection in unreinforced clay
brick walls. Tóth et al. [25] carried out tension and shear tests on single anchor as well on
anchor groups in HPFRC. Use of disperse reinforcement results in higher concrete cone
capacity. By performing numerous tests, the authors proposed a modification factor that is
related to the dosage of steel fibers dispersed in the concrete. The same hooked-end-type
steel fibers were used in the study of Bokor et al. [26] for the preparation of a sample
in the experimental program with the behaviour of single fasteners in concrete. Based
on pull-out tests under quasi-static and moderately high loading rates, the increase in
concrete cone capacity in comparison to the measured concrete cone capacity in normal
plain concrete was presented. Mahrenholtz et al. [27] presented similar higher ultimate
loads and developed larger corresponding displacements for FRC in comparison to the
normal plain concrete.

2. Research Significance

The aim of this work is to investigate the influence of different fiber dosage on the
load-bearing behaviour of façade anchor in high-performance concrete. This study would
contribute to the development of the façade system with fiber instead of traditional steel
reinforcement. The brittle failure of the high-performance concrete will be reduced through
the dispersed fiber reinforcement. Due to the higher fiber dosage, an increase in the
diameter of the concrete cone around the anchor is envisaged. Furthermore, an increase in
load-bearing capacity in façade anchor is expected.

3. Experimental Program
3.1. Overview of the Anchoring Concept

A test program was derived based on the specifications of the façade anchors (Table 1).
It refers to the concrete mix with the different fiber dosage and effective anchorage depth hef.
The concrete formulas and the fiber dosages were defined in tabular form (Tables 3 and 4).
The numbering in the tables corresponds to the test number of the experimental part. In
the project, the anchor system for point-supported façade panels was used (see Figure 2). It
consists of the following components: tension anchor and adjustable spacer bolt. Adjustable
suspended tension-anchor transfers the dead-load of façade panels to the main supporting
structure. This anchor provides a comprehensive range of isolation thickness (detail d in
Figure 2). Adjustable spacer bolt set the distance to the wall and to transfer horizontal
loads.

Panel anchors in point-supported façade panels are used as a substructure in façade
construction in combination with tensile and compressive spacer bolts. An anchoring
system consists of four tensile/compressive spacer bolts (b in Figure 2) and two panel
anchors (a in Figure 2). The tensile/compressive spacer bolts are used for the transfer of
horizontal loads such as wind suction or wind pressure. The panel anchors, on the other
hand, are used to transfer the vertical weight of the façade panel. The tensile/compressive
spacer bolts (b in Figure 2) are inserted into the back of the façade panel (c in Figure 2)
at previously determined positions when the panel is concreted. The steel elements are
temporary fixed to the formwork so that the planned concrete cover is hef = 25 mm. When
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the façade panel is installed, they are attached to the existing wall (e in Figure 2) with a
screw system. This ensures horizontal load transfer.

Table 1. Overview of tested anchors.

Series Anchor and Tests hef (mm) Fiber Dosage
(kg/m3)

Number of
Specimens

1
Tension anchor

(pull-out resistance tests) 26

10 3
15 3
25 3
35 3

2
Adjustable spacer bolt

(pull-out resistance tests) 25

10 3
15 3
25 3
35 3

3
Adjustable spacer bolt

(punching resistance tests) 25

10 3
15 3
25 3
35 3
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To install a concrete façade panel, two façade panel anchors are required to support
vertical loads (dead load) and four horizontal anchors to ensure correct wall spacing. The
standard installation provides two spacer bolts at the top of the panel and two at the
bottom. In the case of stacked suspended façade panels, the bottom spacer bolts can be
replaced with steel dowels. Depending on the expected wind loads and the shape and
size of the panel, additional suction protection may be required for horizontal anchors (for
example, compression bolts and adjustable restraints).

3.2. Materials
3.2.1. Fiber

Among the different fiber materials such as steel, glass, carbon or basalt, polymer
fiber has attracted more attention in the last years [28]. The method of fiber production
significantly defines the shape of the fiber cross-section. Polypropylene fibers are produced
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by catalytic chain-transfer polymerisation [29]. The material is generally characterised
by its low density, easy mouldability, resistance to corrosion and low production costs.
Compared to steel fibres, polymer fibres are elastic and flexible due to their chemical
composition [30]. There is no possibility of injury caused by the sharpness of the steel fibers
during the concreting process. Similarly, the criteria of stiffness and resistance to alkaline
attack also plays a major role in different fields of application [31].

This study examines the impact of one type of fiber under variations of fiber dosage on
the mechanical properties of hardened concrete: polypropylene fibers (also referred to as PP
fibers). In this study, the polypropylene fiber MasterFiber® 235 (PP) is used (see Figure 3).
The characteristics of PP fibers are shown in Table 2. Compared to steel, non-corrosive PP
fibers do not require any concrete cover in order to be protected against environmental
attacks.
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Table 2. Mechanical parameters of fibers used as specified by the manufacturer [32].

Type of
Fiber

Tensile
Strength

Modulus of
Elasticity Diameter Length Specific

Gravity
(MPa) (MPa) (mm) (mm) (kg/m3)

MasterFiber®

235 (PP)
500 >8000 0.70 30 910

Polypropylene fibers are produced by polymerisation into linear macromolecules of
propane. The production first succeeded in 1954 and, in 1957, production was industrialised.
Depending on the production process used, the material properties may vary. Due to their
low density ρPP = 895 kg/m3 to ρPP = 920 kg/m3, PP fibers are very light in weight. As
a rule, the tensile strength of PP fibers is between 450 N/mm2 and 700 N/mm2 with a
modulus of elasticity between 4000 N/mm2 and 9000 N/mm2 [33]. In order to increase the
tensile strength of the fibers, they are stretched during production. PP fibers are also highly
resistant to fatigue, acids and alkalis [34,35]. They are mainly used in pre-cast concrete
elements and ready-mix concrete [36,37].

3.2.2. Concrete Mix Design

For this experimental study, four different concrete mixtures with the same amount
of cement, aggregates and additives were prepared. They only differed in fiber dosage
(see Table 3). Mix ID 1 contained 10 kg/m3 of MasterFiber® 235 (PP). To investigate the
influence of the fiber content, Mix ID 2, 3 and 4 contain 15 kg/m3, 25 kg/m3 and 35 kg/m3

fibers each. The mixtures were prepared using a 55 L capacity horizontal forcing type
concrete mixer.
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Table 3. Test programme mixtures of concrete composition.

Mix ID Type of Fiber Weight (kg/m3)

1 MasterFiber® 235 (PP) 10
2 MasterFiber® 235 (PP) 15
3 MasterFiber® 235 (PP) 25
4 MasterFiber® 235 (PP) 35

The appropriate HPFRC was produced with cement CEM I 42.5 R, quartz sand,
limestone powder and silica fume. Limestone powder and silica fume were used as fillers.
The aggregates were dried sand 0/2 mm, quartz and basalt 1/3 mm. The grain size curve
of aggregates according to [38] is presented in Figure 4b. To eliminate the segregation and
bleeding risk, concrete with low consistency was used [39]. A plasticiser MasterGlenium
ACE 430 was used to enhance workability. The cement content and water–cement ratio in
the concrete composition were 27.449% and 0.323, respectively. The slump flow measure
has a maximum value of 650 mm for dosage 35 kg/m3. The materials used in the concrete
mix and their density are shown in Table 4.
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Figure 4. (a) Compressive strength of concrete (st. dev) with different fiber dosages MasterFiber® 235 (PP) at 33 days (10
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Table 4. The materials used in the concrete mix and their density.

Material
Raw Density Weight

(kg/m3) (kg/m3)

Cement (CEM I 42.5 R) 3100 650
Aggregate 0 to 3 mm 2600 990

Silica fume 700 50
Limestone powder 2700 415

Plasticiser MasterGlenium ACE 430 1060 18
Water 1000 210

Compressive strength tests on hardened concrete were performed with 100 mm cubes
according to EN 12390-1 [40]. The specimens were cured indoors and, on the next day, were
taken out of moulds and wrapped in foil. They are stored at a temperature of 21 ± 3 ◦C and
relative air humidity of 60%. The procedure of casting and storing did not differ between
each concrete mixture. The test was carried out based on three specimens of each concrete
mix. The compressive strength of the Mix ID 1 with the lowest fiber dosage at 33 days of



CivilEng 2021, 2 562

curing was 90.9 MPa compared to 81.9 MPa after 33 days of Mix ID 4 with the highest fiber
dosage (see the compressive strength values with their coefficient of variation in Figure 4a).
Damage was noticed on the edges of one cube for dosage 25 kg/m3, which explains the
larger scatter for this mix. The results show that the compressive strength decreases with
increasing fiber content. For the normal strength concretes, the higher dosage will increase
compressive strength (research by Aslani and Meesala [41,42] with the strength class under
30 MPa), but the opposite trend is valid for higher strength concretes (research by Zhang
et al. [43] with a compressive strength up to 100 MPa). The space between concrete and
fibers is filled with air. Furthermore, the higher fiber dosage reduces the concrete-part in
mix. A small air volume and lower proportion of the concrete determines the compressive
strength and density of high-performance concrete. The reduction in compressive strength
was obtained in the study by Richardson [44] on fiber reinforced concrete with a low,
medium and high compressive strength.

3.3. Testing Procedure
3.3.1. Determination of Pull-Out Resistance

The pull-out resistance was determined on the basis of the experimental setup of a
shear test presented in the “Guideline for European Technical Approval of Metal Anchors
for Use in Concrete” [45]. This guideline has been prepared by the “European Organisation
for Technical Assessment” and defines the test method for the European Assessment
Document (EAD). Differences between the ETAG and presented tests are in specimen
and anchor dimensions. Moreover, the fiber reinforcement and use of high-performance
concrete are not specified in the guideline. The anchorage system requires a combined
tensile and shear test and should be operated at the specified angle towards the anchor axis.
The load was applied under realistic installation conditions. In the test method the angle
between the concrete specimen and the anchors was a constant 45◦. Test method provides
results for the diagonal force as well as for the vertical and horizontal displacement (see
Figure 5).
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Figure 6 shows the specimen geometry for the testing method. With regard to façade
anchors, the minimum distance to the edge of the panel is 60 mm. The displacement of
the anchor relative to the surface of the test setup was >1.5hef = 39 mm at a distance of
150 mm. This is the most unfavourable position of the anchor in the façade panel. The
distance was measured from the axis of the anchor to the supports. The specimens were
cured and stored at a temperature of 21 ± 3 ◦C and a relative air humidity of 60%. More
details regarding the casting procedure and moulds for all specimens are presented in [19].
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Figure 7 shows the experimental test setup. Displacement transducers were attached
to the steel part of the support frame. They measured vertical (detail 6 in Figure 7) and
horizontal (detail 5 in Figure 7) displacements. Given this test setup, the weight of the
constructions had no impact on the result. The angle between the concrete specimen
and the anchors was not changed. A manual hydraulic cylinder moves their piston and
generates a quasi-constant load, which was applied to the end of the anchor. The load was
increased in the following manner such that the maximum load was reached at 1 to 3 min
after the start of the test. Unfortunately, the method of loading in pull-out tests drenders it
impossible to analyse the effect of the loading speed on the load capacity of the anchors.
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Figure 7. Experimental setup: 1 = point of application of symmetrical load; 2 = FRC specimen;
3 = support frame; 4 = steel anchor; 5 = horizontal displacement transducer mounted to the steel
support frame; 6 = vertical displacement transducer mounted to the steel support frame; 7 = manual
hydraulic cylinder; 8 = fixing point; 9 = spherical coupling.

3.3.2. Determination of Punching Resistance

The punching resistance of spacer bolt was determined on the basis of the experimental
setup of a tension test presented in [45]. As mentioned, the differences between the ETAG
and presented tests are in specimen and anchor dimensions as well in the used materials.
The punching resistance was determined by means of tensile and compression tests. The
specimen geometry is shown in Figure 8. The same geometry was used for tensile and
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compression tests. The displacement of the anchor relative to the concrete surface was
>1.5hef = 37.5 mm at a distance of 150 mm. The distance was measured from the axis at
the anchor head to the edge of the specimen. hef is an effective anchorage depth. During
the concreting process, it is desirable to distribute the fibers as well as possible all around
the steel anchor. The homogeneity of the concrete mix was performed during the time
of the mixing process [46]. Unfortunately, the quality control of the fibre distribution in
formwork was possible only in the visual method.
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Figure 8. (a) The specimen geometry. Dimensions in (mm). (b) Concreting process.

The test specimens were cast horizontally. The PP fiber content of the concrete speci-
men was varied. The displacement during the test was measured in the vertical direction
by using a displacement transducer. Once the concrete sample was cast, the anchor was
connected to the test rig and exposed to load until failure. Figure 9 shows the test set-up
for the pull-out test of adjustable spacer bolt. The load application was displacement con-
trolled with the servo-hydraulic machine Schenck Hydroplus 250 kN and loading speed
3 mm/min. Two displacement transducers were mounted on both sides of the threaded
rod. The distance between anchor and transducers was 100 mm > 1.5hef = 37.5 mm. The
distance was measured from the axis at the anchor head to the edge of the specimen.
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Figure 10 shows the test setup for the punching tests of adjustable spacer bolt. As
before, the load application was displacement controlled with the loading speed 3 mm/min.
A steel ring rests on the support and ensures that there are no secondary stresses due to
bending in the system. Rubber pads were mounted between the concrete specimen and the
steel ring. They served to ensure improved contact between the two materials. The stability
of the concrete slab was guaranteed by means of the tie rods. They were fixed to the right
of the supports by using a wrench. Two displacement transducers were attached directly
to the threaded rod on both sides of the anchor. The deformation of the anchor is the
average value from these two transducers. The distance between anchor and transducers
was 100 mm > 1.5hef = 37.5 mm. The distance was measured from the axis at the anchor
head.
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Figure 10. Experimental setup (punching tests of adjustable spacer bolt): 1 = point of application of symmetrical load
with the spherical coupling; 2 = FRC specimen; 3 = steel anchor; 4 = vertical displacement transducer attached to the
threaded rod; 5 = tie rods; 6 = supports-steel ring to ensure that there are no secondary stresses due to bending in the system;
7 = rubber pads. Dimensions in (mm).

4. Results
4.1. Results of Pull-Out Resistance Tests on Adjustable Suspended Tension-Anchor

Figures 11 and 12 presents the force-displacement curves (displacement in vertical and
horizontal direction, respectively) of the tested specimens. During the test, the horizontal
and vertical deformation are measured by two displacement transducers. The vertical
deformation was taken to determine the point of the initial crack. In the beginning, the
absorbable force increases constantly without deformation. It is well known from the
previous study that the initial crack starts at the anchor head. However, that is consistent
with the results in the case of the headed anchor [21]. In this article for the selected
anchoring system, the moment of the first deviation from the linearity in the linear elastic
response was analysed. It has been observed at a displacement of less than 0.05 mm.
The value of 0.05 mm is recommended for crack mouth opening displacement in fiber
reinforcement concrete [47]. In the further load phase, initial cracks forms around the
anchor in the test specimens, which are visible on the concrete surface. Despite the
deformation and development of the concrete cone, the anchor holds even greater forces
and the resistance increases. The maximal force value differs in concrete with variable fiber
dosage. At reaching this force, the concrete fails slowly due to a crack in the area close to
the anchors. The test is terminated when the force goes down. The size of the concrete cone
also depends on the fiber dosage in the concrete mix (see Figure 13).
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horizontal direction. Side view of a sample after test with fiber dosage: (a) 10 kg/m3, (b) 15 kg/m3, (c) 25 kg/m3, (d) 35 kg/m3. 
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Figure 13. Typical failure modes of anchors: (a) Fiber dosage 10 kg/m3. (b) Fiber dosage 35 kg/m3. 
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The minimal number of the test specimens in EAD is equal to 5. Due to the limited
volume of the mixer, the number of samples in tests is equal to 3. The statistical analyses
were performed with Eurocode [48]. The 5% fractile of the first crack loads measured in
a test series was calculated according to the statistical procedures for a confidence level
of 90% according to [48]. The characteristic values were estimated with ks = 3.37. Table 5
present a comparison of maximum force and force after the first crack for different fiber
dosages on characteristic and mean values.

Table 5. Comparison of results in pull-out tests on adjustable suspended tension-anchor.

Mix ID
Fiber

Dosages
Max. Force (st. dev) First Crack (st. dev)

(kN) [kN]

Mean Value 5% Quantil Mean Value 5% Quantil

1 10 kg/m3 12.14 7.20 (0.15) 10.44 6.71 (0.13)
2 15 kg/m3 14.69 12.31 (0.05) 10.39 7.21 (0.11)
3 25 kg/m3 17.02 16.57 (0.01) 9.96 8.86 (0.03)
4 35 kg/m3 19.29 18.60 (0.01) 9.11 8.03 (0.04)

4.2. Results of Pull-Out Tests on Adjustable Spacer Bolt

The force-displacement curves of the tested specimens are shown in Figures 14 and 15.
The force at the anchor characterised pull-out resistance for adjustable spacer bolts. The
deformation at the anchor results from the mean value of the two displacement transducers,
which measures the deformation at the level of load application. During the test, the
cylinder force can be continuously increased up to the first crack, which appears around
the anchor. After that, a further increase in force is possible up to maximal force and
corresponding deformation. Subsequently, the absorbable force drops slowly to zero.
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Figure 15. Pull-out resistance for adjustable spacer bolt in concrete with different fiber dosage. Top view of a sample after 
test with fiber dosage: (a) 25 kg/m3, (b) 35 kg/m3. 
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Figure 15. Pull-out resistance for adjustable spacer bolt in concrete with different fiber dosage. Top view of a sample after
test with fiber dosage: (a) 25 kg/m3, (b) 35 kg/m3.

Figure 16 shows the typical failure modes of anchors in pull-out tests: concrete cone
failure. The cone size is the geometrical size of the failure surface. The size of the concrete
cone for the different fiber dosages did not vary much in comparison to pull-out tests on
adjustable suspended tension anchor (it is within 40 mm from anchor). Table 6 presents
the characteristic and mean values of maximum force and force after the first crack for
different fiber dosages on characteristic values (see [48]). The test samples behave similarly
despite the different fiber dosage. It depends on the characteristics of the anchor system
used in tests, which are specified with the low effective embedment depth of the adjustable
spacer bolt. The PP fiber accumulates in the upper part of the test specimen and there is
not enough fiber reinforcement available surrounding the steel anchor. Various concrete
mixtures were used to test the system behaviour; however, the first crack occurred almost
simultaneously in concrete specimens (an example 8.29 kN for 15 kg/m3 and 8.50 kN for
25 kg/m3).
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Table 6. Comparison of results for different fiber dosages on characteristic values in pull-out tests on
adjustable spacer bolt.

Mix ID
Fiber

Dosages
Max. Force (st. dev) First Crack (st. dev)

(kN) (kN)

Mean Value 5% Quantil Mean Value 5% Quantil

1 10 kg/m3 10.29 7.86 (0.08) 8.90 7.80 (0.04)
2 15 kg/m3 10.93 7.47 (0.11) 9.30 8.29 (0.03)
3 25 kg/m3 12.44 11.25 (0.03) 9.50 8.50 (0.03)
4 35 kg/m3 13.46 9.49 (0.10) 10.20 9.72 (0.01)

4.3. Results of Punching Resistance Tests on Adjustable Spacer Bolt

Results of punching resistance tests on adjustable spacer bolts in concrete with differ-
ent fiber dosage are presented in Figures 17 and 18. For each test specimen, the absorbable
force increases constantly. Cracks appear slowly on the lower concrete surface. The crack
width increases and results in breakage or debonding of the fiber in concrete structures.
Some of the fibers reached their tensile strength during the load tests. The cylinder force
increases up to the maximum load, which depends on fiber dosage. At the maximal force,
the test specimen fails in the area of the anchors. The fiber dosage influences the maximum
force in punching tests. For the maximum fiber content of 35 kg/m3, not only was the
maximum force affected but the post-crack behaviour was also influenced. The higher
ultimate load capacity of the concrete cone results in a higher safety factor for the concrete
façade elements at constant design loads.
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Figure 17. Results of punching resistance tests on adjustable spacer bolt in concrete with different fiber dosage. Top view of
a sample after test with fiber dosage: (a) 10 kg/m3, (b) 15 kg/m3.



CivilEng 2021, 2 571
CivilEng 2021, 2, FOR PEER REVIEW 16 
 

 

  

  
(a) (b) 

Figure 18. Results of punching resistance tests on adjustable spacer bolt in concrete with different fiber dosage. Top view 
of a sample after test with fiber dosage: (a) 25 kg/m3, (b) 35 kg/m3. 

The characteristic and mean values were estimated according to [48] and presented 
in Table 7. The analysis of results showed that the different fiber dosage influences the 
effective fiber orientation. For panels with lower fiber content, the possibility of ineffective 
fiber distribution around the anchors was increased. 

Table 7. Comparison of results for different fiber dosages on characteristic values in punching tests 
on adjustable spacer bolt. 

Mix ID Fiber Dosages Max. Force (st. dev) First Crack (st. dev) 
(kN) (kN) 

  Mean Value 5% Quantil Mean Value 5% Quantil 
1 10 kg/m3 13.74  9.40 (0.09) 9.00 3.30 (0.30) 
2 15 kg/m3 13.70  10.30 (0.08) 6.00 4.96 (0.07) 
3 25 kg/m3 18.09  14.40 (0.07) 9.00 7.09 (0.07) 
4 35 kg/m3 17.96  10.40 (0.14) 11.20 9.44 (0.05) 

Figure 19 shows the crack development in the concrete specimen during a punching 
test. The first crack formed at the lower part of the concrete specimen near the steel anchor. 
The tensile stresses in the concrete are distributed for further distances and influences a 
larger radius of concrete cone (compare Figure 19a,b). 

0
2

4
6
8

10
12
14

16
18
20

0 2 4 6 8 10

Fo
rc

e 
[k

N
]

Displacement [mm]

25 kg/m³-1
25 kg/m³-2
25 kg/m³-3

0
2
4
6

8
10
12
14
16

18
20

0 2 4 6 8 10

Fo
rc

e 
[k

N
]

Displacement [mm]

35 kg/m³-1
35 kg/m³-2
35 kg/m³-3

Figure 18. Results of punching resistance tests on adjustable spacer bolt in concrete with different fiber dosage. Top view of
a sample after test with fiber dosage: (a) 25 kg/m3, (b) 35 kg/m3.

The characteristic and mean values were estimated according to [48] and presented
in Table 7. The analysis of results showed that the different fiber dosage influences the
effective fiber orientation. For panels with lower fiber content, the possibility of ineffective
fiber distribution around the anchors was increased.

Table 7. Comparison of results for different fiber dosages on characteristic values in punching tests
on adjustable spacer bolt.

Mix ID
Fiber

Dosages
Max. Force (st. dev) First Crack (st. dev)

(kN) (kN)

Mean Value 5% Quantil Mean Value 5% Quantil

1 10 kg/m3 13.74 9.40 (0.09) 9.00 3.30 (0.30)
2 15 kg/m3 13.70 10.30 (0.08) 6.00 4.96 (0.07)
3 25 kg/m3 18.09 14.40 (0.07) 9.00 7.09 (0.07)
4 35 kg/m3 17.96 10.40 (0.14) 11.20 9.44 (0.05)

Figure 19 shows the crack development in the concrete specimen during a punching
test. The first crack formed at the lower part of the concrete specimen near the steel anchor.
The tensile stresses in the concrete are distributed for further distances and influences a
larger radius of concrete cone (compare Figure 19a,b).
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5. Discussion

Determination of pull-out and punching resistance is clarified in accordance with [49].
The adjustable spacer bolts by their double sleeve construction transfers the horizontal
loads as an anchor group (factor ψec,N in Equation (2)). In comparison to the study of
Cattaneo and Muciaccia [50], fiber dosage does not result in steel failure in tests. All
experiments occur with cone failure. In the case of concrete cone failure, the partial safety
factors γMc = γc·γinst are calculated using Equation (1).

Ng
Ed ≤ NRd,c =

NRk,c

γMc
(1)

The characteristic force NRk,c depends on concrete properties and anchor geometry
(see Equation (2) with factor kucr,N = 12.7 for uncraced concrete). For variable fiber dosage,
the compressive strength of concrete fck,cube and the size of the concrete cone with the sur-
face area Acr,N are different. The surface area was furthermore adapted to the test method.
For pull-out resistance, tests on adjustable suspended tension-anchor and punching re-
sistance differences were higher than for the pull pull-out tests on the adjustable spacer
bolt. The calculation depends on effective anchorage depth hef (factor ψre,N) and from the
location of the anchor (factor ψs,N and ψM,N). For the adjustable suspended tension-anchor,
the distance from the edge of the sample c1 = 60 mm was also considered. The following
equations was used.

NRk,c = kucr,N ·
√

fck,cube · h1.5
ef · Acr,N

Aone
cr,N

·ψs,N · ψre,N · ψec,N · ψM,N (2)

5.1. Pull-Out Resistance of Adjustable Suspended Tension-Anchor

Figure 20 shows the pull-out resistance of anchor in concrete with varying fiber content.
Important information that is relevant for HPFRC and for the load capacity of the anchors
is the development of the first crack in the specimen, which appears in the initial phase of
loading. The maximum load-bearing capacity and dimensions of façade elements can be
calculated on the basis of the maximum forces. The calculation results are comparable to
the first crack in pull-out test because the maximal force in tests was much higher.
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Figure 20. Pull-out resistance of anchor in concrete with different fiber dosages of MasterFiber®235 (PP).

Figure 21 shows the crack development in the concrete specimen. The first crack forms
near the steel anchor. The angle of crack is equal to 35◦. At the end of the test, the failure of
the concrete cone was clearly visible. Similar results were observed on the experimental
tests with steel fibers by Kurz et al. [21] when investigating the load bearing capacity of
steel dowels in the HPSFRC.
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Figure 21. (a) Crack development in the experimental test. (b) Scheme of crack development.

However, micro-crack formation and subsequent exposure to moisture and temper-
ature can often result in crack formation in these components. In panels reinforced with
steel rebars, this can cause corrosion formation, resulting in unwanted concrete spalling
and cosmetic colour changes of the façade panels. A possible solution to this problem is the
higher steel reinforcement grade or to dispense with passive reinforcement and replacing
with fibers. Reducing conventional steel reinforcement simultaneously minimises the
concrete cover in the elements. By eliminating the concrete cover, the façade panels can
be made more filigree. Thanks to the synthetic fibers used, corrosion formation or colour
changes of the façade panels are not possible. Furthermore, the polymer fibers embedded
in the concrete matrix have a crack-inhibiting effect, which permanently guarantees the
optical properties and durability of concrete façades [51].

Figure 22 shows the typical failure modes of anchors with higher fiber dosage. On the
left of the picture, a completely inefficient fiber orientation is depicted (Figure 22a). This
fiber orientation results in a faster failure of the façade panel when the first crack occurs
in the concrete. The inefficient fibers do not guarantee the safety of the concrete elements.
On the right of Figure 22, an ideal fiber orientation is depicted (Figure 22b). Given this
orientation of the fibers, the first crack in the concrete exploits the fiber stress properties.
The ideal fiber orientation increases the resistance of the steel anchor. A comparison with
high fiber dosage on the Figure 22 and low fiber dosage can be seen in Figure 23. This is
also seen in two different specimens with a small fiber content of 10 kg/m3 and a larger
fiber content of 25 kg/m3 (see details on HPFRC failure in Figure 24). The higher fiber
content causes the fibers to be more evenly distributed around the steel anchors. The correct
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arrangement of the fibers around the steel anchor improves the load-bearing capacity of
the HPFRC elements, which can be observed through the formation of cracks between
the anchor and free edge of the concrete sample. Nilforoush et al. [52] observed the same
additional radial bending cracks, which form between the free edge of concrete slabs and
anchor bolt (see A-A in Figure 22). It is well known from the tests on mechanical properties
that the high dosage also causes strength reduction.
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5.2. Pull-Out Resistance of Adjustable Spacer Bolt

The maximum tensile force defines the maximum wind suction load per horizontal
anchor. The experimental results are shown in Figure 25. The results are presented as
characteristic and mean value. The highest PP fiber content examined in the concrete
composition amounted to 35 kg/m3. However, the dosage of more than 25 kg/m3 of fibers
to the concrete mix has less impact on the tensile strength of anchors in the concrete façade
element. The comparison of the force-displacement curves for the dosage of 25 kg/m3

and 35 kg/m3 of fibers reveals that the cracking behaviour of concrete for these two fiber
contents do not differ significantly. The clear differences are in the first crack of concrete
samples. Comparable results were obtained with a fiber dosage of 15 kg/m3 and 10 kg/m3.
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Figure 25. Results of tensile strength test for concrete with different fiber dosages of MasterFiber®235 (PP).

Figure 26 shows the crack development in the concrete specimen during a tensile test.
This principal sketch shows the failure of anchors during tensile tests. The first crack forms
near the steel anchor. The angle of the crack is 35◦. When the experiment was completed,
the shape of the concrete part around the anchor resembled the failure of the concrete cone.
The diameter of the concrete cone failure was irregular. In the other point the distance
was about 1.5hef = 1.5 × 25 mm = 37.5 mm. Differences in the size of the concrete cone
between specimens with differing fiber content were not observed.
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Figure 26. Typical failure modes of anchors in pull-out tests: (a) Principal sketch of inefficient and ideal orientation of fibers.
(b) Concrete Cone failure in pull-out test for spacer bolts.

5.3. Punching Resistance of Adjustable Spacer Bolt

The maximum compressive force defines the maximum wind pressure per horizontal
anchor. Figure 27 shows the results of the punching resistance tests. The highest PP fiber
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content examined in the concrete composition amounted to 35 kg/m3. The dosage of more
than 10 kg/m3 of fibers to the concrete mix has an understandable impact on the first crack
force in punching tests. This also affects the punching resistance of the concrete element.
The maximum force in tests has less impact in comparison with the force that results from
the first crack of the element. A comparison of the force-displacement curves for the dosage
of 25 kg/m3 and 35 kg/m3 of fibers reveals that the cracking behaviour of concrete for
these two fiber contents does not differ significantly.
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Figure 27. Results of the punching resistance test for concrete with different fiber dosages of MasterFiber®235 (PP).

Figure 28 shows the crack development in the concrete specimen during a punching
test. This principal sketch shows the failure of anchors during the investigations. The
angle of the crack is 35◦. When the experiment was completed, the shape of the concrete
part around the anchor resembled the failure of the concrete cone. The diameter of the
concrete cone failure was irregular by the occurrence of numerous splitting cracks. In the
further point the distance was about 1.5hef = 1.5 × 25 mm = 37.5 mm. The size of the
cone depends on the fiber dosage in the concrete mix. With 15 kg/m3, the concrete cone
was only limited to 100 mm. With a fiber content of 35 kg/m3, the size of the cone exceeds
150 mm. This is due to the inclusion of the fibers in the punching resistance test after the
first crack. The higher fiber dosage activates more concrete volume and, at the same time,
more fiber.
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Figure 28. Typical failure modes of anchors in punching tests: (a) Inefficient orientation of fibers. (b) Ideal orientation of
fibers. (c) Concrete Cone failure in punching test.

6. Conclusions

Two different anchors were investigated within the scope of this study. The adjustable
suspended tension anchors were examined in pull-out tests. The adjustable spacer bolts
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were examined in pull-out and punching tests. This study allows for the following conclu-
sions to be drawn in the area of system behaviour:

• The pull-out resistance of adjustable suspended tension-anchor is affected by different
fiber dosages. The higher the fiber content, the greater the force was at the moment of
the first deviation from the linearity in the linear elastic response. The force increases
from 6.71 kN for 10 kg/m3 to 8.86 kN for 25 kg/m3. In general, it can be stated that
fibers have a positive effect in the concrete’s post crack behaviour. It has been shown
for the samples with fiber dosage 10 kg/m3 that the maximal force reaches the value
of 7.20 kN and, for the samples 35 kg/m3, the value of 18.60 kN is reached.

• Comparing the results of pull-out tests on adjustable spacer bolt shows an influence
of the varying fiber dosage. With a fiber addition of 10 kg/m3 and 35 kg/m3, the
maximum force was varied between 10.29 kN and 13.46 kN. The first higher increment
of deformation in time increment varied between force 7.80 kN and 9.72 kN for fiber
additions between 10 kg/m3 and 35 kg/m3. Therefore, experimental tests show that
the amount of fibers does not significantly influence the post-crack behaviour of
concrete in pull-out resistance of adjustable spacer bolt.

• The punching resistance of adjustable spacer bolt is strongly influenced by the fiber
dosage in the concrete mix. The first deviation from the linearity in the linear elastic
anchor behaviour for the fiber addition of 35 kg/m3 is equal to force 9.44 kN and
is greater than force 3.30 kN for the specimen with a fiber addition of 10 kg/m3.
The correlation of the force-displacement curves shows that with a fiber addition
of 25 kg/m3 and 35 kg/m3, the results are similar. The maximal force is 18.09 kN
and 17.96 kN, respectively. Differences in punching resistance can also be seen in the
magnitude of cone failure. With a fiber content of 35 kg/m3, the fractured part of the
concrete is formed in a larger specimen area than with a fiber content of 15 kg/m3.
Due to the higher fiber dosage, larger volumes of concrete are integrated and the
diameter of concrete cone around the anchor increases.

The potential application of research results in engineering fields is with respect to
precast concrete systems. The façade cladding as a product group has an optimisation
potential in the concrete industry. It is of interest to improve the capacity and economic
efficiency of these non-structural elements. That will happen through research and analysis
of HPFRC and the behaviour of anchors in this material.
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