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Abstract: Railway managers identify and prioritize assets for risk-reducing interventions. This requires
the estimation of risks due to failures, as well as the estimation of costs and effects due to interventions.
This, in turn, requires the estimation of values of numerous input variables. As there is uncertainty
related to the initial input estimates, there is uncertainty in the output, i.e., assets to be prioritized
for risk-reducing interventions. Consequently, managers are confronted with two questions: Do the
uncertainties in inputs cause significant uncertainty in the output? If so, where should efforts be
concentrated to quantify them? This paper discusses the identification of input uncertainties that are
likely to affect railway asset prioritization for risk-reducing interventions. Once the track sections,
switches and bridges of a part of the Irish railway network were prioritized using best estimates
of inputs, they were again prioritized using: (1) reasonably low and high estimates, and (2) Monte
Carlo sampling from skewed normal distributions, where the low and high estimates encompass
the 95% confidence interval. The results show that only uncertainty in a few inputs influences the
prioritization of the assets for risk-reducing interventions. Reliable prioritization of assets can be
achieved by quantifying the uncertainties in these particular inputs.
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1. Introduction

Railway managers are responsible for planning and executing risk-reducing interventions.
To achieve this, they must estimate the risks due to failures as well as the costs and effects on service
due to interventions for all the assets and then prioritize their interventions accordingly. There is
a plethora of methods and models to estimate the risks due to railway asset failures, as well as the
costs and effects on rail service due to failures and interventions. For example, [1–12] analyze the
risk related to railways due to specific hazards. Many scholars have focused on the analysis of risk
related to specific failure modes of the railway assets, e.g., [13–27]. Other scholars have investigated the
occurrence of specific effects on the service, such as accidents (e.g., [28–36]), and delays (e.g., [37,38]).

The value of numerous variables must be determined to estimate the risks, costs, and effects on
service due to failures and interventions to prioritize risk-reducing interventions. Railway managers
often use a point value to represent the best estimate of an input variable. This best estimate of an
input can be obtained using expert knowledge (e.g., [39–45]), historical data (e.g., [46–50]), or models
(e.g., [51–54]). However, there is often uncertainty in the best estimates, as they are not precise
estimations or distribution functions of the inputs. Consequently, once the assets to be prioritized
for interventions have been identified using only best estimates of inputs, railway managers need to
know if different assets would be prioritized, given the uncertainty in the inputs. To do this, they must
examine how sensitive the prioritization of the assets for interventions is to input uncertainties.
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In this paper, the term ‘input uncertainties’ refers only to the statistical uncertainties in the input
values used to rank the assets for interventions. Although other uncertainties also exist, e.g., in the
models used to estimate risks and costs, they are neglected. The input uncertainties, therefore, represent
all the unknowns that can cause variations in the values of the input variables required to estimate
the risks, costs, and effects due to interventions, which are subsequently used to rank the assets.
Although often no distinction is made between the estimation of probabilistic risk and the quantification
of uncertainties [55], e.g., in [56,57], in this analysis, such a distinction must be made because the
uncertainty in the risk value is considered. To estimate the risk, the values of failure probability and the
extent of consequences due to failure must be obtained. The uncertainties in values used to represent
the probability and consequences of failure yield uncertainties in the risk value.

The necessity of a systematic consideration of input uncertainties has been widely acknowledged
in railway management. Many scholars have investigated the effect of input uncertainties in the
estimation of risks due to failures of railway assets (e.g., [32,58–65]), as well as of costs and effects
on rail service due to interventions (e.g., [57,66–73]). As there are uncertainties in the estimations of
risks, costs, and effects on service, the ranking of assets for interventions, which is based on these
estimates, might not be reliable. The effect of the input uncertainties in the ranking of assets must be,
therefore, quantified. For example, in [56], the effect of the input uncertainties on the prioritization of
risk-reducing interventions for water supply infrastructure is quantified. Other examples of methods
to quantify the uncertainty in prioritization problems are [74–76].

In practice, however, it is common to neglect the input uncertainties when prioritizing railway
assets for interventions [77]. Railway managers know that there is a high cost in quantifying all
these uncertainties and then in considering them when planning interventions. To quantify the input
uncertainties, one must obtain the complete set of plausible values for each input, from which the
probability distribution of each input is built. To consider the input uncertainties when prioritizing
assets for interventions, one must first use these distributions to represent each input when modeling
the risks, costs, and effects on service for each asset. Then, these results can be used to identify which
assets should be prioritized for interventions. This process requires more data, more complex models,
and higher computational effort, leading to higher costs than using the best estimates of the inputs.

However, quantifying and considering all the input uncertainties instead of using best estimates
is beneficial for the railway managers only if the input uncertainties highly influence the ranking of the
assets for interventions. It is reasonable to expect that the ranking of the assets will not be equally
sensitive to all input uncertainties. If railway managers know how sensitive the ranking is to each
input uncertainty, they can decide which inputs they must quantify and consider when prioritizing
risk-reducing interventions. They can also, then, decide for which inputs the use of best estimates
delivers reliable results. Railway managers can have a first impression of how likely it is that an input
uncertainty affects the ranking of the assets by doing a simple analysis; evaluating how sensitive the
ranking produced using only best estimates of inputs is to the use of extreme yet plausible input values
as well as to the use of simple distribution functions of inputs.

This paper shows how reasonably extreme estimates of inputs were used, in addition to the best
estimates, to identify the input uncertainties that highly influence which assets of a railway network
should be prioritized for risk-reducing interventions. The network is located in Ireland and consists
of 11 track sections, 23 switches, and 39 bridges. These assets were initially ranked for risk-reducing
interventions using the best estimates of inputs. This initial ranking was compared to the rankings
(1) when reasonably low and high estimates of the inputs were used, and (2) when 100 Monte Carlo
samples from skewed normal distributions of the inputs were used, where the low and high estimates
were assumed to encompass the 95% confidence interval. The results indicate where efforts should be
concentrated to quantify the input uncertainties. They also provide clear guidance as to which input
uncertainties should be considered when prioritizing risk-reducing interventions. It is shown that it is
not necessarily the largest input uncertainties that cause the most changes in the ranking of the assets.
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The remainder of the paper is divided as follows. Section 2 contains the methodology used
to consider the input uncertainties in the ranking of risk-reducing interventions. Section 3 offers
a description of the case study, the models, the input variables used to estimate risks, as well as
costs and effects on rail service due to interventions and the results on the ranking of the assets and
the identification of the influencing input uncertainties. Sections 4 and 5 provide the discussion
and conclusion.

2. Methodology

The effect of the uncertainty in each input, x, was evaluated by comparing the ranking of possible
risk-reducing interventions using:

1. the reasonable best estimate, xbest, and the reasonable high estimate, xhigh,
2. the reasonable best estimate, xbest, and the reasonable low estimate, xlow, and the reasonable best

estimate, xbest, and the samples from skewed normal distributions, x, built assuming the high
and low estimates, xhigh and xlow, encompassed the 95% confidence interval and the best estimate,
xbest, was the mean value (x = xbest). Figure 1 shows the probability density function of a skewed
normal distribution, P(x), that was built using the best, xbest, low, xlow, and high, xhigh, estimates of
the input value x. This is a right-skewed distribution because it has a longer tail on the left.
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Figure 1. Illustration of the best, low and high estimates and a right-skewed normal distribution of
input value X.

The reasonable low and high estimates were determined for each model input variable to
investigate how sensitive the initial ranking, i.e., ranking using the best estimates for all inputs, was to
the extreme yet plausible values. Monte Carlo sampling from skewed normal distributions developed
by considering the best, low and high estimates for each input was used to investigate how sensitive
the initial ranking was to if the inputs are aligned to normal distributions. The more sensitive the
initial ranking was to the use of different input estimates, the more significant this input uncertainty is.

The net benefit of executing a risk-reducing intervention on each asset was estimated. The risk-reducing
intervention considered for all the asset is the renewal, which results in the greatest possible
elimination of risk. The assets were prioritized for risk-reducing interventions in the upcoming
intervention-planning period based on the net benefit of renewing them. Net benefit, nb, was defined
as the difference between the reduction in risk achieved within the planning period by, and the costs
and effects on rail service of executing the risk-reducing intervention. This method was used in [78] to
compare intervention strategies for different railway assets, and it is based on balancing the costs and
benefits of interventions [79–81]. The net benefit was calculated using Equation (1)

nbk,a =
(
ra\k − ra|k

)
− ck,a (1)
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where nbk,a is the net-benefit of executing the risk-reducing intervention k on asset a; ra\k is the risk
related to asset a without the execution of the intervention k; ra |k is the risk related to asset a after the
execution of the intervention k; and ck,a is the costs and effects on service resulting from the execution of
the intervention k. The net benefit of an asset was the difference between the reduction in risk achieved
by, and the costs of, renewing the asset to a like-new state.

As one risk-reducing intervention was examined for each asset, the higher the net benefit of this
intervention, the higher the asset was ranked. The set of assets a = {a1, . . . , aA} was converted to ranks
W = {1, . . . , A} in descending order of the net-benefit, NBa, of restoring them where W(ia) denotes that
asset a takes the position i in the W rank.

The use of each of the different input estimates—i.e., best, low, high or a value from the
skewed normal distribution—resulted in a different ranking. The sensitivity of the initial ranking,
i.e., ranking using the best estimates for all inputs, was evaluated by comparing it to the rankings
using the low estimate, high estimate, and an estimate from the distribution. To compare the rankings,
two metrics were used: (i) the cumulative number of position changes, i.e., Spearman’s rank coefficient,
and (ii) weighted cumulative number of position changes, i.e., Spearman’s rank coefficient with
position weights.

The cumulative number of position changes was calculated using Equation (2)

SFX =
A∑

i=1

∣∣∣Wia |best −Wia |X
∣∣∣ (2)

where SFX is the sum of position changes for all the assets between the ranking from the estimation of
the net benefit for each asset using the best estimates for all the inputs, Wbest, and the ranking from the
estimation of the net benefit for each asset using either the low or high estimate or the distribution of
the estimates of the model input X and the best estimates for the rest of the inputs, WX.

As this metric does not account for the location of the changes in the list, the Spearman’s rank
coefficient [82] with position weights was also used to differentiate from changes occurring in the
higher positions of the rank from changes occurring in the lower positions. This method is described
in [83], and the Spearman’s rank coefficient is calculated by Equation (3)

SFX|θ =
A∑

i=1

θia(Wia |X) ·

∣∣∣∣∣∣∣∣
∑
j: j≤ia

θ j(Wia |X) −
∑

j:W j|X≤Wia |X

θ j(Wia |X)

∣∣∣∣∣∣∣∣ (3)

where SFX |θ is the weighted difference between the ranking Wbest, and the ranking WX, and θia is the
average position weight of changing the position of the asset a. It was calculated using Equation (4)

θia(Wia |X) =
θWia |best − θWia |X

Wia |best −Wia |X
(4)

where Wia |best and θWia |best is the position and the position weight θ of asset a, according to the ranking
Wbest and Wia |X and θWia |X

is the position and the position weight θ of asset a, according to the ranking
WX. The position weights were calculated by Equation (5)

θWia
=

Wia−1∑
j=1

δ j =

Wia−1∑
j=1

nba|best +
∣∣∣min(NBbest)

∣∣∣∣∣∣max(NBbest)
∣∣∣+ ∣∣∣min(NBbest)

∣∣∣ (5)

where δ is the weight of changing asset a in position Wi-1 with an asset in position Wi, nba|best is the
net benefit of executing the on asset a and max(NBbest) and min(NBbest) are the highest and lowest net
benefit among all the assets, calculated using the best estimates for all the inputs. Note that by using
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this position weight, the position changes are weighted according to the net benefit estimated using
the best estimates of all input values.

Tables 1–3 presents an example comparison of only the high estimates of two model inputs for
four assets, a1–a4, using the two metrics, i.e., the cumulative number of position changes, SFX, and the
weighted cumulative number of position changes, SFX|θ. The use of the high estimate, instead of the
best estimate, for each value results in the inversion of two assets in the ranking W. The two inputs
are associated with equal SFX. This metric indicates that the uncertainty in the upwards direction for
both inputs is equally important in the identification of the assets for which it is beneficial to plan
a risk-reducing intervention. The high estimate of X1, however, results in an inversion on the two
first positions of the ranking (Tables 1 and 2), while the high estimate of X2 results in an inversion
on the two last positions of the ranking (Tables 1 and 3), resulting in SFx1.high|θ being higher (2) than
SFx2.high|θ (1.11). This second metric indicates that the uncertainty in the upwards direction for X1
results in more significant changes in the ranking of the assets compared to the X2.

Table 1. Example of ranking using the best estimates of two model inputs, X1 and X2.

Assets
Net Benefit Rank Weight of Position Change Position Weight

NBa|best
Equation (1) Wia|best

δja
Equation (5)

θia|best
Equation (5)

a1 100 1 1.00 0.0
a2 20 2 0.47 1.0
a3 0 3 0.33 1.5
a4 −50 4 0.00 1.8

Table 2. Example of ranking using the high estimate of one model input, X1.high, and the best estimate
of one model input, X2.best.

Assets
Net Benefit Rank No. of Position

Changes
Position
Weight

No. of Weighted
Position Changes

NBa|X1.high
Equation (1)

Wia|X1.high
SFX1.high

Equation (2)
θia|X1.high

Equation (5)
SFX1.high|θ

Equation (3)

a1 120 2 1 1.0 1.00
a2 150 1 1 0.0 1.00
a3 50 3 0 1.5 0.00
a4 0 4 0 1.8 0.00

Sum 2 2.00

Table 3. Example of ranking using the best estimate of one model input, X1.best, and the high estimate
of one model input, X2.high.

Assets
Net Benefit Rank No. of Position

Changes
Position
Weight

No. of Weighted
Position Changes

NBa|X2.high
Equation (1)

Wia|X2.high
SFX2.high

Equation (2)
θia|X2.high

Equation (5)
SFX2.high|θ

Equation (3)

a1 150 1 0 0.0 0.0
a2 120 2 0 1.0 0.0
a3 50 4 1 1.8 0.6
a4 100 3 1 1.5 0.6

Sum 2 1.11
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3. Case Study

3.1. Assets and Hazards

The track sections, switches, and bridges used in this case study belong to the part of the Irish
railway network (Figure 2), which connects four stations, and serves both intercity and urban commuter
passenger trains [84]. It consists of 11 track sections of 5 km total length and 23 switches. As the rail
line crosses the city of Dublin at this part of the network, the railway is elevated above the ground
level and is built on 39 bridges, which have 17,000 m2 of combined deck surface area.
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The track sections are classified into two subcategories, i.e., those with a maximum allowable
speed greater than 40 km/h, and those with a maximum allowable speed lower than or equal to
40 km/h. The bridges are classified into three subcategories, i.e., concrete, masonry, and metal bridges.
Each asset is considered to be in one of four possible states:

1. like-new,
2. slightly deteriorated,
3. significantly deteriorated, and
4. severely deteriorated

The states of the assets are shown in Figure 3. It is assumed that trains can operate according to
the timetable in all four of these states, but that there is a probability of failure associated with each
of these states. The hazards that can affect the assets were excessive traffic tonnage and two natural
hazards:

1. extreme heat affecting the track sections and switches, and
2. river flooding affecting the bridge B14 (see Figure 2)
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3.2. Risks

The risks, R, in the upcoming intervention-planning period were calculated as the probability of
failure, P, multiplied with the consequences of failure, CF (Equation (6)), according to [85]. They were
estimated using event trees [86] comprised of load, infrastructure, network use and societal events
(Table 4). Different event trees were used for the estimation of risks related to each hazard type,
i.e., traffic tonnage, extreme heat, and river flooding. As an example, the event tree used to estimate the
risks related to track section T1 due to traffic tonnage is shown in Figure 4. The methodology used to
develop the event trees can be found in [87]. Each branch of the event tree models a failure scenario, SC.
The probability of occurrence of one branch of the event tree was calculated as a result of societal events
Fse, network use events Fne, infrastructure events Fie, and load events Fle, using Equation (7) (Figure 4).
The probability of cascading or multiple simultaneous failures were not considered. This simplification
might yield either an underestimation or an overestimation of the risks [88]; however, as a railway
manager in this situation dealing with such approximations, it is warranted. The risk, r, is calculated,
as shown in Equation (8)

R = P[F] ·CF (6)

P[FSC] = P[Fie] · P[Fie] · P[Fne] · P[Fse] (7)

ra =
W∑

w=1

(P[FTR
SC ] ·CSC) +

W∑
w=1

(P[FNH
SC ] ·CSC) (8)

where P[FSC] is the probability of a failure scenario SC, due to traffic, TR, or due to the natural hazard,
NH, i.e., extreme heat for track sections and switches or river flooding for bridge B14, and CF |SC, is the
consequences, i.e., costs and effects on service, due to the failure scenario, SC.
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Table 4. Event types.

Type Notation Description Example of Event Used in the Case
Study for the Track Section T1 1

Hazard h
An event that may lead to a change
in the load and stress level applied
on a railway asset

Traffic

Load le
An event that may change the load
and stress levels applied on a
railway asset

Annual tonnage on the track section T1
based on the timetable (1043 trains
during a weekday and 318 trains during
the weekend)

Infrastructure ie
An event that may change the
structural or functional properties of
a railway asset

Damages that partially affect the
geometry or the rail condition of the
track section T1

Network use ne
An event that may change the level
at which the railway network
is used

The operation of the track section T1 is
possible only when the speed is less
than 40 km/h

Societal se
An event that may change the level
of the railway service provided to
the stakeholders

Track section T1 is renewed, and its
operation is possible only when the
speed is less than 40 km/h until the
renewal is complete

1 All the events are provided in the Appendix A.

The consequences, i.e., costs and effects on service, of a failure scenario csc were calculated for
each failure scenario using Equation (9).

csc = cQ|sc + cD|sc + cZ|sc + cE|sc (9)

where cQ is the cost of restoration (Equation (10)), cD is the additional travel time cost for the passengers
(Equation (11)), cZ is the cost for fatalities and injuries due to accidents (Equation (12)), and cE is the
cost of environmental impacts (Equation (13)).

CQ,a = la ·CQI,a(ga, QI) + CQS,a(ga, QS) (10)

where CQ,a is the cost of restorations due to failure of asset a of type g. It depends on the extent of the
asset l; the unit costs cQI of executing restoration interventions of type QI on asset a; and the costs CQS
of site restoration works QS after the failure of the asset.

CD,a =
[
la ·DDD|QI,a(ga, QI) + DDD|QS,a(ga, QS)

]
·DTa(a, D) · ut (11)

where CD,a is the cost due to additional travel time D caused by the unavailability of asset a. An asset
can be unavailable due to one of two types of traffic restrictions, (1) limiting the maximum speed at
40 km/h and (2) closing the section to traffic entirely. When a traffic restriction must be applied due to
the asset’s failure, it affects the entire block section where the asset is located. The effects on passengers
due to the additional travel time depend on the type and duration of traffic restrictions and the total
additional travel time caused when the traffic is disrupted on the block section where the asset is
located. These depend on the extent of the asset l; a vector of durations of each traffic restriction type
DDQI due to the execution of restoration intervention QI; a vector of durations of each traffic restriction
type DDQS due to the site restoration QS; a vector of the additional travel time in minutes per traffic
restriction type DT; and the unit cost of time ut.

CZ,a = Za(ga, QS) ·Uz (12)
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where CZ,a is the effects due to fatalities and injuries Z incurring after accidents caused by the failure
of asset a. It depends on a vector of the expected number of fatalities and injuries occurring due to
accidents on the site QS caused by the failure of the asset a; and a vector of the socioeconomic costs per
injury and fatality Uz.

CE,a = lE|a · [cE|QI,a(ga, QI) + cE|QS,a(ga, QS)] (13)

where CE,a is the effects due to environmental impacts E caused by the execution of interventions
and restorations on the site. It depends on the length of the asset used for the estimation of the
environmental impacts lE; the unit cost cE |QI of the environmental impact of executing restoration
intervention QI; and the cost cE |r of the environmental impact of site restoration QS after the failure of
the asset. The same environmental impacts were assumed for all the interventions and restorations of
the same type and all assets of the same type g.
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3.3. Costs and Effects on Service of Risk-Reducing Interventions

The costs and effects on service of executing risk-reducing interventions considered were
intervention costs, and the effects due to additional travel time, accidents, and environmental impacts.
These are the same costs and effects on service considered for risks. They were calculated using
Equations (14)–(18). In their estimation, it was assumed that:

• no damages occur on the site due to the execution of the risk-reducing interventions,
• no accidents occur due to the execution of the risk-reducing interventions, and
• the risk-reducing interventions are executed with the least possible traffic restrictions.

ck = ci|k + CD|k + CZ|k + CE|k (14)

CI,a = la · ck,a(ga, k) (15)

CD,a = la ·DTh|k,a(ga, k) ·Dh,a(a) · ut (16)

CZ,a = 0 (17)

CE,a = lE|a · cE|k,a(ga, k) (18)

3.4. Variables

An overview of the variables required to estimate the net-benefit used to rank the assets for
risk-reducing interventions and how they are related is given in Figure 5. An example of how Figure 5
can be read is as follows: the probability of load events is estimated as a function of the state of the asset
before and after a risk-reducing intervention is executed, o\k and o|k respectively, a given amount of
traffic TR or a natural hazard NH, and the type of asset g. It affects the estimation of the probability of a
failure scenario P[FSC], which in turn affects the estimation of risks with ro\k and without a risk-reducing
intervention ro |k, and consequently the net benefit nbk. This set-up allows updating the input values
used to represent the uncertain variables when new data is collected, and, therefore also updating the
net benefit related to the renewal of each asset and the ranking of the assets. This is essential, as the
purpose of this analysis is to identify the input variables for which more accurate estimates must be
collected to reduce the uncertainty in the ranking of the assets.

For each input uncertainty, three types of estimates were determined:

1. the best estimate
2. the reasonable low estimate, and
3. the reasonable high estimate.

These estimates were derived from the input of experts from Irish Rail and the partners in the EU
Horizon 2020 founded project DESTination RAIL, which developed a decision support tool to facilitate
railway managers in intervention planning. The experts based their estimates for the assets in the case
study on existing models and historical data. The analyses of the experts are described in [89–93].
A sample of these estimates is given in Tables 5 and 6. The complete dataset can be found in the
Supplementary File. These input values are meant to illustrate the estimation of the net benefit only for
the assets of this case study and purposes of this work. The input values used in this case study might
be different in other parts of the railway network in the Republic of Ireland. Further explanations
on the estimation of risks related to the assets of this network can be found in [87] and [92], and on
the estimation of costs and effects on service due interventions on these assets can be found in [78].
It was considered that the methods and models used to estimate the input values, as well as the risks,
costs and effects on service are validated for prioritizing these assets for renewal because the scope of
this analysis is to examine the effect of the input uncertainties. Hence, the effect of other uncertainties,
e.g., in the models used to estimate the input values or risks, was not considered. Information on
existing models and data to estimate such values can be found in the scientific literature, e.g., [1,94–97].
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Table 5. Sample of reasonable best, lowest and highest estimates of uncertain input variables (part 1 of 2).

Variable Value Depends on Description Estimates

Best Low High

Probability of load event
(P[Fle])

Asset type (g) and the hazards
(TR or NH) considered

Probability of annual traffic tonnage
based on the timetable to be applied
on a track section of type 1

1 0.8 1

Probability of infrastructure
event (P[Fie]) Asset type (g), the state of the

asset (o) and the hazards (TR
or NH) considered

Probability of minor damage to occur
on a metal bridge in state 4 due to
traffic loads

0.00005 0.00004 0.00006

Probability of network use
event (P[Fne])

Probability of closure of a block
section due to a switch being severed
damaged from extreme heat

0.8 0.64 1

Probability of societal event
(P[Fse])

Asset type (g) and the state of
the asset (o)

Probability of accident to occur due to
severe damage of a track section of
type 1 in state 3 due to traffic

0.8 0.76 0.84

Cost of restoration
intervention (CQI)

Asset type (g) and the type of
restoration intervention (QI)

Renewal of 1 m track section of type 1
to restore it after damage €1200 €1080 €1320

Cost of risk-reducing
intervention (Ci |k)

Asset type (g) and the
risk-reducing intervention (k)

Renewal of 1 m track section of type 1
to reduce the risk €1200 €1080 €1320

Cost of site restoration (CQS)

Asset type (g) and the
restoration work due to
damages or accidents at the
site (QS)

Cost of site restoration after severe
damage of a switch €4000 €2000 €12,000

Duration of traffic restriction
due to intervention (DDI)

Asset type (g), the type of
restoration (QI) or
risk-reducing (k) intervention
and the traffic restrictions (D)
considered

Duration in hours of speed restriction
due to the renewal of 1 m of a type 1
track section

168 168 168
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Table 6. Sample of reasonable best, lowest, and highest estimates of uncertain input variables (part 2 of 2).

Variable Value Depends on Description Estimates

Best Low High

Duration of traffic restriction
due to site restoration (DDQS)

Asset type (g), the restoration
work due to damages or
accidents at the site (QS) and
the traffic restrictions (D)
considered due to the
intervention the asset type (g),
damages or accidents at the
site (QS)

Duration in hours of closure due to
site restoration after the failure of a
concrete bridge

120 30 360

Number of fatalities and
injuries (Z) Asset type (g), the type of

restoration (QI) or
risk-reducing (k) intervention

Number of fatalities due to an
accident occurring by minor damage
of a switch

0.027 0.023 0.034

Cost of the environmental
impact of interventions (Ce |I)

Cost of the environmental impact of
executing a minor restoration on 1m
of type 1 track section

€10 €5 €20

Cost of the environmental
impact of site restoration
(CE |QS)

Asset type (g), the restoration
work due to damages or
accidents at the site (QS)

Cost of the environmental impact of
site restoration due to failure of 1m of
type 1 track section

€29 €24 39

Asset dimensions (l) Asset ID (a) Deck surface area in m2 of bridge B1 720 718 722

Additional travel time (DT) Asset ID (a), and the traffic
restrictions (D) considered

Cumulative additional travel time in
minutes due to one-hour closure of
the block sections where switch S1 is
located during a day in the weekday

4735 3788 9470

The unit cost of time (ut) Location of the network (v) Cost of one minute of delay in Dublin €0.515 €0.34 €1.03

The unit cost of fatalities and
injuries (UZ) Location of the network (v) Cost of one fatality in Dublin €1.5

million
€1

million
€3

million

3.5. Results

3.5.1. Initial Ranking Using Best Estimates

The net benefit and rank of the assets for possible risk-reducing interventions using the best
estimates of the uncertain variables are shown in Figure 6. The assets were ranked from 1 to 73,
and assets with the same net benefit were given the same position. The three assets with the highest net
benefit were B16, B38, and T9. The net benefit of executing a risk-reduction intervention on each of these
assets in the upcoming intervention-planning period was above €100,000, compared to postponing
them until the next planning period. The next four assets with positive net benefit were S13, S22, T11,
and B28. A risk-reducing intervention on these seven assets in the next intervention-planning period
using the best estimates was beneficial because the costs and effects on service due to their renewal
were less than the reduction in risk achieved by renewing them.

The remainder of the assets are switches, track sections, and bridges with a negative net benefit.
If these assets were to be renewed in the upcoming intervention-planning period, the achieved reduction
in risk in that period would be less than the costs and effects on service occurring due to their renewal.
This certainly does not mean that it is not worthwhile to execute the risk-reducing intervention,
which can only be said when the asset life-cycle costs are also evaluated. This analysis simply indicates
that as regards the consequences of their renewal, there would not be a significant reduction in the risk
related to these assets if they were to be renewed during the upcoming intervention-planning period.
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Figure 6. Assets ranked according to net benefit, using the best estimates for all the uncertain
input variables.

3.5.2. Effect of Input Variable Uncertainties on Asset Rank

The effect of the input uncertainties on asset rank is presented in Tables 7 and 8 for each uncertain
variable. It can be read as follows: the low estimates of the probabilities of occurrence of load events
resulted in eight position changes when no position weights were considered. They resulted in 12
position changes when position weights were considered. Contrarily, the high estimates resulted in no
position changes. The use of Monte Carlo sampling from skewed normal distributions resulted in a
mean of two-position changes when no position weights were considered. However, when position
weights were considered, it resulted not only in a mean of five-position changes.

Table 7. Effect of uncertain input variables on asset rank (part 1 of 2).

Variable

No. of Position Changes in the Ranking due to the Use of

Low Estimates High Estimates Skewed Normal
Distributions of Estimates

Without (w/o)
Weights Weighted W/o

Weights Weighted W/o
Weights Weighted

SFX.low SFX.low|θ SFX.high SFX.high|θ SFX.distr SFX.distr|θ

Probability of load event (P[Fle]) 8 18 0 0 3 5

Probability of infr. event (P[Fie]) 118 19 64 4 41 10

Probability of network use
event (P[Fne])

202 84 68 59 71 27

Probability of societal event (P[Fse]) 228 106 108 43 110 53

Cost of restoration int. (CQI) 32 52 8 18 12 20

Cost of risk-reducing int. (Ci |k) 32 52 8 18 12 20

Cost of site restoration (CQS) 8 15 116 257 22 48

Duration of traffic restriction due to
int. (DDI)

0 0 28 49 10 17
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Table 8. Effect of uncertain input variables on asset rank (part 2 of 2).

Variable

No. of Position Changes in the Ranking due to the Use of

Low Estimates High Estimates Skewed Normal
Distributions of Estimates

W/o Weights Weighted W/o
Weights Weighted W/o

Weights Weighted

SFX.low SFX.low|θ SFX.high SFX.high|θ SFX.distr SFX.distr|θ

Duration of traffic restriction due to
site restoration (DDQS) 0 0 16 31 2 8

Number of fatalities and injuries (Z) 84 218 72 4 30 41

Cost of the environmental impact of
int. (Ce |I)

16 31 0 0 6 11

Cost of the environmental impact of
site restoration (CE |QS) 0 0 0 0 0 0

Asset dimensions (l) 16 31 0 0 6 11

Additional travel time (DT) 310 161 107 232 41 73

Unit cost of time (ut) 18 11 84 237 19 43

Unit cost of fatalities and
injuries (UZ) 36 68 108 38 54 36

These results can be used to identify the influencing input variables whose uncertainty affects the
ranking of the assets significantly. The results presented in Table 7 can be interpreted more easily by
focusing on the maximum number of position changes only when the extreme estimates were used,
and on the average number of position changes only when estimates from the distributions were used.
This relationship is illustrated in Figure 7 with two circles for each variable: an empty circle when
the position weights were not considered, SFX, and a filled circle when the position weights were
considered, SFX|θ. The input variables in Figure 7 are grouped as a function of the influence of their
uncertainty in the ranking of the assets:

• Group A consists of input variables where the use of extreme values and value distributions
resulted in a high number of weighted position changes, i.e., the highest-ranked assets are likely
to change if the input uncertainties associated with these variables are considered.

• Group B consists of input variables where the use of extreme values and distributions of values
resulted in a high number of position changes but with a low number of weight position changes,
i.e., the rank of the lowest-ranked assets is likely to change if the input uncertainties associated
with these variables are reduced. However, this does not occur in the rank of the highest-ranked
assets. The effect of these input uncertainties is more prominent when low or high values are
considered than when distributions of values are considered.

• Group C consists of input variables where the use of extreme values and distributions of values
resulted in very few changes to the ranking. Considering the input uncertainties associated with
these variables is unlikely to change the ranking of assets; therefore, the use of best estimates is
sufficient in order to prioritize the assets for risk-reducing interventions accurately.

The most influencing input variables belong to Group A. The uncertainties in the values of these
inputs were found to have the greatest effect on the highest-ranked assets. These input variables are
the ‘additional travel time’ DT, the ‘cost of site restoration’ CQS, the ‘unit cost of time’ ut, and the
‘number of fatalities and injuries’ Z. They are all indicated in Figure 7 with red circles.
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These results prompt the following question: does the sensitivity of the ranking depend on the
range of plausible values considered for each input variable? To answer this question, we examined if
all the variables with the highest variance were also the most influencing ones. The variance of each
input variable was considered equal to the average variance of all the skewed normal distributions used
for this variable in the Monte Carlo sampling. The five input variables with the greatest variance were
the ‘duration of traffic restriction due to site restoration’ DTQS, the ‘number of fatalities and injuries’ Z,
the ‘probabilities of load events’ P[Fle], the ‘extent of the assets’ l and the ‘duration of traffic restriction
due to interventions’ DDI. Out of these five variables, only one is in Group A: the ‘number of fatalities
and injuries’ Z. The remaining four variables are in Group C. These results indicate that it is not
necessarily the greatest input uncertainties that yield the greatest changes in the ranking of the assets.

Identifying the most influencing variables is often not enough to limit the input uncertainties
that must be quantified to a manageable amount. This is because an input variable might take
different values depending on different parameters. For example, in the case study, the input variable
‘additional travel time’ takes different values for each asset and traffic restriction type, as shown in
Figure 5. Hence, to quantify the uncertainties associated with this input variable, the uncertainties in
the value ‘additional travel time’ for each asset and traffic restriction type must be quantified. In this
case, it is useful to identify the assets, whose rank is affected significantly when there is uncertainty
in the values used to represent the ‘additional travel time’. This helps the railway manager focus
on quantifying the input uncertainties of a variable only when they affect the ranking significantly.
In situations when the input uncertainties of a variable do not affect the ranking of the assets, the railway
manager can save resources by using the best estimates.

To identify the assets, whose rank is sensitive to the uncertainties in the variable ‘additional travel
time’, we examined first how the use of samples from skewed normal distributions for this variable
affects the rank of each asset. Then, we examined how many positions each asset changes in the
ranking when skewed normal distributions for this variable are considered.

Figure 8 shows the average rank of each asset when samples of the skewed normal distributions
for the variable ‘additional travel time’ and the best estimates of the rest of the variables were used.
When this ranking is compared to the initial ranking (Figure 6), it can be seen that:

• 24 assets change their rank
• the first three assets with net benefit above €100,000, namely the bridges B16 and B38 and the

track section T9, maintain their rank
• there are no changes in the rank of the assets with a positive net benefit
• track sections T1 and T2 have, on average, the most significant change in the ranking (6 positions).
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Figure 8. Assets ranked using Monte Carlo sampling from skewed normal distributions for the variable
‘additional travel time’ (DT) and the best estimates for the rest of the uncertain variables.

The results shown in Figure 8 indicate that the additional travel time uncertainties affect the rank
of certain assets more than others. To identify the assets whose rank is affected by the additional travel
time uncertainties, we examined how many positions each asset changed in the rank when samples
of skewed normal distributions were used instead of best estimates for this input variable. Figure 9
shows these results. It can be seen that:

• assets T1 and T2 have the largest number of changes in rank (more than 10 positions)
• 15 switches change between one and five positions
• 56 assets change one position or less in the rank.
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The results shown in Figure 9 indicate that the additional travel time uncertainties affect the rank
of track sections T1 and T2 significantly. However, this uncertainty is not expected to be important in
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order to obtain the rank of the rest of the assets accurately. This means that quantifying the uncertainties
in the values used to represent the additional travel time only for two assets might be enough to
accurately identify which assets should be prioritized in this case study for risk-reducing interventions.

One possible way to quantify these input uncertainties is to use sophisticated calibrated models to
determine the distribution of this value, e.g., a microscopic traffic model, like the one presented in [93].
This model uses Kronecker Algebra to estimate with high accuracy the train runs and the additional
travel time caused by closures or speed restrictions due to asset unavailability. For the rest of the assets,
the use of the best estimates to model the additional travel time, when they are unavailable, should be
sufficient to decide whether or not they should be prioritized for interventions.

4. Discussion

This section presents how the results can be interpreted to evaluate the effect of input uncertainties
and how the methodology used in this paper compares to previous studies. The implications and
limitations of the presented work are also discussed, while future research directions are mentioned at
the end of the section.

The results show that railway managers can identify which input uncertainties are worth
quantifying by examining if the assets are prioritized differently for risk-reducing interventions when,
in addition to best estimates, extreme input values and skewed normal distributions of inputs are used.
This analysis offers essential information to the railway manager who wants to quantify the uncertainty
when prioritizing risk-reducing interventions using best estimates of inputs. The implications of the
analysis presented in this work are discussed in this section.

In this analysis, the best, low, and high estimates were determined by experts using existing
models and historical data. Although data-based methods should be preferred over experts’ estimates
when determining the inputs, in reality, it is often necessary to incorporate expert knowledge and
experience to obtain initial results, due to data and budget constraints. This is related to a significant
drawback. The input estimates might vary depending on the expert’s experience, resources, and other
factors [98], which cause uncertainty in the inputs. This paper does not address the challenges obtaining
input estimates from experts. Examples of such methods to are described in [39,58,99]. This paper
focuses on identifying the input uncertainties that significantly affect intervention planning, regardless
of the cause of uncertainty in the input estimates. The results, therefore, can only be used to identify
the influencing inputs, for which the uncertainties and their sources must be identified and assessed.

Monte Carlo sampling from skewed normal distributions was used as part of the methodology to
identify the input uncertainties that affect which assets are prioritized for risk-reducing interventions.
Although other distributions could be used for the input variables, the use of skewed normal
distributions as shown in [57,61–66], is a reasonable simplification in this analysis. This is because its
scope was not to quantify the uncertainty in the ranking but to obtain an initial impression of the effect
on the ranking when distribution functions of the inputs are used instead of best estimates.

There are several implications and limitations related to the methodology and results presented
in this paper to discuss. By evaluating the effect of varying one input at the time, while for the
rest the best estimates were used, the uncertainties in the input variables were considered to be
independent. Although investigating the correlation between inputs (for example, as done in [57])
would yield a more accurate evaluation of the input uncertainties, it would also require more data and
more sophisticated modeling. This would require a more resource-demanding analysis. Once initial
impressions of the sensitivity of the ranking to the different input uncertainties are obtained with the
analysis presented here, the railway manager knows if certain input uncertainties are likely to affect
the ranking significantly. If these highly influencing input uncertainties are also likely to be correlated,
the railway manager can decide to invest in determining their correlation using precise modeling.

The results provide a clear indication of which input uncertainties are likely to affect the
prioritization of assets for risk-reducing interventions. These results, however, do not provide any
indication of the resources required to quantify these input uncertainties and to consider them in the
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estimation of risks, costs and effects on service. Assessing these resources should be the next step,
in order to decide which input uncertainties are worth quantifying.

The assets in the case study were prioritized based on the reduction in risk achieved after being
renewed, given the costs and effects on the service of this intervention. In this case, the renewal of
the assets was used as an indication of how beneficial it is to execute a risk-reducing intervention on
each asset. This is a simplification, as in reality, renewing an asset is not the only way to reduce its
risk. However, this simplification is justified by the scope of this analysis, which is to identify the most
influencing input uncertainties when prioritizing assets for risk-reducing interventions at a high level.

The methodology presented in this paper allows railway managers to consider the input
uncertainties that affect which assets are prioritized for risk-reducing interventions. To this end,
risks due to asset failures—as well as the costs and effects on service due to interventions—were
estimated for different railway assets at a high level. Other researchers have focused on improving the
understanding and modeling of one of those factors—i.e., risks, costs and effects on service—and for
specific asset types. For example, [3] presents a detailed model that simulates the causal chain from
climate change to scour risk related to the bridges of Network Rail. A detailed model to estimate risks
related to railway accidents, when considering different environmental conditions is presented in [100].
A detailed model to estimate and minimize passenger delays due to train delays is presented in [38].
If desired, such detailed models could be used to improve the estimates of risks, costs, and effects on
service. However, often the computational effort and cost are prohibitive for large asset portfolios.
Thus, this approach is taken to enable railway managers to identify the influencing uncertainties at a
high level first. Then they can decide where to invest resources to improve the estimates of risks, costs,
and effects on service using more detailed approaches.

Future work in this area should investigate how reliable estimates of the input variables can be
obtained from experts when resource limitations do not allow to use data-based methods and how the
correlation of uncertainties of these estimates can be considered. The effect of using different distribution
types to model the input uncertainties should also be examined. Additionally, future work should also
address the ease of reducing the input uncertainties for each variable. Finally, the complexity of planning
risk-reducing interventions should be integrated by considering, for example, different intervention
types for each asset and the effects on service when interventions are executed simultaneously, which is
now becoming possible to analyze using the model presented by [41] or others.

5. Conclusions

This paper shows how the input uncertainties that significantly affect the assets prioritized for
risk-reducing interventions were identified. It was achieved by using reasonable low and high input
estimates, as well as samples from skewed normal distributions in addition to the best estimates.
This approach is suitable for railway managers who have already obtained initial impressions of
which assets should be prioritized for risk-reducing interventions using best estimates of the input
values and who would then like to know which input uncertainties are likely to influence these results,
and therefore must be quantified.

This approach was implemented on a case study to prioritize track sections, switches, and bridges
for renewal. The results indicate the input variables that are related to highly influencing uncertainties.
Efforts should be focused to quantify these uncertainties and efficiently improve the planning of
risk-reducing interventions.
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Appendix A

Tables A1–A3 present the load, infrastructure, and network use events, respectively, per asset
type. The societal events for track sections are given in Tables A4 and A5, while Tables A6 and A7
present the societal events for switches and bridges, respectively.

Table A1. Load events, LE, per asset type.

Load Event Type Notation
Description

Track Switches Bridges

Traffic load le|TR
Annual tonnage on the
track section based on the
timetable

Annual wheel load on the
switches due to train
movements based on the
timetable

Normalized annual traffic
loads due to the daily
traffic based on the
timetable

Level 1 load due
to natural hazard le1|NH

Thermal stresses on the
track section caused by
17 ◦C ambient temperature

Neglectable thermal
stresses on the switch
elements

Neglectable increase in
river flow speed

Level 2 load due
to natural hazard le2|NH

Thermal stresses on the
track section caused by
25 ◦C ambient temperature

Moderate thermal stresses
on the switch elements

River flow speed that
corresponds to a 25-year
flood event

Level 3 load due
to natural hazard le3|NH

Thermal stresses on the
track section caused by
40 ◦C ambient temperature

High thermal stresses on
the switch elements

River flow speed that
corresponds to a 50-year
flood event

Level 4 load due
to natural hazard le4|NH

Thermal stresses on the
track section caused by
43 ◦C ambient temperature

Thermal stresses beyond
the designed level on
switch elements

River flow speed that
corresponds to a 100-year
flood event

Level 4 load due
to natural hazard le5|NH

Thermal stresses on the
track section caused by
60 ◦C ambient temperature

- -

Table A2. Infrastructure events, IE per asset type.

Infrastructure
Event Type

Notation
Description

Track Switches Bridges

No damage ie1
No noticeable damages on
the track section due to the
load event

No noticeable damages
on the switch due to the
load event

No noticeable damages
on the bridge due to the
load event

Minor damage ie2
Damages that partially
affect the track geometry
or the rail condition

Damages that partially
affect either the condition
of the elements or the
operation of the switch

Damages that partially
affect the structural
stability

Severe damage ie3

Potential lack of stability
of the track section to
support the dynamic
wheel load according to
the required speed

Damages that
significantly affect either
the condition of the
elements or the operation
of the switch

Potential lack of
structural stability
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Table A3. Network use events, NE, per asset type.

Network Use
Event Type

Notation
Description

Track Switches Bridges

Normal use ne1 Fully operational track
section Fully operational block Fully operational block

Maximum speed
restriction ne2

The operation of the track
section is possible only
when the speed is less than
40 km/h

The operation of all
affected blocks is possible
only with speed below 40
km/h

The operation of the block
where the bridge is
located is possible only
with speed below 40 km/h

Closure ne3
Closure of track section
and all the blocks located
in this track section

Closure of switch and all
the affected blocks

Closure of the bridge and
all the affected blocks

Table A4. Societal events, SE, used for the estimation of risk related to track sections (first part se1–se14).

Notation Description Notation Description

se1
No accident; no restoration at the site
and no intervention; no traffic
restriction

se8

Accident; minor restoration at the site,
rail replacement and tamping of the track section;
traffic restrictions due to restoration,
rail replacement, and tamping

se2
No accident; no restoration at the site
and no intervention; maximum speed
restriction for 24 hours

se9

Accident; minor restoration at the site and renewal of
the track section; traffic restrictions due to restoration
and track section replacement, and maximum speed
restriction for a week after renewal

se3

No accident; no restoration at the site
and track section renewal after a month;
maximum speed for a month until track
section replacement and for a week
after the renewal

se10

No accident; minor restoration at the site and
tamping of the track section; maximum speed
restriction until the restoration of the site is complete,
and the track section is tamped

se4

No accident; minor restoration at the
site and tamping of the track section;
traffic restrictions due to restoration
and tamping

se11

No accident; minor restoration at the site, and rail
replacement and tamping of the track section;
maximum speed restriction until the restoration of
the site is complete, and the rail is replaced, and the
track section is tamped

se5

No accident; minor restoration at the
site and rail replacement and tamping
of the track section; traffic restrictions
due to restoration and rail replacement

se12

No accident; minor restoration at the site and track
section renewal; maximum speed restriction until the
restoration of the site is complete, the track is
renewed and for a week after renewal

se6

No accident; minor restoration at the
site and renewal of the track section;
traffic restrictions due to restoration and
track section replacement and
maximum speed restriction for a week
after renewal

se13

Accident; minor restoration at the site and tamping
of the track section; maximum speed restriction until
the restoration of the site is complete, and the track
section is tamped

se7

Accident; minor restoration at the site
and tamping of the track section; traffic
restrictions due to restoration
and tamping

se14

Accident; minor restoration at the site and rail
replacement and tamping of the track section;
maximum speed restriction until the restoration of
the site is complete, the rail is replaced, and the track
section is tamped
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Table A5. Societal events, SE, used for the estimation of risk related to track sections (second part
se15–se21).

Notation Description Notation Description

se15

Accident; minor restoration at the site
and track section renewal; maximum
speed restriction until the restoration of
the site is complete, the track section is
renewed, and for a week after renewal

se19

No accident; major restoration at the site and track
section renewal; traffic restrictions until the
restoration of the site is complete, and the track
section is renewed; maximum speed restriction for a
week after renewal

se16

No accident; minor restoration at the
site and tamping of the track section;
closure of the section until the
restoration of the site is complete, and
the track section is tamped

se20

Accident; major restoration at the site and track
section renewal; traffic restrictions until the
restoration of the site is complete, and the track
section is renewed; maximum speed restriction for a
week after renewal

se17

No accident; minor restoration at the
site, and rail replacement and tamping
of the track section; closure of the
section until the restoration of the site is
complete, the rail is replaced and the
track is tamped

se21

No accident; major restoration at the site and track
section renewal; closure of the section until the
restoration of the site is complete, and the track
section is renewed; maximum speed restriction for a
week after renewal

se18

No accident; minor restoration at the
site and track section renewal; closure
of the section until the restoration of the
site is complete, and the track section is
renewed; maximum speed restriction
for a week after renewal

Table A6. Societal events, SE, used for the estimation of risk related to switches.

Notation Description Notation Description

se1 No accident; no restoration at the site and
no intervention; no traffic restriction se9

No accident; minor restoration at the site and switch
renewal; maximum speed restriction until the
restoration of the site is complete, and the switch
is renewed

se2
No accident; no restoration at the site
and no intervention; maximum speed
restriction for 24 hours

se10

Accident; minor restoration at the site and welding
or grinding of the switch; maximum speed
restriction until the restoration of the site is complete,
and welding or grinding is performed on the switch

se3

No accident; no restoration at the site
and switch renewal after a month;
maximum speed for a month until
switch renewal

se11

Accident; minor restoration at the site and switch
renewal; maximum speed restriction until the
restoration of the site is complete, and the switch
is renewed

se4

No accident; minor restoration at the
site and welding or grinding of the
switch; traffic restrictions due to
restoration and interventions

se12

No accident; minor restoration at the site and
welding or grinding of the switch; closure of the
section until the restoration of the site is complete,
and the switch is welded or ground

se5

No accident; minor restoration at the
site and switch renewal; traffic
restrictions due to restoration and
switch renewal

se13
No accident; minor restoration at the site and switch
renewal; closure of the section until the restoration of
the site is complete, and the switch is renewed

se6

Accident; minor restoration at the site
and welding or grinding of the switch;
traffic restrictions due to restoration and
welding or grinding

se14
No accident; major restoration at the site and switch
renewal; traffic restrictions until the restoration of the
site is complete, and the switch is renewed

se7
Accident; minor restoration at the site
and switch renewal; traffic restrictions
due to restoration and switch renewal

se15
Accident; major restoration at the site and switch
renewal; traffic restrictions until the restoration of the
site is complete, and the switch is renewed

se8

No accident; minor restoration at the
site and welding or grinding of the
switch; maximum speed restriction until
the restoration of the site is complete,
and the switch is welded or ground

se16
No accident; major restoration at the site and switch
renewal; closure of the section until the restoration of
the site is complete, and the switch is renewed
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Table A7. Societal events, SE, used for the estimation of risk related to bridges.

Notation Description Notation Description

se1 No accident; no restoration at the site and
no intervention; no traffic restriction se9

No accident; minor restoration at the site and bridge
renewal; maximum speed restriction until the
restoration of the site is complete, and the bridge
is renewed

se2
No accident; no restoration at the site
and no intervention; maximum speed
restriction for 24 hours

se10

Accident; minor restoration at the site and
strengthening of the bridge; maximum speed
restriction until the restoration of the site is complete,
and the bridge is strengthened

se3

No accident; no restoration at the site
and bridge renewal after a month;
maximum speed for a month until
bridge renewal

se11

Accident; minor restoration at the site and bridge
renewal; maximum speed restriction until the
restoration of the site is complete, and the bridge
is renewed

se4

No accident; minor restoration at the
site and strengthening of the bridge;
traffic restrictions due to restoration and
interventions

se12

No accident; minor restoration at the site and
strengthening of the bridge; closure of the section
until the restoration of the site is complete, and the
bridge is strengthened

se5

No accident; minor restoration at the
site and renewal of the bridge; traffic
restrictions due to restoration and
bridge renewal

se13
No accident; minor restoration at the site and bridge
renewal; closure of the section until the restoration of
the site is complete, and the bridge is renewed

se6

Accident; minor restoration at the site
and strengthening of the bridge; traffic
restrictions due to restoration and
intervention on the bridge

se14
No accident; major restoration at the site and bridge
renewal; traffic restrictions until the restoration of the
site is complete, and the bridge is renewed

se7

Accident; minor restoration at the site
and renewal of the bridge; traffic
restrictions due to restoration and
bridge renewal

se15
Accident; major restoration at the site and bridge
renewal; traffic restrictions until the restoration of the
site is complete, and the bridge is renewed

se8

No accident; minor restoration at the
site and strengthening of the bridge;
maximum speed restriction until the
restoration of the site is complete, and
the bridge is strengthened

se16
No accident; major restoration at the site and bridge
renewal; closure of the section until the restoration of
the site is complete, and the bridge is renewed
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