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Abstract: The current economic development paradigm, which is based on steadily rising resource
consumption and pollution emissions, is no longer viable in a world with limited resources and
ecological capacity. The “green economy” idea has presented this context with a chance to alter
how society handles the interplay between the environmental and economic spheres. The related
concept of “green nanotechnology” aims to use nano-innovations within the fields of materials
science and engineering to generate products and processes that are economically and ecologically
sustainable, enabling society to establish and preserve a green economy. Many different economic
sectors are anticipated to be impacted by these applications, including those related to corrosion
inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insec-
ticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to
use non-traditional water sources safely and to create construction materials that are enabled by
nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how
nanotechnology is being used in the green economy and to present promises for nano-applications in
this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement
in nanotechnology.

Keywords: biofuel; insecticides; pesticides; catalytic reduction of CO2; green economy; sustainability;
nanoparticles; corrosion inhibitor; nanofertilizer; heavy metal detection

1. Introduction

Many factors have contributed to the widespread acceptance of the “green economy”
concept in policy discussions. These include the ongoing global economic crisis, the
projected increase in global energy demand of more than one-third between 2010 and 2035,
price hikes for commodities, and the urgent need to address global issues about energy,
the environment, and health. The term “green economy”, which mostly relates to the
ideas of sustainable development, was first used by a group of well-known environmental
economists in a revolutionary 1989 assessment for the federal government of the United
Kingdom [1–3]. The most widely recognized and reliable definition of a “green economy”
comes from the United Nations Environment Programme, which states that one is “a green
economy if it leads to enhanced human well-being and social equity while substantially
decreasing environmental risks and environmental shortages”. It is socially inclusive,
low-carbon, and resource-efficient [4].

A collection of concepts, objectives, and practices collectively referred to as the “green
economy” include (i) advocating for justice and equity for all generations; (ii) upholding
sustainable development principles; (iii) applying caution about the environment and social
effect; (iv) appreciating natural and social capital through techniques such as whole-life
expenses, internalizing external costs, and enhancing governance; (v) utilizing resources
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wisely and effectively; and (vi) aligning with previously present macroeconomic objectives
by abolishing poverty, fostering green jobs, and enhancing competitiveness as well as
development in significant industries [3–7].

It is widely acknowledged that nanoparticles play a key role in easing the shift to a
green economy, which is defined by environmentally friendly and sustainable technologies.
This recognition is a result of their unique qualities, which make it possible to use resources
wisely and effectively. These materials have tremendous prospects for the creation of
energy-efficient and commercially viable solutions at the nanoscale, which is consistent
with the broad goals of the green economy [8].

The application of nanoparticles in the green economy has the potential to revolution-
ize various industries and promote sustainability. To ensure the success of nanoparticle
applications in the green economy, careful consideration of these factors is essential to
strike a balance between innovation and responsible implementation [9].

This study examines the opportunities and real-world challenges that nano-applications
offer for addressing the principles of a green economy. There are examples given of how
nano-applications could help with social and environmental issues. Green synthesis pro-
duces highly efficient nanoparticles without affecting the environment. The goal of this
review article is to promote the use of regional botanical items for the synthesis of nanopar-
ticles and their application for the control of environmental issues that harm both human
health and the environment. Such a problem is faced worldwide, whether in developed
countries, developing countries, or underdeveloped countries. This review supports the
pathway to prepare nanoparticles and use them for mitigation in ecofriendly means, which
is also a visionary action for sustainable development. This review is also concerned with
the green synthesis of nanoparticles and their mitigation approach toward environmental
problems, etc. Moreover, the study also focuses on the unique approach of green synthesis
of nanoparticles, which are highly efficient, responsive to external stimuli, and cheap. The
transformative potential of green nanotechnology across various sectors such as biofuel,
CO2 reduction, detection of heavy metals, and many more is demonstrated graphically
in Figure 1.
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2. Green Synthesis

The environmentally friendly synthesis of nanoparticles is essential for the develop-
ment of a green economy because it provides viable substitutes for conventional synthesis
techniques. Green synthesis is the process of recycling biological and agricultural waste
to minimize environmental effects while fostering resource efficiency and the circular
economy. The resultant nanoparticles frequently show improved biocompatibility, which
qualifies them for use in industry, agriculture, and medicine. All things considered, the
green synthesis of nanoparticles addresses environmental issues, encourages innovation
and supports responsible resource management, all of which lead to a more robust and
sustainable economy [10,11].

A broad area of study encompasses multiple nanotechnology applications. There
is now a trend to employ NPs for environmental purposes. Metallic nanoparticles are
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one of the many kinds of nanoparticles (NPs) employed in environmental applications.
Plant-assisted synthesis of NPs is more affordable, ecologically benign, and commercially
feasible than chemical and physical procedures [12,13]. Most often, in green synthesis,
plant components are used as reducing and capping agents. Leaf, bark, fruit, and flower
extracts have been used to make metallic nanoparticles (NPs) of a variety of sizes and
shapes [14]. Particles made via green synthesis are not the same as particles generated via
physicochemical methods. Metal or metal oxide nanoparticles were created by employing
the bottom-up method. The green synthesis comprised the use of a costly chemical-reducing
agent with a natural extract like the leaves from plants, crops or parts of fruits. There is
enormous potential for the creation of NPs in biological beings. The reduction in metal
precursors to respective NPs using biological sources is an environmentally friendly process.
In general, the synthesis of NPs can be performed either “Top Down” or “Bottom Up” as
in Figure 2, which illustrates a potential biological process for creating NPs [15]. Table 1
describes the use of plant-based green synthesis nanoparticles.
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Table 1. Nanoparticles from plants and their applications.

Plant Nanoparticles Applications Reference

Ficuscarica Fe3O4 Antioxidant [16]
Azadirachtaindica CuO Anticancer [16]

Peltophorumpterocarpum Fe3O4 Degradation of rhodomine [17]
Terminalia chebula Fe3O4 Degradation of MB [17]
Punicagranatum ZnO Antibacterial [18]
Lactucaserriols NiO Dye degradation [19]

Vitisrotundifolia CoO Acid blue dye degradation [20]
Ziziphus spina-christi ZnO-SeO Antimicrobial/antioxidant activity [21]

Seriphidiumoliverianum CuO Photocatalytic dye degradation from water [22]
Punicagranatum Ag2O Antibiotic removal from wastewater [23]

Jacaranda mimosaefolia Cu Corrosion inhibition [24]
Scallion’s peel ZnO Nanofertilizer [25]

FicusBenjamina TiO2 Heavy metal detection [26]
watermelon CaO The catalyst for biofuel production [27]
Cola nitida FeO Absorption of MB/MO dye from wastewater [28]
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3. Applications

The current economic model is no longer viable in a society with finite resources
and ecological capability since it depends on increasing pollution and resource con-
sumption. The idea of the “green economy” presents an opportunity to redefine the
environment–economic interface. Moreover, the application areas of nanoparticles include
taking higher-resolution pictures, making nano-detectors for ecological contamination,
and providing a high quantity of optoelectronics strategies in solar energy application
processes, catalysts, and many more. Additionally, innovative nanostructures of silica
efficiently eliminate contaminants [29–31]. In the past, researchers engaged in developing
carbon- or mineral-based nanoparticles for effective services to serve mankind [32–35].
This review is concerned with the green synthesis of nanoparticles and their mitigation
approach towards the environmental problem via biodiesel, heavy metal detection, catalytic
conversion of CO2, etc. Moreover, the study focuses on the unique approach of the green
synthesis of nanoparticles, which are highly efficient, responsive to external stimuli, and
cheap, as shown in Figure 3. The green synthesis produces highly efficient nanoparticles
without affecting the environment.
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“Green nanotechnology” affects industries, including biofuel, nanofertilizers, nanore-
mediation, and more by employing materials science’s nanotechnologies to create econom-
ically and ecologically sound goods. Our goals are to address issues, particularly those
related to worker health and safety, to emphasize the role that nanotechnology plays in
promoting a green economy, and to underscore the necessity of sustainable advancements
in nanotechnology.

Green-synthesized nanoparticles are essential to nature and have the following
extensive applications.

3.1. Corrosion Inhibitor

The National Association of Corrosion Engineers (NACE International) reported in
2016 that the yearly cost of worldwide corrosion losses is USD 2.5 trillion, or 3.4% of the
world GDP in 2013 [36,37]. The research shows that the corrosion losses in the world’s
leading economies differ, with the US suffering 2.7% and China 4.2%. The effective use of
currently available corrosion management techniques might potentially cut these losses
by 15–35%, or USD 375–875 trillion annually on a worldwide scale [38]. This emphasizes
the need for strong corrosion prevention technologies that are affordable and long lasting.
In addition, there is a need for ongoing research into novel and long-lasting anticorrosion
solutions to deal with this widespread problem that affects many different sectors and
businesses globally.
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The high volume-to-surface ratio of nanoparticles has led to a recent increase in the
application of nanotechnology in corrosion inhibition. Nanoparticle coatings can be used
to reduce corrosion, a costly and harmful natural occurrence, by functioning as barriers to
limit the rate of corrosion. Despite their effectiveness, synthetic corrosion inhibitors are be-
coming less common because of environmental regulations and toxicological issues [36,37].
Promising substitutes include plant extracts like Chelidonium majus that naturally reduce
rusting [38]. These environmentally friendly methods, which make use of plant extracts and
phytochemicals, show promise in lowering dependency on hazardous chemicals, which
represents a major breakthrough in corrosion prevention [39–47].

Due to its ability to increase the sustainability and efficiency of corrosion protection
techniques, nanoparticles’ involvement in corrosion inhibition significantly advances the
green economy. As corrosion inhibitors, nanoparticles provide metallic surfaces with
durable protection that lowers maintenance costs and increases infrastructure longevity.
Environmentally friendly and economical methods are frequently used in the application
of these nanomaterials, which reduces the ecological impact of corrosion prevention and
conserves resources. The approach of its application is presented in Figure 4 [48–50].
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By depositing surfactant C16H33N + (CH3)3[CeCl3Br] − (CTACe)-modified silica
nanoparticles, a metallic material was endowed with a good resistance to corrosion [27].
Since they are effective in preventing and managing the surface deterioration of metals
caused by various corrosive substances, they are regarded as the most significant corrosion
inhibitors [51–53]. Table 2 lists the nanoparticles that were isolated from the plant with
their corresponding efficacy values.

Table 2. Nanoparticles for green corrosion inhibitor.

Nanoparticle Plant Effect Efficacy Reference

Glycogen NP Biogenic sources Controlled the corrosion of zinc in
sulfamic acid (NH2SO3H) 92% for 0.02 gL−1 [23]

CuO Moringa oleifera
leaf extract Improved overall anticorrosive activity 56% [23]

Manganese oxide Rose petal (RP) and
lotus petal (LP)

Overall anticorrosion behaviour of mild
steel increased 72.63% [23]

Ag Citrus reticulata
peels extract Inhibited steel corrosion from HCl 93.9% at 303 K and

90.3% at 333 K [54]

Ag Palm oil leaf extracts A protective film formed, which
protected the steel from acid attack 94.1% [55]
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Table 2. Cont.

Nanoparticle Plant Effect Efficacy Reference

Ag nanocomposite Red onion peels A surface protection layer formed
against corrosion 86% [56]

Cellulose nanocrystal Organic product Protected AISI360-steel from corrosion
in petroleum manufacturing 85.3% at 300 mgL−1 [57]

CuO/melamine/cellulose
nanocrystals

nanocomposite
Organic product Protected AISI360-steel from corrosion

in petroleum manufacturing 96.8% at 300 mgL−1 [58]

NiO/melamine/cellulose
nanocrystals

nanocomposite
Organic product Protected AISI360 steel from corrosion

in petroleum manufacturing 98.3% at 300 mgL−1 [59]

3.2. Nanofertilizers

The production of mineral fertilizers is dominated by the US, China, India, and the EU,
with nitrogen accounting for 60% of the total and phosphorus and potassium, making up
20% apiece [60]. The conflict between Russia and Ukraine will cause natural gas prices to
rise in Europe in 2022, which will have a negative effect on energy-intensive industries like
fertilizers. Since natural gas is essential to the production of fertilizers, European producers
are changing their methods, which may result in a halt or reduction in production. Gas price
increases reduced Europe’s supply of nitrogen fertilizer by 25% by September 2022 [61–63].
Even though the COVID-19 pandemic, climate change, and conflicts at first helped to reduce
world hunger, undernourishment rose and now affects 10% of the world’s population
(828 million) in 2021, up from 8% (678 million) in 2019. Creative thinking is required to
meet the UN’s aim of zero hunger [64–66].

Through the optimization of agricultural output and resource utilization, nanofer-
tilizers are essential to the advancement of the green economy. By precisely delivering
nutrients, nanofertilizers increase crop yields and foster economic efficiency in the agri-
culture industry. Farmers save money because of the reduced need for fertilizers due
to the regulated release of nutrients. Moreover, nanofertilizers help to ensure the sus-
tainability of agricultural operations and their long-term economic viability by reducing
environmental consequences, including pollution and nutrient runoff. In addition to pro-
viding financial benefits to farmers, the technology’s ability to enhance soil health and
nutrient use efficiency positions agriculture as a more resilient and environmentally con-
scious component of the broader green economy. The broad use of nanofertilizers holds
promise for a more environmentally and economically sustainable agricultural future as
they continue to provide benefits through higher yields, resource conservation, and less
environmental externalities [67–69].

The use of zinc oxide nanoparticles as a foliar fertilizer has been shown in several
studies to enhance the agro-morphological characteristics, photosynthesis, and yields of
wheat plants [70] and common bean plants. Tomato plants’ traits and yield are enhanced
by carbon nanoparticles [71]. Zinc oxide nanoparticles are a more effective way to support
wheat growth and germination than zinc sulphur dioxide. Additionally, at larger dosages,
they demonstrated in the literature that zinc sulphur dioxide posed a greater risk than
ZnO NPs [72]. The common bean that is harvested from the ZnO NP-treated plant affects
the lipid parameters and the liver and renal functions of the rats that consume it [13]. Many
plants, like squash, require the three nutrients iron, manganese, and zinc to flourish [73,74].
Furthermore, as observed by Kaur et al., the application of Mn nano-oxide greatly decreased
the yield of fruit squash (kg/plant and tons/hectare), particularly when coupled with the
application of Fe nano-oxide. It was also mentioned that the fruits of squash plants sprayed
with Fe oxide nanoparticles had higher concentrations of energy, proteins, lipids, and
organic matter [13].
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Moreover, NFs may raise plants’ defence mechanisms, lengthen stress resistance, and
improve nutrient absorption and output by maintaining the accessibility of nutrients in
the rhizosphere. Due to their better suitability for promoting plant development, they can
potentially replace synthetic fertilizers and provide a new route for sustainable and healthy
agriculture [75]. They reduce external pressures and improve tolerance to unfavourable
environmental conditions for plants. Recent nano-technological developments have been
filling the gaps between agriculture and technology and have craved a sustainable plan
for solving the global food crisis [76]. In light of this, nanoparticles are quickly becoming a
cutting-edge agro-technology for agro-improvement. Surprisingly, they give crop plants
the ability to resist stress, as described in Figure 5 [77]. Additional nanofertilizers have
been studied with respective plants and are presented in Table 3.
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Table 3. Nanoparticles used as nanofertilizers.

Nanoparticle Plant Affected Effect Reference

Hydroxylapatite
(Ca5(PO4)3OH) Soybean (Glycine max) Increase of 33% growth rate and 20% seed yield [79]

AgNPs Red ginseng shoot Ginsenoside content increased [80]

TiO2 Aged spinach seeds Increased germination rate due to increase
in nitrogen assimilation [81]

Iron oxide Soybean 48% increase in grain yield [82]

Ag Fusarium solani Reduced fungal infection [83]

C nanoparticle Phaseolus vulgaris L. Improved the quality and constituents
of leaves and seeds [84]

K+, Fe, tryptophan, urea,
amino acids

Tomato,
fenugreek

Increased germination percentage of tomato from
14% to 97% and fenugreek from 25% to 93.14% [85]

Nano-NPK Capsicum annuum leaves Resulted in better fruit quality
and increased the yield [85]

3.3. Heavy Metal Detection

By solving environmental issues and fostering economic sustainability, the use of
nanoparticles in heavy metal detection is crucial to the growth of the green economy. When
used with state-of-the-art sensing technologies, nanoparticles improve the accuracy and
efficacy of heavy metal detection techniques, allowing for the early detection of pollution in
soil, water, and air. This reduces the financial burden of environmental cleanup and medical
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costs while also protecting human health and ecosystems [86]. Industries are adopting
detecting systems based on nanoparticles in compliance with strict environmental rules,
which lowers the possibility of legal repercussions and increases corporate accountability.
Businesses that invest in and use these technologies not only help to create a cleaner and
healthier environment, but also boost economic growth by creating and distributing novel
solutions that support a green economy that is more robust and sustainable [87,88].

The primary heavy metals that are environmentally hazardous in recent research are
Pb2+, Cr3+, Hg2+, As3+, and Cu2+. As a result, several attempts have been undertaken
to measure and detect heavy metals using analytical techniques [89]. However, current
technology is still needed for the sensitive and user-friendly detection of heavy metals.
In response to this, nanotechnology was created. These nanotechnologies were demon-
strated to be extremely sensitive, selective, and fast-acting, which improved the efficacy of
analytical equipment [90]. For several reasons, including their low detection limit, high
linear range, and ease of system integration, nano-based sensors are an effective tool for
on-the-spot identification or on-field recognition. The benefits of using ways based on
nanotechnology gave them a new idea for combining these technologies into portable
devices that can be used anywhere and at any time, as Figure 6 illustrates [91]. Table 4 also
contains a tabulation of the nanoparticles that were employed to detect heavy metals.
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Table 4. Nanoparticles used for heavy metal detection.

Nanoparticles Heavy Metal Detected Limit of Detection Reference

Multiwalled carbon nanotube Zn (II) 0.3 µgL−1 [93]

Multiwalled carbon nanotube Pb (II) 0.07 µgL−1 [93]

Multiwalled carbon nanotube Cd (II) 0.1 µgL−1 [93]

CNT/Pt As (III) - [94]

Au-decorated Te hybrids As (III) 0.0026 ppb [95]

AuNP Hg (II) - [96]

AuNP As 0.01 µM [97]

Graphene Cd (II) 10−7 M [98]

Graphene oxide Cd (II) 0.1–1.5 µM [99]

Graphene oxide Hg (II) 2.5 × 10−8 M [100]

AuNP Cr 0.01 µM [100]

Carbon nanofibers Bi (III) 16.8 µgL−1 [101]

Carbon nanofibers In (III) 3 µgL−1 [101]
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3.4. Biofuel

Out of all the basic energy sources, fossil fuels account for 80% of the world’s energy
consumption [102]. Estimates indicate that bioenergy will become more significant, par-
ticularly in contemporary bioenergy applications, with a predicted increase to 145 EJ by
2060 [103]. For large-scale energy production, a variety of feedstocks, including wood,
plants, and crops high in starch or oleaginous seeds, are suggested, including algae, crops,
and lignocellulosic biomass [104]. In order to generate electricity, current power systems
must first go through lengthy transmission and transformation operations before using the
energy for end consumption [105].

Fossil fuels are the main energy source, but they also contribute to climate change,
which is dangerous [106,107]. The world’s population is approaching 8 billion, and as
technology develops, so does the demand for energy, with fossil fuels continuing to be
the most popular source [108,109]. In order to comply with the Paris Agreement, the
European Commission’s “Fit for 55” plan seeks to achieve climate neutrality by 2050 and a
55% reduction in net emissions by 2030 [110].

One of the keystones for advancing the green economy is the use of nanoparticles
in the manufacturing of biofuel. When used as additives or catalysts, nanoparticles im-
prove the productivity of biofuel synthesis processes, leading to higher yields and lower
production costs. They play a key role in increasing the production of sustainable fuels
because of their capacity to enhance reaction conditions and the overall effectiveness of
biofuel production technologies. The application of nanoparticles makes it easier to create
economical and ecologically beneficial processes for producing biofuels, which draws capi-
tal and promotes economic expansion in the renewable energy industry. A more effective
and financially feasible route to sustainable energy is made possible by industries’ growing
adoption of nanoparticle technology for the manufacturing of biofuels, and this is reflected
in Figure 7 [110–112].
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Utilizing green copper oxide nanoparticles, a study enhanced the transesterification
of citrus medica-generated biodiesel in the core composite design. This green biodiesel
that was manufactured adhered to international standards for properties like methyl ester.
The characteristics of the biodiesel generated by this procedure demonstrate that it falls
within the range of ASTM criteria. Green ZnO nanoparticles produced from banana corm
extract showed significant performance in the production of biodiesel from waste fish
lipids, with an ideal yield of 2.5% and over 90% transesterification efficiency [113]. The use
of nanoparticles as catalysts for the production of biofuels are given in Table 5.
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Table 5. Nanoparticles used as the catalyst for biofuel.

Nanoparticles Effect Reference

Carbon nanotubes
Their use in biosensors and microbial fuel cell fabrication as well as a

catalyst in biofuel production raise the overall concentration of
enzymes in biofuel generation, as well as help in enzyme mobilization

[114,115]

Aniline incorporated with
Fe3O4-NH2 and reduced

graphene oxide nanocomposites
Enhances the process of bio-electrocatalysis of glucose oxidase [116]

Magnetic nanoferrites
doped with calcium Raises biodiesel production yield [117]

MnO2 with sugarcane leaf Increases bioethanol synthesis [118]

Nano zero-valent
iron (nZVI) and Fe2O3

Improves the production of biogas like methane [119]

CeO2 Improves the production of biogas [120]

Pt and silica Raises methane production yield [121]

Ni and silica Raises methane production yield [121]

Co and silica Raises methane production yield [121]

Fe and silica Raises methane production yield [121]

3.5. Catalytic Reduction of CO2

With the goal of achieving zero domestic net emissions by 2050, the government
formed the Presidential Carbon Neutrality Committee in 2021 and unveiled the ambitious
Carbon Neutrality Scenario 2050. The national greenhouse gas reduction target (NDC) was
suggested to be increased by 40% by 2030 in comparison to 2018 levels by the commit-
tee [122]. As opposed to large industrialized nations like the UK, France, and Germany,
which have been progressively lowering their emissions since the early 1990s, the predicted
implementation period for carbon neutrality is between 50 and 60 years.

A third of the workforce in Asia work in climate-sensitive industries like agriculture
and fisheries, making the region, which is home to roughly 70% of the world’s population,
subject to immediate risks from rising sea levels. Asia’s developing countries may see a
24% GDP decline by 2100 if current warming trends continue, and the region’s proportion
of global greenhouse gas emissions will practically double from 22% in 1990 to almost
50% in 2021 [123].

When it comes to catalytic CO2 reduction, nanoparticles are revolutionary and greatly
advance the green economy. These small catalysts, which are frequently made of sus-
tainable materials, improve the effectiveness of CO2 conversion processes and open up
new economic opportunities by producing useful chemicals and fuels. Their distinctive
characteristics and large surface area improve catalytic efficacy, maximizing reaction rates
and lowering energy inputs. The commercial feasibility of CO2 reduction technologies can
be enhanced by the application of nanoparticles, which can result in scalable and affordable
catalytic systems [124–126].

The environmentally benign photocatalytic reduction of CO2 to CH3OH is achieved by
the use of nanoporous CeO2, while sunlight is employed to initiate exothermic combustion,
ensure uniform heating, and create vacancies in CeO2. The homogeneous distribution of
heat energy made possible by the nanosize can raise CeO2’s reduction efficiency [127]. The
triple-functional precursor NH3BH3, which has a narrow band that enhances light energy
harvesting and electron transfers via the catalyst for surface adoption of CO2 in reduction,
was used to synthesize the B, N co-doped TiO2 nanosheets [128]. Table 6 tabulates the
nanoparticles involved in CO2 removal while the schematic diagram is shown in Figure 8.
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Table 6. Nanoparticles that serve to reduce CO2.

Nanoparticle Treated along with Period of Experiment Temperature Reference

CoNP-treated cocoa shell Cocoa shell and
3-aminopropyltriethoxysilane 25 ◦C [130]

Magnetite nanocapsule
nanocomposites Polyaniline 90 min 28 ◦C [130]

Porous silica nanoparticles Polyethyleneimine 30 min 75 ◦C [131]

La and Ce Zeolite - 0, 30, 60 ◦C [131]

CaO Egg shell waste 23 min 700–900 ◦C [132]

MgO Graphene oxide - 60–120 ◦C [132]

3.6. Insecticides and Pesticides

Pesticide sales in the EU increased by 2.7% in 2021 to 355,175 tons, with agriculture
being the primary user of these chemicals [133]. The Kyoto Protocol set off worldwide
efforts to limit greenhouse gas (GHG) emissions in order to limit temperature increases to
less than 2 ◦C. However, despite the fact that it was meant to end in 2012, many nations’
inadequate efforts to reduce carbon emissions caused it to continue longer [134,135].

Due to their revolutionary effect on agricultural operations, nanoparticles in herbicides
and insecticides represent a significant step toward the advancement of the green economy.
Pesticides and insecticides using nanoparticle-based formulations have a more focused
and regulated delivery system, which boosts effectiveness while reducing environmental
impact. The implementation of solutions based on nanoparticles improves resource effi-
ciency and reduces the financial and ecological expenses linked to conventional pesticides.
As a result of industry investments in and use of these cutting-edge technologies, the
objectives of a green economy are advanced and a more environmentally conscious and
sustainable agricultural sector is fostered, and economic growth is stimulated through
the development and commercialization of cutting-edge environmentally friendly pest
control solutions [136–138].

The usage of nanoparticles as insecticides in agriculture has increased recently. It is
also being used as an inexpensive sensing tool, which has to be studied for better farming
practices and higher yields [127]. Ulrichs et al. claim that NPs have a large surface area
that affects lepidopteran insects in less than a day, which is necessary for human use [128].
Table 7 presents a tabulation of the nanoparticles present in the activity along with their
interaction pests.
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Table 7. Nanoparticles serving as insecticides and pesticides.

Nanoparticles Activity Pests Affected Reference

ZnO Blocks the organism

Fusarium graminearum, Penicillium
expansum, Alternaria alternate,

F. oxysporum, Rhizopus stolonifer,
Mucorplumbeus, Pseudomonas

aeruginosa and Aspergillus flavus

[127,128,136]

MO
Stops fungal conidiophores and

conidia growth on vegetative
parts of fungi

Conidia and conidiophores of fungi [137]

C nanotubes

Raises the nutrients and
elemental uptake by plants and
is also involved in ameliorating

the development of plants

[138,139]

Ag Used to control agricultural
pests and organisms

Helicoverpaarmigera, Ariadne merione,
Pediculushumanus, Aedesstephensi,

Aedes aegypti, Culex quinquefasciatus,
Lipaphiserysimiwas, Plutellaxylostella,

Helicoverpaarmigera and
Sitophilus oryzae.

[140–146]

Cd Causes larval death of 93.79%
at 2400 ppm Spodopteralitura [147]

TiO2
Causes larval death of 73.79%

at 2400 ppm Spodopteralitura [147]

Pungam oil-based AuNPs Causes high mortality of pests Pericalliaricini larvae [148]

Cu Causes toxicity against pests Triboliumcastaneum, Spodopteralittoralis
larvae, Aedes aegypti larvae [149,150]

Nanostructured alumina
(Al2O3)

Causes mortality when exposed
to wheat pests

Sitophilus oryzae, and
Rhizopertha dominica [151]

Al Kills the pest S. oryzae [152]

TiO2 Destroys the pest S. oryzae [152]

Nanosilica Enters inside the pest from the
cuticle, thus destroying the pest Different pests [153]

Nanosphere of silica Helps bactericides to enter into
plant cell sap - [154]

Bioactive silver Lags the action of trypsin,
hence, makes the pest harmless Different pests [155]

AuNPs with protein Improves catalytic inhibition - [155]

4. Conclusions

There is a substantial and adaptable influence of environmentally produced nanopar-
ticles on a range of important fields, such as the development of insecticides and pesticides,
the production of biofuel, the inhibition of corrosion, the use of nanofertilizers, the re-
mediation of nano-damaged materials, the facilitation of biodegradation, the detection
of heavy metals, and the catalytic reduction of CO2 to promote the green economy. Uti-
lizing ecofriendly nanomaterials in novel ways highlights their revolutionary potential
in advancing sustainability, as well as their ability to address urgent environmental and
industrial issues [156]. This research offers a promising path towards a more environmen-
tally conscious and commercially successful future by utilizing the multifaceted properties
of green-synthesized nanoparticles. It also strengthens the fundamental role that these
nanoparticles will play in forming a more sustainable and greener world by providing
comprehensive solutions for a range of industries.
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4.1. Future Perspectives

1. Ongoing investigation into novel environmentally friendly nanoparticle
production techniques.

2. Researching materials for biodegradable nanoparticles to lessen their influence on
the environment.

3. The creation of intelligent nanofertilizers to minimize chemical usage and enable
precision farming.

4. Using nanoremediation methods to remediate pollution in water and soil.
5. Improving the biodegradation processes based on nanoparticles to manage

waste effectively.
6. Progress in heavy metal identification technology to enhance environmental surveillance.
7. Using catalysts made of nanoparticles to increase the generation of biofuels for

sustainable energy.
8. Research how nanoparticles affect ecosystems and microbial communities.
9. Improving and extending the application of nanoparticles in herbicides and insecti-

cides to manage pests.
10. Research on environmentally acceptable and sustainable substitutes for conventional

chemical pesticides.
11. Using nanoparticles and catalytic reduction of CO2 to fight climate change.
12. Examining the possibility of using nanoparticles for carbon collection and usage.
13. Developing rules and policies for the safe and responsible use of nanoparticles.
14. Public awareness initiatives to inform people about the advantages of green nanopar-

ticles as well as any possible hazards.
15. Cooperation to hasten the adoption of green nanoparticles for a greener economy

among businesses, academic institutions, and governments.
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