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Abstract: The facile and green synthesis of 1,1′-binaphthalene-2,2′-diamine (BINAM) derivatives was
established via the anodic dehydrogenative homo-coupling of 2-naphthylamines. The sustainable pro-
tocol provided a series of BINAMs in excellent yields of up to 98% with good current efficiency (66%)
and H2 as the sole coproduct without utilizing transition-metal reagents or stoichiometric oxidants.

Keywords: electrochemical synthesis; 2-naphthylamines; anodic dehydrogenative homocoupling;
BINAMs

1. Introduction

1,1′-Bi-2-naphthylamine (BINAM) and its derivatives are widely used as building
blocks for transition-metal ligands and organocatalysts [1–4], as well as chiroptical ma-
terials for fluorescence sensing [5–7]. Among their syntheses, transition-metal mediated
coupling of 2-naphthylamine derivatives has been well established [8–12]. In particular,
the Ullmann [13] and metal-mediated C(sp2)–H oxidative [14–20] coupling reactions of
2-naphthylamines are the most popular synthetic approaches to obtaining BINAMs. Benzi-
dine rearrangement [21–23] and Smiles rearrangement of phenolic compounds [24] have
been reported to be alternative synthetic methods for BINAMs. However, the regio- and
chemoselective C–C coupling of 2-naphthylamines remains challenging, probably because
these strategies require the use of excess amounts of metals and oxidants, which leads to
many side reactions of starting material and over-oxidation of coupling products.

Biaryls synthesis through anodic oxidation utilizing electrochemical synthesis has
emerged as a promising green and sustainable approach over the last few decades. The
electrochemical dehydrogenative coupling of aryls utilizes electricity as an alternative to
oxidants and produces H2 as the sole coproduct without generating any toxic waste; thus,
this approach exhibits great advantages in terms of high atom economy and environmen-
tally benign synthesis protocols [25,26]. Although remarkable achievements have been
made in the electrochemical dehydrogenative heterocoupling of anilines [27], few reports
on the homocoupling of aniline derivatives [28,29], particularly 2-naphthylamines, are
available. In the 1980s, Gossage [30] and Sereno [31] independently described the electro-
chemical dehydrogenative homocoupling of 2-naphthylamines, which afforded BINAMs,
but in low yield. Thus, the development of efficient oxidative homocoupling protocols for
2-naphthylamines via electrochemical synthesis is of great importance.

Because the discharge of the electrolyte or solvent leads to a low yield and poor
current efficiency, we reexamined the anodic dehydrogenative homocoupling conditions
of 2-naphthylamines to save energy and chemical loading in the pursuit of developing
environmentally benign chemical reactions. To our delight, under the newly established
conditions, the corresponding homocoupling products were obtained in 98% yield with
good current efficiency (66%; Scheme 1).
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Scheme 1. Electrochemical dehydrogenative homocoupling of 2-naphthylamines.

2. Materials and Methods
2.1. Materials

N-Phenyl-2-napthylamine (1a) was purchased from Tokyo Chemical Industries (TCI).
All commercially available organic and inorganic compounds were used directly without
further purification.

2.2. Methods
2.2.1. Spectroscopy and Spectrometry

1H- and 13C-NMR spectra were recorded at 25 ◦C using a JEOL JMN ECS400 FT NMR
instrument (1H-NMR 400 MHz; 13C-NMR 100 MHz). The 1H-NMR spectra are reported as
follows: chemical shift in ppm downfield of tetramethylsilane and referenced to a residual
solvent peak (CHCl3) at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet,
t = triplet, q = quartet, m = multiplet), and coupling constants (Hz). The 13C-NMR spectra
are reported in ppm relative to the central line of the triplet for CDCl3 at 77.16 ppm. ESI-MS
spectra were obtained using a JMS-T100LC instrument (JEOL). FT-IR spectra were recorded
using a JASCO FT-IR system (FT/IR4100). Thin-layer chromatography (TLC) analysis of
the reaction mixture was performed on Merck silica gel 60 F254 TLC plates and visualized
under UV light. Column chromatography on SiO2 was performed using Kanto Silica Gel
60 (63–210 µm).

2.2.2. General Protocol for the Anodic Homocoupling of 2-Naphthylamines

ElectraSyn 2.0 and platinum were utilized as the reaction device and electrode, respec-
tively. A suspension of 2-naphthylamines (0.1 mmol) and nBu4NPF6 (0.1 M) in 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP) (5 mL) was added to an undivided vessel and stirred under a
constant current of 4 mA for 2 h. The electrolyte was removed using short silica gel column
chromatography (nhexane/ethyl acetate = 1/1). The fraction was dried, and the crude
product was purified by silica-gel column chromatography (nhexane/ethyl acetate = 20/1)
to afford the pure homocoupling product.

3. Results
3.1. Optimization of the Reaction Conditions

Initially, we screened the electrodes, solvent systems, currents, and electrolytes to
determine the optimal conditions (Table 1, also see supporting information). The elec-
trodes were screened by employing 0.1 mmol N-phenyl-2-naphthylamine (1a, oxidative
potential 1.05 eV; see Supporting Information) as the model substrate. The platinum elec-
trode exhibited good reactivity, affording homocoupling product 2a in 98% yield (current
efficiency, 66%) without the formation of any side product (entry 1). In contrast, the
carbon–platinum [32] and fluorine-doped tin oxide(FTO) [33] electrodes gave 2a in 43%
and 29% yields, respectively, with low current efficiencies (entries 2 and 3). Other alcoholic
reaction solvents, such as methanol, ethanol, and trifluoroethanol, reduced the yield of 2a
to 6–12% with current efficiencies of 4–8% (entries 4–6), along with a 5% yield of aza [5]
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helicene. HFIP, an appropriate solvent for the reaction, serves as an excellent hydrogen
bond donor and provides highly persistent radical cations [34,35]. The effect of a constant
current was also investigated. As shown in entry 7, when a current of 2 mA was employed
for the electrosynthesis process, the current efficiency increased to 80%, but the yield of
2a decreased to 60%. In contrast, employing a current of 6 mA for the electrosynthesis
process led to the formation of 2a in 49% yield, with a current efficiency of 22% (entry 8).
Suppressing the discharge of the electrolyte or solvent resulted in higher yield and current
efficiency. Among the electrolytes we screened, nBu4NPF6 proved to be superior to LiClO4
(2a, 57% yield due to low solubility in HFIP) and nBu4NClO4 (2a, 29% yield) (entries 9 and
10). No reaction occurred in the absence of electricity (entry 11).

Table 1. Optimization of the conditions for the electrochemical homocoupling of 2-naphthylamines
using 1a as the model substrate.
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Entry Variation from Standard Conditions
% Yield (% Current Efficiency) a

2a 3a

1 None 99, 98 b (66) -
2 C (+)/Pt (−) 43 (29) -
3 FTO (−)/FTO c (+) 29 (20) -
4 MeOH instead of HFIP 10 (7) 5
5 EtOH instead of HFIP 6 (4) 5
6 CF3CH2OH instead of HFIP 12 (8) -
7 2 mA 60 (80) -
8 6 mA 49 (22) -
9 with LiClO4 instead of nBu4NPF6 57 d (38) -

10 with nBu4NClO4 instead of nBu4NPF6 29 (19) -
11 No electricity No reaction

a NMR yield; b Isolated yield; c FTO = Fluorine-doped tin oxide; d HFIP:MeOH (3:2) for 8 h.

3.2. Scope of Substrates

With the optimized conditions in hand (reaction solvent: HFIP, electrolyte: nBu4NPF6
(0.1 M), electrode: platinum, constant current: 4 mA, and reaction temperature: 25 ◦C), we
investigated the substrate scope of the 2-naphthylamines (Figure 1). The electrochemical
homocoupling of 2-naphthylamines 1 proceeded smoothly at moderate current efficiencies
(44–66%). N-Phenyl-2-naphthylamine (1a) produced homocoupling product 2a in 98%
yield. N-4-Tolyl and N-2-tolyl-2-naphthylamines (1b and 1c), respectively, were also found
to be appropriate coupling precursors, giving the corresponding homocoupling products
2b and 2c in 92% and 83% yields, respectively. The reaction of substrates 1d and 1e with
electron-donating or electron-withdrawing groups, such as N-2,3-dimethoxyphenyl and
N-4-bromophenyl, on the nitrogen atom, showed good functional group tolerance, giving
binaphthylamines 2d and 2e in good yields. When N-(1,1′-biphenyl)-4-yl-2-naphthylamine
(1f) was used as the substrate, a moderate yield of the coupling product 2f was obtained
because of the poor solubility of 1f in HFIP. The reactions of N-alkyl-2-naphthylamines,
such as N-methyle-2-naphthylamine (1g), N-ethyl-2-naphthylamine (1h), N-isopropyl-
2-naphthylamine (1i), and N-t-butyle-2-naphthylamine (1j) afforded the corresponding
homocoupling products 2g, 2h, 2i and 2j in 30%, 87%, 85% and 72% yields, respectively.
The dehydrogenative coupling reactions of N-aryl-2-naphthylamines (1k–1n) with various
substituents were also conducted. Products 2k and 2l with methoxy groups 2m and 2n
with phenyl and cyano groups were readily obtained in good to excellent yields (65–95%
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yields). N-Naphthyl-2-naphthyl amine (1o) could not be tolerated. Finally, N-benzyl-
naphthylamine (1p) was employed in the electrochemical homocoupling reaction. The
corresponding product 2p was obtained an 85% yield and could be transformed into
BINAM with Lewis acid (See Supporting Information).
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4. Discussion

In our study, the homocoupling reaction of 2-naphthylamines proceeded smoothly
with good current efficiency. To further understand the relevant mechanism, we conducted
the heterocoupling reactions of 1b with N-4-tolyl (an electron-donating group) and 1e
with N-4-bromo-phenyl (an electron-withdrawing group) under the optimal conditions
(Scheme 2).

Homocoupling product 2b was obtained in 90% yield as the major product, along with
homocoupling product 2e in 10% yield and trace amounts of heterocoupling product 2be.
The relative proportions of the products arising from the radical–radical coupling reactions
are aligned with their relative reactivities [36–38]. In principle, 1e is less oxidizable than
1b, which should result in the formation of homocoupling 2b as the major product. The
results support our hypothesis that the present coupling reaction of 1 proceeds through
radical–radical coupling, as shown in Scheme 3. Triggering by single-electron transfer (SET)
of 1a on the anode made the formation of intermediate I. The generated I species could be
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in equilibrium into Ia and Ib by electron transfer. Then a radical–radical coupling of Ib
proceeded to afford the coupling product 2b through the oxidation of intermediate II. On
the cathode, the generated H+ was reduced to give H2 as a sole coproduct.
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5. Conclusions

We developed a facile and sustainable protocol for the homocoupling of various
2-naphthylamines with up to 98% yield and good current efficiency (66%). This new
protocol not only saves energy and chemical loading but also significantly improves the
product yield, thus representing a significant improvement to the previous electrosynthesis
approach. Investigations of the further applications of homocoupling products are ongoing
in our laboratory.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/suschem3040034/s1; Figure S1: IKA device ElectraSyn 2.0 standard setup;
Table S1. Screening solvent of constant current for optimizing reaction conditions; Figure S2: CV
experiments (MeCN) as a solvent with Bu4NPF6 (0.1 M) as an electrolyte.
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15. Vyskočil, Š.; Smrčina, M.; Lorenc, M.; Tišlerová, I.; Brooks, R.D.; Kulagowski, J.J.; Langer, V.; Farrugia, L.J.; Kočovský, P.
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