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Abstract: Water splitting has emerged as a sustainable, renewable and zero-carbon-based energy
source. Water undergoes hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)
during electrolysis. However, among these half-cell reactions, OER is more energy demanding.
Hence, the development of efficient catalysts for speeding up OER is a key for boosting up the
commercial viability of electrolyzers. Typical binders like Nafion and PVDF are not preferred for
designing commercial electrocatalysts as they can compromise conductivity. Thus, we have designed
a novel and cost-effective binder-free tetra-metallic (Co-Cu-Zn-Fe) oxide catalyst that efficiently
catalyzes OER. This catalyst was grown over the surface of Fluorine doped tin oxide (FTO) transducer
by a facile potentiodynamic method. The structure and morphology of the modified electrode were
characterized by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive X-ray
spectroscopy. XRD analysis confirmed the deposition of CoFe2O4 and CuCo2O4 along with alloy
formation of Co-Fe and Co-Cu. Similarly, EDX and SEM results show the presence of metals at the
surface of FTO in accordance with the results of XRD. Linear scan voltammetry was employed for
testing the performance of the catalyst towards accelerating OER in strongly alkaline medium of
pH-13. The catalyst demonstrated stunning OER catalytic performance, with an overpotential of
just 216 mV at 10 mA cm−2 current density. Moreover, the chronopotentiometric response revealed
that the designed catalyst was stable at a potential of 1.80 V for 16 h. Thus, the designed catalyst
is the first example of a highly stable, efficient, and inexpensive catalyst that catalyzes OER at the
lowest overpotential.

Keywords: electrocatalyst; water splitting; oxygen evolution reaction; low overpotential; tetra-metallic
oxide-based catalysts

1. Introduction

The industrial revolution and population growth have led to an increase in energy
demands. Though fossil fuels have been satisfying most energy requirements, their com-
bustion generates carbon dioxide, which is a major source of global warming. Moreover,
reserves of fossil fuels are being depleted. These alarming implications have compelled the
scientific community to explore renewable and sustainable energy resources to comply with
increasing energy demand and environmental friendliness. Among the plethora of clean
energy resources that have been probed so far, energy generation from water is attracting
increased attention, as water is found in abundance. Hence, concerted efforts are underway
to develop efficient catalysts for energy generation from water [1].
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Solid-state catalysts employing noble metals, such as platinum, gold, and non-noble
titanium metal, have long been documented as being proficient HER catalysts, while
ruthenium and iridium-based metals catalyze OER at lower overpotentials. Neverthe-
less, their exorbitant prices and scarce availability limit their applications. These catalysts
have additionally been found to be susceptible to poisoning due to harsh reaction con-
ditions [2], which results in their activity being impeded, limiting the large scale com-
mercialization of electrolyzers using these catalysts. Therefore, it is highly desirable to
search for cost-effective water splitting catalysts. The last few years have witnessed a
mushrooming of several favorable solid-state HER/OER catalysts made up of transition
and earth-abundant metals. For example, molybdenum sulfides M-Mo2S (M = Fe, Co, Ni,
etc.) of varying morphologies have been identified and reported to be active HER/OER
catalysts [3–7]. Similarly, MoB, Mo2C, and Cu2MoS have also been documented to show
promising HER/OER catalysis [4–7]. First-row transition elements such as H2-CoCat MS2,
(M = Fe, Co, Ni, etc.), CoP, CoSe2, Co-NRCNT, FeS, FeP, and Ni2P have been extensively
studied for their enhanced catalytic activities [8]. However, these catalysts are frequently
pre-treated in strongly acidic electrolytes, while some of them demand treatment with toxic
gases at elevated temperatures.

Researchers have been trying to explore OER catalytic performance by employing
individual earth abundant metals as well as seeking their synergistic combinations as
viable catalysts for electrolyzers. In this regard, some hybrid catalysts, for instance Cu
nanoparticles incorporated into CoSx, have displayed good activity and stability for OER [9].
Cu prevents the corrosion issue of Co oxides [1]. Likewise, copper and Zn are used in
electrolyzers to minimize or avoid corrosion problems and to consequently catalyze water
splitting reactions efficiently. Iron-based catalysts have also been found to accelerate OER in
electrolyzers [10]. However, corrosion is still an issue when it is attempted to use iron alone
for OER. To enhance the corrosion resistivity of iron, it must be alloyed with other metals
such as Co, Ni, Mo, Cu, Zn [9]. In this regard, Renato et. al. found that Ni-Fe-Mo ternary
catalyst exhibits efficient catalytic activity towards HER/OER [11]. Similarly, Jafarian et.
al. reported that nanocrystalline Co-Ni-Fe shows improved catalytic activity compared to
individual metals or their binary combinations [1]. Akbar et al. attempted to synergistically
combine CuZnAg non-noble metals for efficient OER activity [12]. Furthermore, it has
been established that OER stability can be enhanced by a CuO electrocatalyst. It has
been demonstrated that CuO enhances the stability of the catalyst due to its nanoblock
morphology and it has been shown to exhibit an overpotential (η) of 475 mV in a 1.0 M
KOH at 10 mA cm−2 [13]. Likewise, ZnO-CoOx nanospheres have been prepared by the
method of co-electrodeposition of Co-Zn alloy, which is then electrochemically corroded.
Zn has been shown to play an important role in the nanostructured morphology, enhancing
the active surface area and hence resulting in enhanced activity and stability for OER [14].
Similarly, CuCoO nanowires showed high stability and electrocatalytic activity for OER
in a 1.0 M KOH solution than the benchmark IrO2 [15,16]. These nanowires are grown
on Ni foam and have been shown to contain crystals of Cu2O, CoO and CuCo2O4 with
variable oxidation states. Fe and O is doped in Co2P to form CoFePO, which consists of
nanoparticles arranged as nanowires and employed to enhance the stability and activity
of the catalyst [17]. Furthermore, efforts have been directed towards using binder-free
modified electrodes to improve the conductivity of the working matrix. A binder is usually
used to bind the catalyst to the surface of the electrode. Some commonly used binders
are Triton X-100, Nafion, sodium dodecyl sulfate, cetyltrimethylammonium bromide, etc.
However, binders have been observed to inhibit the catalytic activity by blocking the active
sites and as a result low current value and a high onset potential are obtained which are
contrary to what is desired for an efficient electrocatalyst. Therefore, researchers are trying
to develop binder-free electrocatalysts for OER activity [12,18–20].

The search for more effective electrocatalysts utilizing synergistic properties by com-
bining metals imparting distinctive properties to a composite has attracted considerable
attention. However, it is a rather challenging task to combine metals in proportions and



Sustain. Chem. 2022, 3 288

combinations that may lead to favorable enhancement of synergistic properties. Herein, we
report a Co, Cu, Zn and Fe oxide-based tetra-metallic electrocatalyst on Fluorine-doped
tin oxide (FTO) as a support that catalyzes OER with an exceptional overpotential. FTO
has been found to be relatively stable at high cathodic and anodic potentials, which was
the reason for this choice [21]. This cheaper corrosion- and binder-free metal oxide-based
catalyst with good conducting properties synthesized by a simple in situ one pot elec-
trochemical method, is the most promising addition to the list of low-cost catalysts for
accelerating OER at a lower overpotential. This is accomplished by employing abundantly
available transition metals. From a practical point of view, this is the first reported work on
a tetra-metallic catalyst with a significantly low overpotential and holds great promise for
use as a proof of concept for the commercial application of alkaline electrolyzers.

2. Experimental
2.1. Chemicals and Instrumentation

Analytical-grade chemicals (listed in Table 1) were used during the synthesis of the
electrocatalyst. All solutions were prepared in deionized water with resistivity of 18 mΩ.

Table 1. List of deposited materials.

Alloy Name Chemical
Formula

Peak
Position (2θ) Crystal Type Space

Groups hkl

Cuprospinel CuFe2O4
29.81

Tetragonal F
202

35.93 311

Zinc Iron Oxide ZnFe2O4
37.11

Cubic Fd3m
222

43.03 400

Copper Zinc Oxide CuZnO2 49.77 Cubic Pm3m 200

Cobalt Iron Oxide CoFe2O4
57.15

Cubic Fd3m
511

65.17 440

Copper Cobalt Oxide CuCo2O4 77.57 Cubic Fd3m 533

Electrochemical experiments were performed by means of computer-controlled po-
tentiostat Metrohm Autolab PGSTAT-M101A running with NOVA 1.11 software. Cyclic
voltammetry (CV), chronoamperometry (CA) and linear sweep voltammetry (LSV) were
performed in a three-electrode system. Ag/AgCl (3 M KCl) and platinum wire were used
as reference and counter electrodes, respectively. FTO was used as a working electrode.
It was washed with acetone under sonication for 15 min. The same process was then
repeated with deionized water prior to electrode modification. Cyclic voltammetry was
performed to characterize the reduction potential of respective metal ions which were then
electrodeposited over FTO surface via controlled potential electrolysis (CPE). X-ray diffrac-
tion (XRD) patterns were recorded directly on the modified electrode using Bruker Foucs
D8 via ceramic mono chromatized Cu Kα radiation of 1.54178 Åwith a scanning range
of 5–70◦ operated at 5◦ per min in 2θ at 45 kV and 45 mA. Scanning electron microscopy
(SEM) micrographs and energy dispersive X-ray (EDX) spectra were obtained on Hitachi
S-4800 (Hitachi, Japan) equipped with a Horiba EDX system (X-max, silicon drift X-ray
detector). SEM images were taken with an acceleration voltage of 5 kV, while EDX mapping
images and spectra were recorded with acceleration voltages of 20 kV with a scanning time
of 20 min.

2.2. Method of Electrode Modification

In situ electrochemical methods were employed for the electrodeposition of metals
over the FTO surface. Stock solutions of 1 M copper sulfate, iron sulfate, cobalt sulfate
and zinc sulfate were prepared. Each solution was prepared by dissolving the respec-
tive amounts of salts in 100 mL of deionized water. Working solutions were prepared
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by diluting the stock solutions to the desired concentration. Cyclic voltammetry was em-
ployed to investigate the reduction potential of the respective metals in alkaline medium
of pH 13.0 using 1 M KOH as a supporting electrolyte. After confirmation of reduction
potentials, chronoamperometry (potentiostatic) was carried out for in situ electrodepo-
sition of metal ions at the chosen reduction potential on FTO surface according to the
method reported in literature [9]. Moreover, equal volumes of all the four metal sulfate
(CoSO4 + CuSO4 + ZnSO4 + FeSO4) solutions were taken in 100 mL beaker by taking 25 mL
of them each. Further, 25 mL of the mixed metallic sulfate solution was taken in an elec-
trolytic cell and added to a 25 mL of supporting electrolyte (1 M KOH) of pH 13. For
electrodeposition of tetra-metallic ions, controlled potential electrolysis (CPE) at three
different values of deposition potentials (−1.3 V, −1.4 V and −1.5 V) was performed for
15 min. The molar ratio of the combined metals was optimized. The best combination was
used for the investigation of the oxygen evolution reaction. After electrodeposition of metal
ions on the FTO surface, linear sweep voltammetry (LSV) was employed to investigate
the OER activity of individual metals as well as the tetra-metallic electrocatalyst. Prior
to recording LSV, the electrode was conditioned by cycling the potential between 0 to
1.5 V for several cycles for achievement of reproducible voltammograms. All potentials
unless otherwise stated were calibrated against Reference Hydrogen Electrode (RHE) for
the electrolyte used to investigate water splitting.

3. Results and Discussion
3.1. Cyclic Voltammetry

CV was employed to acquire redox signals of the respective metallic ions in basic
medium at the bare FTO electrode. CVs of individual metal ions in 1 M KOH are shown in
Figure S1. For Co2+, a decrease in current at −0.6 V followed by a sharp peak at −1.3 V
is observed (Figure S1a), corresponding to the reduction of the Co2+ ions at the electrode
surface with a current cross−over at−1.4 V in the reverse cycle. This current cross-over can
be related to the nucleation growth process at FTO surface [22]. A sharp oxidation signal
around −1.0 V corresponds to the stripping of Co2+ ions off the FTO surface back into the
solution [23]. Similarly, for Cu2+ in Figure S1b reduction occurs at −0.2 V while oxidation
peak corresponding to stripping off the electroplated copper back into the solution, appears
at 0.6 V [9]. In case of Fe2+ (Figure S1c) the reduction peak appears at −1.17 V with
corresponding oxidation signal at−0.38 V. These values match well with literature reported
redox potentials of Fe2+ [9]. Likewise, CV of zinc reveals (Figure S1d) a slight decrease
in current at −0.6 V in the reduction scan, which continues further to a sharp decrease in
current at −1.3 V corresponding to the reduction of Zn2+ at the FTO surface. A current
crossover at −1.19 V corresponds to the onset of nucleation growth of zinc at the FTO
surface while oxidation peak at −0.6 V relates to the stripping of zinc ions at the FTO
surface as a result of the oxidation process [1]. The difference between the highest value
of current generated by the FTO in both the forward and reverse scans decides whether
the process of reduction of analyte or its oxidation is faster. From the CV results, reduction
potential, oxidation potential, highest reductive current, and highest oxidative current of
the individual metal ions were determined. The effect of 50 successive CV scan cycles
on the redox peaks of cobalt, copper, zinc, and iron was additionally investigated. With
increasing number of scan cycles, the intensity of reduction signals increased up to 50th
cycle (Figure S2), leading to the growth of metals over the electrode surface as reported
previously [1]. The catalyst modified electrode was then subjected to water splitting
performance. The details are given vide infra.

3.2. Electrodeposition through Chronoamperometry

Chronoamperometry was applied for in situ deposition of individual metal ions on
FTO surface in an aqueous medium of 1 M KOH as shown in Figure S3 at various deposition
potentials via CPE with a deposition time of 15 min. Observation of Figure 1 reveals that at
the commencement of the applied potential, cathodic current intensifies quickly which after
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a short time rapidly decreases due to possible depletion of metal ions from the electrode
surface. Finally, a steady value of current is approached. In all cases, it was noticed that
with increasing deposition potential, the value of generated current increased, thereby
suggesting a high amount of metal ions being deposited on the FTO surface at −1.5 V.
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Figure 1. In situ deposition of Co-Cu-Fe-Zn oxides simultaneously on FTO at different values of
deposition potential using 1 M KOH as a supporting electrolyte for 900 s.

In chronoamperometry, the value of current density depends upon overpotential.
This is associated with the nucleation growth process of the catalyst. After some time,
the current attains a steady value, suggesting that the process is diffusion-controlled, as
described by the Cottrell equation (Equation (1)).

i =
nFACo j√Dj
√

πt
(1)

Figure 1 demonstrates the simultaneous deposition of the tetra-metallic oxide electro-
catalyst on FTO surface. Like the pattern observed in the chronoamperograms of individual
ions, cathodic current enhancement occurred for all four metal ions for a short period
of time. Afterwards, due to the depletion of the concentrations of metal ions from the
electrode surface, the current starts to decrease gradually because of diffusion controlled
regime and a constant value of current is finally approached.

3.3. Characterization of Modified FTO
3.3.1. XRD Analysis of FTO Modified with Tetra-Metallic Electro-Catalyst

The XRD spectra recorded directly on the FTO with metal films coated at −1.50 V vs.
Ag/AgCl (3 M KCl) are presented in Figure 2. The XRD spectra confirms the presence of
oxides of Co, Cu, Fe, and Zn on FTO apart from the signals originating from bare FTO.
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Catalyst in 1 M KOH (pH = 13) at deposition potentials of −1.5 V.

For bare FTO (Figure 2), two strong peaks are observed at 13.93◦ and 16.75◦. The peak
at 16.75◦ corresponds to cubic FTO with hkl values of (111) [24] and the peak at 13.93◦

corresponds to monoclinic fluorine tin oxide with hkl values of (−110) [25]. Meanwhile, for
tetra-metallics, the first two peaks in the region of 10◦ to 20◦ represent characteristic peaks of
FTO. The peaks at 35.91◦, 42.59◦, 61.73◦, and 77.53◦ correspond to cubic cobalt oxide (CoO)
with hkl facets of (111), (200), (220), and (222), respectively [26]. These peak positions were
previously reported by Masoumeh et al.; however, in the case of our modified electrode,
an additional peak is observed at 77.549◦ [27]. The peak pattern observed in our case
matches with the reference code number JCPDS-00-001-1227. Similarly, the XRD pattern
for Cu (blue spectra) represents the deposition of copper over FTO. Other than the two
FTO peaks between 10◦ to 20◦, there are five additional peaks at 2θ values of 30.09◦, 36.81◦,
42.59◦, 61.65◦, and 77.53◦ corresponding to cubic copper oxide (Cu2O) with hkl facets of
(110), (111), (200), (220), and (222), respectively [26]. This peak pattern has previously
been reported by Esmaeeli et al., with an additional peak at 77.53◦ [28]. The peak matches
with the reference code number of JCPDS-00-001-1142. The XRD pattern of Fe confirmed
the deposition of iron over FTO. After the region of 10◦ to 20◦ (FTO region), there are
five peaks at 30.69◦, 34.29◦, 43.65◦, 56.95◦, and 75.63◦. The first three peaks correspond to
cubic magnetite (Fe3O4) with hkl facets of (221), (220) and (400), respectively. Peak match
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was confirmed with reference code number JCPDS-01-074-1910 [22]. The peak located at
56.95◦ corresponds to rhombohedral Hematite (Fe2O3) with hkl facet of (122), which was
confirmed and matched with reference code number JCPDS-00-001-1053 [26]. Similarly,
the peak position of 75.63◦ corresponds to cubic iron oxide (FeO) with hkl facets of (222),
which matched with reference code number JCPDS-00-001-1223 [26]. Fondell et al. studied
the phase control iron oxide over FTO, and reported the formation of Magnetite, Hematite
and FeO in a similar region [29]. The grey-colored peak represents the deposition of zinc
over FTO. After the region of 10◦ to 20◦ (FTO region), there are three peaks at 30.77◦,
34.29◦ and 47.55◦ corresponding to hexagonal zinc oxide (ZnO) with hkl facets of (100),
(002), and (102), respectively. The peaks were matched and confirmed with reference code
JCPDS-00-001-1136 [26]. Anandhi et al. previously reported similar peaks of ZnO in their
study [9].

In Figure 2, the individual peak positions of ZnO (100), Fe3O4 (220) and Cu2O (110)
lie in a similar region, ~30◦; thus, alloy formation of the oxides of metals (Cu-Zn), (Fe-Zn),
(Cu-Fe) and (Cu-Zn-Fe) is inferred when all of these metals are simultaneously electrode-
posited over FTO. Similarly, the peak positions of CoO (111) and Fe3O4 (220) occur in a
similar range of 2θ (34.50–35.50◦), and CoO (200) while Fe3O4 (400) also occur in a close
range of (42.50–43.50◦); thus, alloy formation of the oxides of (Co-Fe) is also expected,
and the individual peak positions of Cu2O (200)/CoO (200), Cu2O (220)/CoO (220) and
Cu2O (222)/CoO (222) coincide at 43◦, 62◦ and 77◦; thus, an alloy of the oxides of (Co-Cu)
can also be expected during simultaneous electrodeposition of these metals. Peaks at
29.81◦ and 35.93◦ correspond to Tetragonal Copper Iron Oxide (Cuprospinel CuFe2O4)
with hkl facets of (202) and (311), respectively. Peaks were confirmed and matched with
reference code number JCPDS-00-025-0283 [30]. Similarly, the peak positions at 37.11◦ and
43.03◦ correspond to Cubic Zinc Iron Oxide (ZnFe2O4) with hkl facets of (222) and (400),
respectively. Respective peaks were confirmed and matched with reference code number
JCPDS-00-001-1108 [31]. A peak appearing at 49.77◦ corresponding to Cubic Copper Zinc
(Brass CuZn) with single hkl facet of (200) was confirmed and matched with reference
code number JCPDS-00-006-0657 [32]. Peaks occurring at 57.15◦ and 65.17◦ correspond to
Cubic Cobalt Iron Oxide (CoFe2O4) with hkl facets of (511) and (440), respectively. Peaks
were matched and confirmed with reference code number JCPDS-00-001-1121 [33]. The last
peak in our analysis occurred at 77.57◦, corresponding to a single hkl facet (533) of Cubic
Copper Cobalt Oxide (CuCo2O4). The peak was matched and confirmed with reference
code number JCPDS-00-001-1155.

Table 1 depicts the metal oxide alloys that were observed in the electrodeposited
tetra-metallic electrocatalyst over FTO. Out of eight metal oxide alloys, six contained iron
as the main constituent, while the remaining two alloys, i.e., brass and cobalt copper oxide,
contained copper as the main constituent. Thus, one can expect the formation of multiple
metal oxide alloys when varying the concentration of the source metallic solutions, which
will be further probed in future studies. Another factor that governs the quality of metal
oxide alloy formation is the respective deposition time. Lastly, the applied potential also
plays an important role in determining the quality of the deposited material [1,11,34–42].

3.3.2. SEM and EDX Analysis of FTO Modified with Oxides of Tetra-Metallic Electrocatalyst

SEM analysis is performed to examine and analyze the morphology of diverse materi-
als. This specific technique provides us with crucial information about surface roughness,
porosity, inter-metallic distribution, material homogeneity, and particle size. The SEM
analysis (Figure 3) offers evidence about film formation of the synthesized catalyst over the
surface of FTO. In SEM micrographs, regular cubic shape particles can be observed spread
out randomly throughout the surface. This suggests uniform deposition of metal oxides
with different shapes. Additionally, under magnification to 5 µm in Figure 3e, the growth
is confirmed to be of tetrahedral-type particles.
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Figure 3. SEM images of Co-Cu-Fe-Zn oxide films obtained by electrodeposition in basic medium
(pH-13) at −1.5 V. (a) SEM micrograph taken at 100 µm, arrows showing random distribution of
cubic and tetragonal particles; (b) SEM micrograph of cubic particles magnified at 30 µm; (c) SEM
micrograph of cubic particles magnified at 5 µm; (d) SEM micrograph of tetragonal-shaped particles
magnified at 30 µm as indicated by arrows; (e) SEM micrograph of tetragonal-shaped particles
magnified at 5 µm.
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EDX was performed to detect the presence of metals on the FTO surface. Figure 4
shows an EDX image of the designed electrocatalyst film coated over FTO surface at
−1.5 V deposition potential. The presence of all four metals is evident, and this result is in
accordance with the XRD analysis. Based on the EDX results the percentage of individual
metals in the deposited film is tabulated in Table 2. The Sn and O appearing in the above
analysis comes from FTO, while the metals are components of the film deposited under
de-aerated conditions. It can be seen that the relative atomic and weight percentage of iron
is almost 2 times that of the remaining three metals, as during deposition, 4 mM of iron
was used in the solution, while concentrations of the remaining three metals were 2 mM.
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Table 2. wt.% and at.% of tetra-metallic thin film coated on FTO.

Element wt.% at.%

Sn 41.07 51.12
O 33.72 32.74

Cu 4.50 1.54
Zn 6.04 2.83
Fe 10.61 9.74
Co 4.06 2.03

3.4. Linear Sweep Voltammetry for the OER Activity of the Catalyst

OER activity for the modified FTO was investigated through LSV. Figure 5a demonstrates
the LSV curves of the electrosynthesized catalyst grown over the FTO surface in 1 M KOH at a
scan rate of 10 mV/s. The potentials were measured with respect to Ag/AgCl (3 M KCl) and con-
verted to the RHE scale according to the equation: ERHE = EAg/AgCl + 0.0591 pH + E◦Ag/AgCl.
The overpotential was evaluated from the relation η = Vapp − iR − EpH, where i denotes
the stable current, R the uncompensated resistance (measured with the help of impedance
spectroscopy for both modified and bare FTO), Vapp the applied potential vs. RHE, and
EpH the thermodynamic potential for water oxidation at the pH of the solution of interest
(EpH = 1.230 V − 0.059 pH V vs. RHE). It can be seen that in KOH, a current density
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of 1 mA/cm2 is obtained at an onset potential of 1.277 V (vs. RHE), where bubbles of
oxygen are formed at the FTO surface due to electrocatalytic oxidation of water by the FTO
supported tetra-metallic catalyst. The low value of overpotential of 216 mV correlates with
the outstanding activity of the catalyst.
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Figure 5. (a) LSV response of Co-Cu-Fe-Zn catalyst in 1 M KOH (pH = 13) at a scan rate of 10 mV/s.
(b) LSVs showing the effect of binder on the catalytic performance of modified FTO in KOH (pH = 13)
at a scan rate of 10 mV/s.

The LSV curves shown in Figure 5b illustrate the effect of sodium dodecyl sulphate
(SDS) binder on the OER performance of Co-Cu-Fe-Zn oxide catalyst anchored over FTO
surface. The binder was found to retard the activity of catalyst, as shown by the blue-colored
LSV curve, where lower current is recorded compared to binder-free catalyst (black LSV
curve). Similar behavior was observed for other binders such as cetyltrimethylammonium
bromide, Trion X-100 and Tween 80. Thus, the designed catalyst performs well in the
absence of binder.

To explore the stability of the catalyst, CPE was performed in 1 M KOH as shown
in Figure 6. The chronoamperogram shows that the catalyst is stable for 16 h. Therefore,
based on this behavior, it can be concluded that our catalyst film can effectively catalyze
the OER reaction for 16 h in a constant current density range at a potential of 1.80 V.
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For comparison of the electrocatalytic activity and to clarify the mechanism of reaction
of the synthesized electrocatalyst, Tafel analysis was carried out. In general, Tafel slopes are
used to extract information about mechanism of electrode reactions, activation energy, role
of inhibitors and coatings. Based on these considerations the Tafel plot shown in Figure S4
was obtained. The Tafel slope of 132 mV dec−1 obtained by plotting stable current density
against overpotential suggests favorable kinetics for OER while reflecting a higher charge
transfer ability for the tetra-metallic catalyst. A lower Tafel slope signifies an efficient
electrocatalytic performance supported by lower overpotentials. Additionally, it provides
insight into the mechanistic pathway of the electrodics. Thus, as in [43], if the first step in
the electrode process is a rate determining step, it shows a Tafel slope of 120 mV dec−1.
While it is noteworthy that the reaction sequence in any electrode process may display
different Tafel slopes depending on which step is the rate determining one as given in [43].
The Tafel slope depends on the transfer coefficient apart from the applied potential and
here transfer coefficient is taken as 0.5 for a single electron reaction. While interpreting Tafel
slopes, oversimplification of surface coverage is assumed, which may lead to misleading
results; hence, for non-ideal real behavior, the experimental observations need to tally with
theoretical explanations [12].

The OER performance of the catalyst was assessed with respect to its ability to bring
the overpotential closer to 1.230 V (vs. RHE). In the case of Co-Cu-Zn-Fe oxide-modified
FTO, OER occurred with a current density of 10 mA/cm2 at a cell voltage of 1.446 V, which
is just 216 mV higher than the theoretical OER potential value of 1.230 V. The current status
quo for splitting of water via catalyst is focused on developing transition metal-based
catalysts that could catalyze water splitting reactions at lower overpotentials and higher
current density. An examination of the data listed in Table 3 reveals that the value of
overpotential of our electrosynthesized hybrid catalyst at a current density of 10 mA/cm2

is much better than the reported ones [14,44–51]. Thus, the designed novel catalyst is
the most suitable choice for water splitting owing to its figures of merit with respect to
cost affordability, abundant availability, and catalysis of OER at the lowest ever reported
overpotential. Thus, our stable and efficient catalyst is a promising candidate for renewable
fuel production.

Table 3. Comparison of different metal-based heterogeneous catalysts for oxidation of water in KOH.

Catalyst η (mV) at 10 mA/cm2 Refs.

Fe0.5Co0.5Ox 257 [44]

Mn3O4@CoxMn3-xO4 Core shell NPs 246 [45]

ZnCo LDH/reduced GO 430 [46]

CoFe2O4/C 240

Ternary NiFeMn LDH 310 [47]

Ni2Fe1-O NW 244 [48]

Co3Fe7Ox/N-pC-450 Nanosphere 328 [49]

ZnO-CoOx Nanosphere 276 [14]

Iron doped CuS nanocrystal CuFe0.6S1.6 302 [50]

3D Carbon encapsulated FeWO4-Ni3S2 nanosheet 200 [51]

Co-Cu-Fe-Zn oxides 216 This work

The electrochemically active surface area (ECSA = 2250 cm2/g) of the FTO modified
with tetra-metallic electrocatalyst was calculated by dividing double layer capacitance (C)
with specific capacitance (Cs = 0.040 mFcm−2) using the following equations [52,53]:

C =
A

2υm∆V
(2)
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ECSA =
C
Cs

(3)

where A denotes the integral area of the cyclic voltammogram loop/area under the I–V
curve, υ the scan rate, m the active mass of electroactive materials and ∆V the potential
window in which the voltammogrm is recorded. The integral area (A = 1.08 × 10−4 AV) of
the cyclic voltammogram obtained at the electrocatalyst-modified FTO was found to be an
order of magnitude greater than the A (6.55 × 10−5 AV) obtained at the unmodified FTO.

4. Conclusions

A novel and highly efficient binder-free water-splitting hybrid tetra-metallic electro-
catalyst was synthesized by a facile and low-cost electrochemical method using abundantly
available transition metals. The deposition of metals on FTO was ensured from the re-
sults of XRD, SEM and EDX. The LSV results revealed Co-Cu-Zn-Fe has great potential to
contribute to ensuring zero-carbon-based energy economy in future advanced devices for
clean energy production by catalyzing OER with considerably higher ECSA, a very low
overpotential of only 216 mV at 10 mA/cm2, distinctly superior electrocatalytic activity,
and stable catalytic performance for 16 h. This extraordinary electrocatalytic activity of
Co-Cu-Zn-Fe hybrid tetra-metallic electrocatalyst arises from the synergy among the com-
bined elements of the composite, which requires the selection of the right blend of metals
demonstrating synergy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/suschem3030018/s1. Figure S1: Cyclic voltammogram of individual
metal ions in 1 M KOH (a) 2 mM CoSO4 (b) 2 mM CuSO4 (c) 4 mM FeSO4 (d) 2 mM ZnSO4; Figure S2:
Effect of scan cycles on the oxidation/reduction peaks of Co, Cu, Fe & Zn in 1 M KOH at a scan rate
of 100 mVs−1; Figure S3: In-situ deposition of (a) cobalt, (b) copper, (c) iron, (d) zinc ions on FTO at
different values of deposition potentials in 1 M KOH as supporting electrolyte for a deposition time
of 900 s; Figure S4: Tafel plot using data obtained at a scan rate of 10 mV/s in 1 M KOH at the FTO
modified with Co-Cu-Zn-Fe.
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