Electronic Supplementary Information

Copolymerization of a Bisphenol A Derivative and Elemental Sulfur by the RASP Process

Timmy Thiounn,^a Moira K. Lauer,^a Menisha S. Karunarathna,^a Andrew G. Tennyson,^{a,b} and Rhett C. Smith^{a}*

^a Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina, United States.

^b Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States.

Electron Image 8

100µm

Figure S1. Surface analysis of **BAS**⁹⁰ by scanning electron microscopy (SEM) revealed a smooth surface consistent with those observed in high sulfur-content materials prepared by inverse vulcanization.

Figure S2. Surface analysis of BAS_{90} by energy-dispersive X-ray (EDX) analysis revealed even distribution of sulfur (A), carbon (B), oxygen (C) and bromine (D) content on the polymer surface.

B)

C)

D)

Figure S3. Differential scanning calorimetry of **BAS**₉₅.

Figure S4. Differential scanning calorimetry of **BAS**₉₀.

Figure S5. Differential scanning calorimetry of **BAS**₈₅.

Figure S6. Differential scanning calorimetry of **BAS**₈₀.

Figure S7. TGA traces showing thermally-induced mass loss for monomer Br₄BPA (red), **BAS**₉₅ (blue), **BAS**₉₀ (black), **BAS**₈₅ (violet) and **BAS**₈₀ (green) under nitrogen.

Figure S8. TGA traces for the fraction of **BAS**₉₀ from which free sulfur has been removed. In one experiment mass loss was monitored as the sample was heated from room temperature to 600 °C (A), and in another case mass loss was monitored as the temperature was held at 240 °C for 2.5 h (B).

Figure S9. Stress strain curve of **BAS**₉₅ pre (blue line) and post acid (red line) soak for 24 h. The dotted black lines are the extrapolations of the linear region.

Figure S10. Stress strain curve of **BAS**₉₀ pre (blue line) and post acid (red line) soak for 24 h. The dotted black lines are the extrapolations of the linear region.