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Abstract: This study analyzes the municipal agriculture eco-efficiency in the Amazon biome and 
the influence of exogenous factors. We use a two-stage data envelopment analysis (DEA) method 
with bootstrap. The results indicate that: (i) the density curve of the corrected eco-efficiency indices 
is statistically different from the deterministic score curves, suggesting the presence of bias in the 
latter; (ii) there is evidence of constant returns, demonstrating that small, medium and large munic-
ipalities can be equally eco-efficient; (iii) there are relevant eco-inefficient behaviors, showing that 
it is possible to increase the products (gross revenue and preserved area) and simultaneously reduce 
environmental damage (impact on biodiversity and greenhouse gas emission indices) with the same 
inputs, by replicating the best practices; and (iv) eco-efficiency scores are also substantially affected 
by exogenous factors. Based on the results, strategies can be defined by decision-makers to harmo-
nize economic growth and environmental preservation; in addition, adaptive policies and actions 
can be adopted to optimize the sustainability of regional agriculture. 
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1. Introduction 
The expansion and intensity of agriculture in the Amazon region have been sparking 

a large discussion. On the one hand, the sector is seen as a catalyst to attract new invest-
ments in agribusiness and infrastructure, which are needed for economic, social and re-
gional development. On the other hand, it is considered that the benefits of this activity 
do not outweigh the damages it causes, which compromises the environmental sustaina-
bility, especially for indigenous and local communities. As observed by Araujo et al. [1], 
traditional positions on the use and occupation of the Amazon were based on economic 
development or preservation; however, an intermediate perspective has been growing in 
recent decades. 

Between the extremes, the perspective of Amazon sustainable agriculture develop-
ment faces two great challenges. The first challenge relates to the need of the sector to 
become more competitive, productive and efficient. In this context, agriculture activity in 
the region should offer more products with higher quality and lower prices to satisfy a 
growing demand for agricultural products. The second challenge focuses on the impera-
tive to transform the sector and create sustainable agriculture. The environmental services 
provided by forests cannot be compromised, nor can biodiversity be exposed to the risk 
of degradation. Therefore, production per unit of greenhouse gas (GHG) emissions 
should be increased, and the region’s productive resilience capacity should be improved 
[2]. 

In order to overcome these challenges, the decision-makers need answers to some 
questions regarding agricultural activity in the Amazon region: (i) Is it possible to increase 

Citation: Rosano-Peña, C.; Silva, 

J.V.B.; Serrano, A.L.M.; Vieira Filho, 

J.E.R.; Kimura, H. Eco-Efficiency of 

Agriculture in the Amazon Biome: 

Robust Indices and Determinants. 

World 2022, 3, 753–771. https:// 

doi.org/10.3390/world3040042 

Academic Editor: Mario D’Amico 

Received: 4 September 2022 

Accepted: 12 September 2022 

Published: 20 September 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



World 2022, 3 754 
 

the production and, simultaneously, reduce the environmental impacts and the use of in-
puts? (ii) To what extent can the sector be more eco-efficient? (iii) What are the determi-
nant factors of eco-efficiency? 

Since the 1970s, the econometrics and the operational research fields have made rel-
evant contributions in techniques aimed at analyzing efficiency, eco-efficiency and their 
determinant factors [3]. Among these techniques, stochastic frontier analysis—SFA [4,5]—
and data envelopment analysis—DEA [6]—models have proved extremely useful in 
measuring efficiency indicators. The first technique (SFA) is called parametric, and it uses 
econometric methods. The second technique (DEA) is called non-parametric, and it uses 
deterministic mathematical programming techniques. Both models seek to estimate best 
practices through the frontier of the production possibility set; however, they differ in 
how to build the efficient frontier and how to interpret the deviations from the frontier. 
Both approaches present advantages and disadvantages, but none is clearly superior than 
the other [7]. 

To overcome the determinism of the DEA model, new approaches are becoming 
more noticed in the literature. From the studies of Simar [8] and Wilson [9], innovative 
approaches have emerged. In particular, Simar et al. [10,11] estimate robust efficiency in-
dices with bootstrap in two stages. In the first stage, the DEA efficiency scores are calcu-
lated only with the controllable variables of the production process. In the second stage, 
the econometric model of truncated regression (or equivalent models) is used to regress 
the efficiency scores obtained against the non-discretionary environmental variables. 
These approaches fit into the so-called stochastic (and semi-parametric) DEA, which seeks 
to integrate the random term contained in SFA-type methods to the frontier calculated by 
DEA-type methods, without needing to specify, a priori, the functional relationship be-
tween the inputs and products. 

Although the use of stochastic and semi-parametric DEA models has grown in recent 
years in the most diverse areas, several application opportunities still exist in the study of 
agricultural eco-efficiency, incorporating not only negative externalities, but also positive 
ones [12,13]. As far as we know, there are no studies on eco-efficiency that explores the 
case of Brazilian agriculture with the semi-parametric DEA method, based on bootstrap 
techniques. There are, however, several articles that measure technical efficiency. For ex-
ample, (i) Souza et al. [14] compared DEA methods in two-stage regression models to 
estimate the municipal efficiency of Brazilian agriculture, using data from the 2006 agri-
cultural census; (ii) Barros et al. [15] used the DEA method in two stages to investigate the 
efficiency of irrigated fruit growing in the Petrolina–Juazeiro Complex in the northeast of 
Brazil. It is also important to emphasize that eco-efficiency is a relevant issue in agricultur, 
and has been explored in several countries with other DEA approaches, such as in 
Grassauer [16], Guo et al. [17], and Yang et al. [18]. 

To contribute to the research on the topic of sustainability, this study aims to estimate 
robust DEA eco-efficiency scores with a two-stage bootstrap for Amazonian agriculture. 
For this, we use data at the municipality level extracted from the last Agricultural Census 
of 2017, prepared by the Brazilian Institute of Geography and Statistics and released in 
2019 [19]. In the first stage of our model, we use the classic inputs and outputs of the sector. 
However, three environmental externalities were added as outputs: one positive external-
ity and two negative externalities. In this stage, we used bootstrap techniques to detect 
outliers, estimate bias, correct scores and test the type of returns to scale. In the second 
stage, we added contextual variables related to social, regional and economic develop-
ment indicators to explain eco-efficiency using tobit truncated regression models. 

We believe that the results of the study provide new practical contributions to subsi-
dize the definition of strategies and actions that balance economic growth and environ-
mental preservation, contributing to the green development of the region. This study has 
important implications, providing suggestions to improve eco-efficient farming and the 
determination of relevant factors that lead to a desirable sectorial adequacy in the Amazon 
region. The remainder of the paper is structured as follows. In the next section, we 
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describe the method used in the research. Then, we discuss the results and finally we pre-
sent the main conclusions of the study. 

2. Materials and Methods 
The efficiency and eco-efficiency analysis is a transdisciplinary field, which has as the 

main reference the microeconomic theory of the firm. The efficiency and the eco-efficiency 
are developed from the joint concept of the production possibility set (PPS), also called 
the technology set (T). 

The PPS registers the inputs (x) used and the outputs (y) generated through a set of 
processes available at the firm at a determined time and is represented as: 

𝑇𝑇 = {(𝒙𝒙,𝒚𝒚)| 𝒙𝒙 𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝒚𝒚} (1) 

where in the context of eco-efficiency, vector x represents the production factors and the 
environmental costs, i.e., inputs, and vector y represents the products, i.e., outputs, in-
cluding the positive externalities. Alternatively, the environmental costs and the negative 
externalities can be included in PPS as undesirable products to be minimized, using the 
inverse of their values [20]. Therefore, the incorporation of negative and positive external-
ities as complementary products of the production process in the traditional theory of the 
firm enables the estimation of a PPS that contemplates the environmental economic effi-
ciency [21]. 

The PPS characteristics, described by Shephard [22], Färe [23] and Färe et al. [24], 
establish a space in the negative ℝ𝒑𝒑+𝒒𝒒, composed by p inputs and q products, generated 
in the n integrated production units of the PPF. The upper limit of this space determines 
the frontier �𝑇𝑇𝛿𝛿� of PPS, which envelops the coordinates of the observed production 
units (hereinafter referred as decision-making units—DMUs). According to Farrell [25], 
this frontier can be built from linear combinations of the eco-efficient DMUs. The DMUs 
that operate below the frontier, inside the PPS, are identified as eco-inefficient, since they 
do not maximize production nor minimize the inputs or the undesirable products. 

Based on this discussion, we can discuss the concept of efficiency and eco-efficiency. 
According to Koopmans [26], a DMU is efficient if, and only if, it is technologically impos-
sible to increase any output (and/or reduce any input) without simultaneously reducing 
another output (and/or increase another input). Thus, adding to this concept the environ-
mental context, the eco-efficiency can be associated with (i) when a DMU obtains the high-
est possible desirable production level with a determined level of inputs and environmen-
tal pollution or (ii) when it employs the smallest possible quantity of inputs and minimizes 
the environmental pollution to produce a certain number of desirable products. 

According to the World Business Council for Sustainable Development (WBCSD), 
the goal of eco-efficiency is to deliver “competitively priced goods and services that satisfy 
human needs and improve quality of life while progressively reducing environmental im-
pacts of goods and resource intensity throughout the entire life-cycle to a level at least in 
line with the Earth’s estimated carrying capacity” [27]. 

The measurement of the efficiency and eco-efficiency result from the calculation of 
the Euclidean distance that separates each DMU from the frontier �𝑇𝑇𝛿𝛿�. This measure was 
proposed by Farrell [25] based on Debreu [28] and allows the definition of two radial 
measures of technical efficiency (𝜃𝜃): (i) input orientation, which focuses on the equipro-
portional reduction of inputs, keeping the production constant, 𝜃𝜃𝐼𝐼𝐼𝐼; (ii) the product ori-
entation, which focuses on the equiproportional maximization of the products, keeping 
the inputs constant, 𝜃𝜃𝑂𝑂𝑂𝑂. This efficiency measurement is inverse to the radial efficiency of 
Shephard [22] and, disregarding the possible inputs and products' slacks, it is a particular 
case of Koopmans's [26] proposition. 
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2.1. DEA Models 
Charnes et al. (1978) [6], based on Farrell [25], introduced the data envelopment analysis 

model (DEA-CCR or CRS), taking into account the broadest property of PPS, the technol-
ogy of constant returns to scale (CRS). Assuming a set of n DMUs of the PPS 
(𝑆𝑆𝑛𝑛 = {𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖 𝑖𝑖 = 1, … ,𝑛𝑛}), the model identifies the best practices, builds an efficient frontier 
and measures the relative efficiency level of the units that do not belong to the frontier. 
The model identifies the benchmarks to which the inefficient DMUs can be compared. 

The DEA-CCR eco-efficiency oriented to the inputs for each DMUi with (𝒙𝒙𝒊𝒊,𝒚𝒚𝑖𝑖 ) is 
defined by solving the following linear programming problem (LPP): 

𝜃𝜃�𝑖𝑖(𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊 )𝐶𝐶𝐶𝐶𝐶𝐶−𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃�𝑖𝑖|𝒚𝒚𝑖𝑖 ≤ 𝑌𝑌𝑌𝑌,𝜃𝜃�𝑖𝑖𝒙𝒙𝑖𝑖 ≥ 𝑋𝑋𝝀𝝀,𝝀𝝀 ∈ ℝ+
𝑛𝑛�     (2) 

where Y = [y1,...,yn ] and X = [x1,...,xn ] represent, respectively, the matrices of outputs (de-
sirable, and reversed undesirable) and inputs of n observations in the PPS; xi and yi are the 
inputs and products vectors, respectively, of the evaluated DMUi; 𝝀𝝀 = [ 𝜆𝜆1,..., 𝜆𝜆n] is the 
vector that determines the linear combination of the best practices for determining the 
frontier. In addition, 𝜃𝜃�𝑖𝑖  is the estimate of the input-oriented eco-efficiency index that 
should be less than or equal to 1. If 𝜃𝜃�𝑖𝑖 = 1, the DMUi is considered eco-efficient. Otherwise, 
it is eco-inefficient. 𝜃𝜃�𝑖𝑖𝒙𝒙𝑖𝑖 estimates the frontier projection of (𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖 ), the minimum level of 
possible inputs to the given level of output. 

Analogously, one can define a new LPP and identify the eco-efficiency estimator ori-
ented to the output, 𝜃𝜃�𝑖𝑖 to 𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶, for each DMUi, as follows: 

  𝜃𝜃�𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 )𝐶𝐶𝐶𝐶𝐶𝐶−𝑂𝑂𝑂𝑂 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃�𝑖𝑖| 𝜃𝜃�𝑖𝑖𝒚𝒚𝑖𝑖 ≤ 𝑌𝑌𝑌𝑌,𝒙𝒙𝑖𝑖 ≥ 𝑋𝑋𝝀𝝀,𝝀𝝀 ∈ ℝ+
𝑛𝑛� (3) 

where 𝜃𝜃�𝑖𝑖 ≥ 1. If 𝜃𝜃�𝑖𝑖 = 1, the DMUi is considered technically eco-efficient. Otherwise, is 
eco-inefficient. 𝜃𝜃�𝑖𝑖𝒚𝒚𝑖𝑖 leads to the projection of (𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖 ) on the efficient frontier and indicates 
how much it is possible to increase the production of desirable products and to reduce the 
undesirable products with a given fixed level of inputs. When analyzing constant returns 
to scale technology, 1 𝜃𝜃�𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶−𝑂𝑂𝑂𝑂 =⁄ 𝜃𝜃�𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶−𝐼𝐼𝐼𝐼. 

Banker et al. [29] expanded the DEA-CCR model and presented a second classic 
model. This new DEA is called the DEA-BCC model or VRS, since it considers a technol-
ogy with variable returns to scale (VRS). Thus, the property of proportion between inputs 
and outputs, which is the base of the DEA-CRS model, is replaced by the non-proportion-
ality (convexity) property. VRS allows DMUs that operate with low values of inputs to 
have increasing returns to scale and those that operate with high values of inputs to have 
decreasing returns to scale. The LPP related to the eco-efficiency estimator oriented to the 
input to 𝑇𝑇�𝐵𝐵𝐵𝐵𝐶𝐶 is defined for each DMUi by: 

In In contrast, the LPP of DEA-BCC model oriented to the output is given by: 

𝜃𝜃�𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 )𝐵𝐵𝐵𝐵𝐵𝐵−𝑂𝑂𝑂𝑂 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃�𝑖𝑖| 𝜃𝜃�𝑖𝑖𝒚𝒚𝑖𝑖 ≤ 𝑌𝑌𝑌𝑌,𝒙𝒙𝑖𝑖 ≥ 𝑋𝑋𝝀𝝀,𝟏𝟏𝝀𝝀 = 1, 𝝀𝝀 ∈ ℝ+
𝑛𝑛� (5) 

In this model, 𝜃𝜃�𝐵𝐵𝐵𝐵𝐵𝐵−𝐼𝐼𝐼𝐼 and 𝜃𝜃�𝐵𝐵𝐵𝐵𝐵𝐵−𝑂𝑂𝑂𝑂 have the same interpretation that, in the DEA-
CCR model, refers to the possible minimum level of inputs and the possible maximum 
level of outputs, respectively. However, in this case, the model orientation to input or 
output makes 𝜃𝜃�𝐵𝐵𝐵𝐵𝐵𝐵−𝐼𝐼𝐼𝐼 ≠ 1 𝜃𝜃�𝐵𝐵𝐵𝐵𝐵𝐵−𝑂𝑂𝑂𝑂⁄ . Additionally, the scores from the model tend to be 
less restrictive than those from the DEA-CCR. In this context, the eco-efficiency obtained 
with DEA-BCC will always be superior or equal to the efficiency obtained with DEA-CCR. 
Therefore, the DEA-BCC model has a lower discriminatory power between the DMUs, 
and the number of eco-efficient DMUs is generally higher. 

2.2. Statistical Inference of Bootstrap DEA Estimators 
One of the caveats of the traditional DEA models derives from their deterministic 

and non-parametric characteristics. More specifically, the model makes point estimates of 

   𝜃𝜃�𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 )𝐵𝐵𝐵𝐵𝐵𝐵−𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜃𝜃�𝑖𝑖| 𝒚𝒚𝑖𝑖 ≤ 𝑌𝑌𝝀𝝀,𝜃𝜃�𝑖𝑖𝒙𝒙𝑖𝑖 ≥ 𝑋𝑋𝝀𝝀,𝟏𝟏𝝀𝝀 = 1,𝝀𝝀 ∈ ℝ+
𝑛𝑛�  (4) 
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the relative efficiency without taking into account uncertainty in estimations. However, a 
very important issue, for empirical use, is the complementation of the DEA efficiency 
analysis with statistical inference procedures that could allow the estimation of the confi-
dence intervals, the performance of hypotheses testing and the analysis of whether other 
variables explain efficiency. A stochastic approach could improve the detection of outliers, 
the analysis of confidence levels and the adequacy of DEA models, implying a more ade-
quate mechanism to compare the efficiency between DMUs. Therefore, aiming at over-
coming the limitations of the determinism of classical DEA models and obtaining robust 
efficiency indices, the stochastic DEA was introduced, exploring bootstrap techniques. 

This approach assumes that the estimated efficiency is the result of a sample of the 
PPS, which is not fully known. The observed DMUs reflect a subset of practices, which 
are not necessarily the best possible practices. The input and output values may include 
measurement errors and random shocks that the managers cannot control, for instance 
the reduction in productivity due to a drought or flood. Both inputs and outputs, as well 
as the efficiency indicators, are random variables, which result from a hidden data-gener-
ating process and an underlying density function from which other samples can be gen-
erated. In this context, there can be a difference or bias between the true technology T, 
which is unknown and unobservable, and the estimated technology 𝑇𝑇� . This result does 
not mean that the classical DEA estimators are inconsistent. Asymptotically, with the 
number of DMUs going to infinity, the bias tends to zero, and the distribution of 𝜃𝜃� should 
be similar to the distribution of 𝜃𝜃 [30]. 

When the sample is small and/or the underlying distribution of the data is unknown, 
the bootstrap is a widely used method to statistical inference. The bootstrap was intro-
duced by Efron [31] and later was incorporated in DEA studies [8,32]. The bootstrap is a 
computational method to obtain estimations, as well as standard errors of the predictions, 
and confidence intervals. This procedure allows testing the hypotheses of the parameters 
of interest. 

In this study, we use the bootstrap mechanism to detect the atypical cases, estimate 
the eco-efficiency confidence intervals and to test two hypotheses: (i) the existence of a 
return to scale and (ii) the dependency between eco-efficiency and external factors. 

2.3. Detection of Influent Observations in Eco-Efficiency Calculations 
According to Wilson [9], the DEA requires a prior procedure of data cleansing before 

estimating indices. As deviations in relation to the frontier implies inefficiency, the point 
values of DEA efficiency are strongly affected by both the measurement errors and the 
presence of outliers. The atypical DMUs bias the efficiency indices of the other DMUs 
downwards. In this context, Bogetoft et al. [33] suggest an initial exploratory data analysis 
using the multivariate data cloud method. However, this procedure requires several steps, 
and for very large samples, there can be computational capacity constraints. 

Another approach to handle outliers in large samples is the jackstrap method, pro-
posed by Sousa et al. [34], which combines bootstrap and jackknife methods. This ap-
proach uses a leverage concept and seeks to estimate the impact of atypical DMUs on 
efficiency measures. It assumes that the most influential DMUs exhibit well-above-aver-
age leverage. Thus, the leverage is associated with the impact of removing a DMU on the 
efficiency scores of the remaining DMUs. This leverage shifts the efficient frontier when a 
given DMU is taken from the analysis. 

The procedure of Sousa et al. [34] can be summarized as follows: (i) randomly select, 
through the use of bootstrap without replacement, a fraction (10% to 20%) of the original 
sample, consisting of K DMUs, called an artificial bubble; (ii) estimate the efficiency of the 
K DMUs, before and after the removal of each 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 one by one; (iii) calculate the lever-
age of the j-th DMU through the equation 6; (iv) repeat B times the previous steps, accu-
mulating the leverage values in a subset 𝑙𝑙𝑗𝑗𝑗𝑗 for all randomly selected DMUs, where b = 
1,...,B; (v) compute the average leverage of each DMU (𝑙𝑙𝑗̅𝑗) and the global average lever-
age (𝑙𝑙); (vi) order the DMUs according to their respective average leverages and determine 
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the cut-off point beyond which all DMUs with leverage greater than or equal to this point 
can be considered outliers. For this purpose, the method uses two criteria: the Kolmogo-
rov–Smirnov test (K-S) and the Heaviside function (step function), which take into con-
sideration the sample size. 

𝑙𝑙𝑗𝑗 = �
∑  (𝜃𝜃𝑘𝑘𝑘𝑘− − 𝜃𝜃𝑘𝑘)2 𝑛𝑛
𝑘𝑘=1,𝑘𝑘≠𝑗𝑗

𝑛𝑛 − 1
 

(6) 

where 𝜃𝜃𝑘𝑘 (to k=1,…,K) is the set of efficiency indicators before the removal of the DMUj, 
and 𝜃𝜃𝑘𝑘𝑘𝑘−  (to k = 1,...,K; k≠ 𝑗𝑗) is the set of efficiency indicators after the removal of the 
DMUj. 

2.4. The Bootstrap to Estimate the Bias and the Confidence Interval 
After identifying and excluding the outliers, we estimate the bias and the confidence 

interval, following Simar et al. [32]'s special technique called “smooth homogeneous boot-
strap”, differing from the “classical naive bootstrap”, which is inconsistent in the inference 
of DEA indicators. 

We use a version of the homogeneous smoothing algorithm used in the R function 
boot.sw98 of the FEAR package [35] to estimate the output-oriented Shephard efficiency 
that can be summarized as follows [32]: 
1. For each DMU (xi, yi) ∈ Sn, compute the efficiency 𝜃𝜃�𝑖𝑖 using the DEA model chosen—

CRS (3) or VRS (5)—and transforming the Farrell efficiency into Shephard efficiency; 
2. Generate a random sample of size n of 𝜃𝜃�𝑖𝑖 using a density function of kernel smooth-

ing and the reflection method to obtain 𝜃𝜃�1∗, … ,𝜃𝜃�𝑛𝑛∗, where 𝜃𝜃�𝑖𝑖∗ is the bootstrap score of 
the DMUi. It is done as follows: 
a. Extract a sample with replacement of (𝜃𝜃�1,.., 𝜃𝜃�𝑛𝑛) and call the results (𝛽𝛽1, …, 𝛽𝛽𝑛𝑛); 
b. Calculate the bandwidth h and generate independent random numbers of 

standard-normal distribution: 𝜖𝜖1,.., 𝜖𝜖𝑛𝑛; 
c. Compute 

𝜃𝜃�𝑖𝑖 = �𝛽𝛽𝑖𝑖 + ℎ𝜖𝜖𝑖𝑖  𝑖𝑖𝑖𝑖 𝛽𝛽𝑖𝑖 + ℎ𝜖𝜖𝑖𝑖 ≤ 1 
2 − 𝛽𝛽𝑖𝑖 − ℎ𝜖𝜖𝑖𝑖   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 𝑡𝑡ℎ𝑢𝑢𝑢𝑢 𝜃𝜃�𝑖𝑖 ≤ 1  (7) 

Adjusting 𝜃𝜃�𝑖𝑖 obtains the parameters with the correct asymptotic variance, calculat-
ing 

𝜃𝜃�𝑖𝑖∗ = 𝛽̅𝛽 +
1

�1 + ℎ2 𝜎𝜎�2⁄
�𝜃𝜃�𝑖𝑖 − 𝛽̅𝛽� (8) 

where the variance 𝜎𝜎�2 = 1
𝑛𝑛
∑ �𝜃𝜃�𝑖𝑖 − 𝜃𝜃�̅�

2
𝑛𝑛
𝑖𝑖=1 and 𝛽̅𝛽 = 1

𝑛𝑛
∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1  

3. Extract a new sample data 𝑆𝑆𝑛𝑛∗  whose elements, Y* = [y*1, …, y*n] and X* = [x*1, …, x*n], 
are given by 𝒚𝒚𝑖𝑖∗ = 𝒚𝒚𝑖𝑖

𝜃𝜃�𝑖𝑖
∗

𝜃𝜃�𝑖𝑖
 e 𝒙𝒙𝑖𝑖∗ = 𝒙𝒙𝑖𝑖. That way, 𝒚𝒚𝑖𝑖∗ will continue in the same radius as 

𝒚𝒚𝑖𝑖; 
4. Use the DEA model chosen—(3) or (5)—to calculate the estimation of new indices 𝜃𝜃�𝑖𝑖𝑏𝑏 

de �𝒙𝒙𝒊𝒊𝒃𝒃,𝒚𝒚𝒊𝒊𝒃𝒃�; 
5. Repeat the steps 2, 3 and 4 B times to obtain the set of estimations [𝜃𝜃�1𝑏𝑏, …, 𝜃𝜃�𝑛𝑛𝑏𝑏] to b = 

1… B. 

The distribution of the set �𝜃𝜃�𝑖𝑖𝑏𝑏�𝑏𝑏=1
𝐵𝐵  provides a consistent estimation of the real effi-

ciency indicator of the DMUi, this consistency being higher when B→∞ and n→∞. Simar 
et al. [32] recommend at least 2000 samples to get adequate results, although higher num-
bers represent more accurate indices. 

As highlighted by Simar et al. [32], when the bootstrap is consistent, the difference 
between initial efficiency (𝜃𝜃�𝑖𝑖) and the mean bootstrap efficiency should be similar to the 
difference between the initial efficiency and the real efficiency (𝜃𝜃𝑖𝑖) for a certain DMUi. 
Thus, the bias for each DMUi can be expressed following the equation: 
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖 =
1
𝐵𝐵
�𝜃𝜃�𝑖𝑖∗ −
𝐵𝐵

𝑏𝑏=1

𝜃𝜃�𝑖𝑖 = 𝜃𝜃�̅𝑖𝑖∗ − 𝜃𝜃�𝑖𝑖 (9) 

where 𝜃𝜃�̅𝑖𝑖∗ is the average of the B estimations of the bootstrap efficiency of the DMUi. 
So, the estimator of 𝜃𝜃�𝑖𝑖 correcting the bias is: 

𝜃𝜃�𝑖𝑖 = 𝜃𝜃�𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖 = 𝜃𝜃�𝑖𝑖 − 𝜃𝜃�̅𝑖𝑖∗ + 𝜃𝜃�𝑖𝑖 = 2𝜃𝜃�𝑖𝑖 − 𝜃𝜃�̅𝑖𝑖∗ (10) 

However, for Simar and Wilson (1998), the correction of the bias should not be used, 
except when: 

𝜎𝜎�2 <
1
3
�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖�

2 (11) 

where 𝜎𝜎�2 is estimated with the bootstrap estimators’ variance, so that: 

𝜎𝜎�2 = 1
𝐵𝐵
∑ �𝜃𝜃�𝑖𝑖𝑏𝑏 −

1
𝐵𝐵
∑ 𝜃𝜃�𝑖𝑖𝑏𝑏𝐵𝐵
𝑏𝑏=1 �

2
𝐵𝐵
𝑏𝑏=1   (12) 

Once the empirical distribution of the bootstrap and the bias efficiency is known, we 
can find the confidence intervals with a significance level (1–α), calculating the critical 
values aα and bα, so that: 

𝑃𝑃𝑃𝑃�−𝑏𝑏𝛼𝛼 ≤ 𝜃𝜃�𝑖𝑖∗ − 𝜃𝜃�𝑖𝑖 ≤ −𝑎𝑎𝛼𝛼� ≈ 𝑃𝑃𝑃𝑃�−𝑏𝑏𝛼𝛼 ≤ 𝜃𝜃�𝑖𝑖 − 𝜃𝜃𝑖𝑖 ≤ −𝑎𝑎𝛼𝛼� ≈ 1 − 𝛼𝛼  (13) 

In order to estimate aα and bα, Simar et al. [31] suggest the use of a percentage process. 
This process is associated with the bootstrap estimators ordination from the highest to 
lowest and the elimination, on both extremes of this ordination, of the percentage (α/2) of 
the values, leading to an estimated interval: 

𝜃𝜃�𝑖𝑖 + 𝑎𝑎𝛼𝛼 ≤ 𝜃𝜃𝑖𝑖 ≤ 𝜃𝜃�𝑖𝑖 + 𝑏𝑏𝛼𝛼    (14) 

This procedure is applied to the other DMUs that form the original sample. 

2.5. Testing for Return-to-Scale Types 
According to Simar at al. [36], defining a priori assumptions about returns to scale 

can seriously distort the efficiency measures if the original technology is different. For 
model development and validation, it should be tested if the technology T, from which 
observations are sampled, presents a constant return to scale or not. Simar et al. [36] for-
malized the following test: the null hypothesis (H0) is that T is CCR, or the alternative 
hypothesis (Ha) is that T is BCC. 

The test is based on the observation of the relation 𝜃𝜃�𝐶𝐶𝐶𝐶𝐶𝐶 𝜃𝜃�𝐵𝐵𝐵𝐵𝐶𝐶⁄  in each DMU, indicat-
ing the scale efficiency 𝜃𝜃�𝑠𝑠. As the 𝜃𝜃�𝐵𝐵𝐵𝐵𝐵𝐵 ≥ 𝜃𝜃�𝐶𝐶𝐶𝐶𝐶𝐶, so 𝜃𝜃�𝑠𝑠 ≤ 1. If 𝜃𝜃�𝑠𝑠 = 1 to all DMUs, the tech-
nology is CCR. If there were many DMUs where 𝜃𝜃�𝑠𝑠 < 1, there is evidence that the tech-
nology is BCC. To estimate those technologies and the scale efficiency using random var-
iables, the null hypothesis should be rejected if the scale efficiency indices estimated 𝜃𝜃�𝑠𝑠 
are significantly smaller than 1, i.e., if the 𝜃𝜃�𝑠𝑠 estimated are lower than a critical value. 
Thus, we should focus on finding the distribution of 𝜃𝜃�𝑠𝑠 and calculating the critical value, 
𝑐𝑐𝛼𝛼. 

Simar et al. [36] suggest the use of the statistic: 

𝑆𝑆 = ∑ 𝜃𝜃�𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛
𝑖𝑖=1

∑ 𝜃𝜃�𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛
𝑖𝑖=1

  (15) 

Since S ≤ 1, if S is close to 1, H0 should not be rejected, and, if S is significantly lower 
than 1, Ha should be accepted. Thus, H0 is rejected when S < 𝑐𝑐𝛼𝛼 based on a given signifi-
cance level. 

Since the distribution of the population values of S is unknown, it is not possible to 
determine 𝑐𝑐𝛼𝛼 directly. Simar et al. [36] recommend using the bootstrap method to esti-
mate the distribution of this parameter. The algorithm obtains the efficiency bootstrap set 
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to the model CCR, the bootstrap set to the model BCC and the bootstrap distribution of S. 
This procedure allows the comparison of the estimated value of S given by (13) and the 
critical value related to the significance level to make a decision about H0. 

2.6. Eco-Efficiency Dependency of External Factors: Second-Stage Analysis 
After estimating the confidence intervals of the eco-efficiency and testing the hypoth-

eses to technologies, the following questions are relevant: why are some DMUs more eco-
efficient than others? Which exogenous factors determine eco-efficiency? 

The interest awakened by these questions led to the emergence of the procedure com-
monly entitled “two-stage analysis” [3]. In the first stage, the eco-efficiencies are calcu-
lated. In the second stage, the analysis focuses on identifying the influence of variables 
contextual (Z) on the eco-efficiency of DMUs. Lovell [37] suggests the use of variables 
under the control of the manager in the first stage and variables that the producer does 
not control in the second stage. Therefore, the variables Z are called exogenous, contex-
tual, or non-discretionary variables and can be internal or external to the production pro-
cess. 

The addition of exogenous variables is pertinent, as the number of the external influ-
ential factors is not small. Furthermore, their effect over the efficiency can be higher than 
that produced by the variables controlled by the managers. This analysis makes it possible 
to discover if the producer classified as inefficient really is so or if, even doing everything 
possible, there are uncontrolled factors that do not allow it to achieve the results that oth-
ers can. 

In order to analyze whether Z explains the corrected efficiency, one can use regres-
sion models. However, DEA indices show autocorrelation (serial correlation) and are 
truncated, and there is often multicollinearity in the contextual variables. Therefore, the 
basic assumptions of the regression model are violated, and, therefore, biased results can 
be generated [38]. 

Simar et al. [11] propose the application of a truncated regression model (tobit or 
equivalent) with bootstrap in order to overcome these disadvantages. The tobit method, 
estimated by maximum likelihood, can be used when the dependent variable is limited 
between ranges of values. In the regression, defined by 𝜃𝜃�𝑖𝑖 = 𝒁𝒁𝑖𝑖𝜷𝜷 + 𝜀𝜀𝑖𝑖, 𝜃𝜃�𝑖𝑖, the corrected 
efficiency, is estimated in the first stage; 𝒁𝒁𝑖𝑖 corresponds to the vector of explanatory var-
iables that could influence the efficiency indicators through the parameters vector 𝜷𝜷. The 
vector 𝜀𝜀𝑖𝑖 is the noise or the random error associated with each DMU, associated with the 
inefficiency part not explained by 𝒁𝒁𝑖𝑖. Assumptions relate to 𝜀𝜀𝑖𝑖 following a normal distri-
bution with average 0 and variance 𝜎𝜎𝜀𝜀2 censored between 0 and 1. 

Simar et al. [11] suggest two algorithms to incorporate of the bootstrap in a truncated 
regression model. Using a Monte Carlo experiment, the authors examine and compare the 
performance of those two algorithms and demonstrate that both overcome the conven-
tional regression methods (tobit and truncated regression without bootstrap). For samples 
with less than 400 units, the proposed Algorithm #1 adjusts better than Algorithm #2, 
which is more efficient from samples that exceed 800 units. As the sample used is closer 
to 400, it is adapted to Algorithm #1, which is described below, following [11]: 
1. Estimate the corrected efficiency 𝜃𝜃�𝑖𝑖 to all DMUs (i = 1, …, n) using the DEA-CRS or 

DEA-BCC model oriented to outputs; 
2. Regress 𝜃𝜃�𝑖𝑖 = 𝒁𝒁𝑖𝑖𝜷𝜷 + 𝜀𝜀𝑖𝑖 , using a tobit regression using maximum likelihood estima-

tion, aiming to obtain estimations 𝜷𝜷�, 𝜀𝜀̂ and its standard deviation, 𝜎𝜎�𝜀𝜀; 
3. Repeat the next three steps (a, b, c) L times to produce a set of bootstrap estimators 

�𝛽̂𝛽𝑙𝑙 ,𝜎𝜎�𝜀𝜀𝑙𝑙�𝑙𝑙=1
𝐿𝐿 : 

a. For each DMUi, with the 𝜎𝜎�𝜀𝜀 estimated in stage 2, extract random values of 𝑒𝑒𝑖𝑖 
of a normal distribution N(0, 𝜎𝜎�𝜀𝜀) truncated to left in (1 − 𝒁𝒁𝑖𝑖𝜷𝜷�); 

b. For each DMUi estimate 𝜃𝜃�𝑖𝑖∗ = 𝒁𝒁𝑖𝑖𝜷𝜷� + 𝑒𝑒𝑖𝑖, where 𝜷𝜷� is the estimator found in stage 
2; 
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c. Following the maximum likelihood estimation, estimate the truncated regres-
sion of 𝜃𝜃�𝑖𝑖∗ in 𝒁𝒁𝑖𝑖 obtaining the estimations 𝛽̂𝛽∗,𝜎𝜎�𝜀𝜀∗; 

4. Use the L values of the set �𝛽̂𝛽𝑙𝑙 ,𝜎𝜎�𝜀𝜀𝑙𝑙�𝑙𝑙=1
𝐿𝐿  to construct the confidence intervals of 𝛽𝛽 and 

𝜎𝜎𝜀𝜀. 

2.7. Object of the Study and Variables 
We focus this study on the municipal agriculture eco-efficiency in the Brazilian Am-

azon biome, an ecosystem of worldwide relevance. This region represents 60% of the Am-
azon rainforest, which also includes the territories belonging to nine South American na-
tions, and represents more than half of the remaining tropical rainforests on Earth. The 
region contains the biggest biodiversity in a tropical rainforest and 20% of the fresh water 
of the world. The Brazilian Amazon rainforest covers around 4.2 million km2 (49.29% of 
the national territory), where 25 million people live in 552 counties located in the follow-
ing states: Acre (AC), Amazonas (AM), Amapá (AP), Mato Grosso (MT), Maranhão (MA), 
Pará (PA), Rondônia (RO), Roraima (RR) and Tocantins (TO). From the earliest deforesta-
tion in the 18th century to July 2019, the total area deforested in this region amasses a 
719,014 km2 of surface, which corresponds to 17.1% of its total area [39]. 

According to the 2017 Agricultural Census of IBGE (2019) [19], in the region, there 
are 677,596 agricultural establishments, of which 90% are small farmers. These establish-
ments generate annual revenues of BRL 68,417 billion (equivalent to USD 20,852 billion) 
and occupy an area of 97,655,962.00 ha. A large part of this area is covered by native veg-
etation given the requirement of owners maintaining 80% of legal reserve, in compliance 
with the Brazilian Forest Code for this region. 

In order to estimate the eco-efficiency of 552 municipalities (DMUs), we consider in 
the first stage the classic inputs and products used in the literature, adding three environ-
mental externalities as outputs [40]. The inputs of the model are: x1—establishments area 
in hectares, x2—machines, measured by the proxy annual cost with fuels and lubricants 
in thousands of Brazilian reais, x3—annual expense with inputs to plant and animal pro-
duction in thousands of Brazilian reais, x4—labor force filled in the establishments (paid 
and familiar), x5—other costs in thousands of Brazilian reais; as outputs, y1—annual gross 
revenue in 10 million Brazilian reais. Among the externalities, one positive (y2) and two 
negative (y3 and y4) were chosen: y2—area of natural woods and forests grown in the es-
tablishment in 10 thousands hectares, which represents a proxy of environmental services 
provided by nature in this area; y3—biodiversity impact index of agriculture, calculated 
by the Shannon index (SHDI) (The Shannon index is a proxy used in the eco-efficiency litera-
ture to estimate the impact of farming on biodiversity [41]. It is calculated for each county 
i using 𝑦𝑦𝑖𝑖 = 1 𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⁄ , where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  −∑ (𝑠𝑠𝑐𝑐𝑐𝑐 ∙  𝑙𝑙𝑙𝑙 𝑠𝑠𝑐𝑐𝑐𝑐)𝐶𝐶

𝑐𝑐=1 , 𝑠𝑠𝑐𝑐𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖⁄ , considering 
the number of cultures (c) of a county and its relative weight (sci). Thus, the pressure in 
the biodiversity can assume values between 0 and 1. A value equal to the unit represents 
establishments that produce only one type of culture, causing a higher negative impact 
on biodiversity. A value close to zero indicates a lower impact on the flora and fauna of 
the ecosystem. (y4—annual greenhouse gas emissions by the agricultural sector in millions 
of tons of GWP—AR5 (Global Warming Potential, according to conversion factors based 
on the Fifth Assessment Report of the IPCC)). The last two variables were inverted so that, 
when maximizing the production vector, these negative externalities are minimized. We 
extract and calculate the inputs and outputs based on information by municipality from 
the 2017 Agricultural Census, with the exception of y4, which was downloaded from the 
Greenhouse Gas Emission and Removal Estimating System (SEEG) website 
(https://seeg.eco.br/o-que-e-o-seeg, accessed on 1 May 2021). 

In order to investigate the association of exogenous factors with eco-efficiency in the 
second stage, we selected 9 variables, considering the variables found in the literature 
[13,42], and available in the Census. We also included other variables not covered in the 
mainstream literature, aiming at performing an exploratory analysis. The variables of the 



World 2022, 3 762 
 

second stage are: z1—the percentage of the establishments classified as familiar farming; 
z2—the percentage of establishments that received technical assistance; z3—the percentage 
of owners associated with the cooperative; z4—the percentage of establishments whose 
producer has at least a high school degree, a proxy of education level; z5—the percentage 
of establishments whose producer is the landlord; z6—the percentage of establishments 
that obtained financing from banks; z7—the population density of the municipality (peo-
ple/km²), a proxy of the market size; z8—the latitude; and z9—longitude. These last two 
variables represent the geographic coordinates of the municipality location, and they will 
allow the identification of the spatial location impact in the eco-efficiency. 

3. Results and Discussion 
3.1. Descriptive Analysis, Outlier Detection and Final Sample 

Aiming at providing an overview of the initial sample (552 municipalities), we pre-
sent the key descriptive statistics of inputs, outputs and environmental variables in Table 
1. The table shows a wide dispersion of the data. Moreover, for most variables, the mini-
mum values are well below the first quartile, and the maximum are well above the third 
quartile, indicating the existence of significant heterogeneity in the data and the evidence 
of potential extreme observations, i.e., outliers. 

Table 1. Descriptive statistics of the inputs (x), products (y) and environmental determinants (z). 

 Mean Median 
Standard 
Deviation Minimum 

1° 
Quartile 

3° 
Quartile Maximum 

x1 176,913 89,392.5 250,039.1 72 29,453 220,394 2,462,092 
x2 5947.399 2280 11,922.16 1 663.8 6217.8 122,958 
x3 27,865.48 5704.5 82,192.97 32 1132 18,530 1,004,087 
x4 4500.781 3338.5 4337.971 105 1825 5774 48,246 
x5 37,807.83 11,388 97,494.70 23 2542 32,924 1,320,992 
y1 12.39416 4.83375 26.95020 0.0857 1.65 11.16 306.1954 
y2 6.772156 2.4825 11.13849 0.00001 0.650 7.785 96.2598 
y3 2.320974 1.64081 1.728685 1.00084 1.180 2.862 13.99893 
y4 83.67418 7.29497 384.8253 0.23926 2.697 35.992 6681.91 
z1 0.798722 0.814445 0.1154 0.27478 0.740 0.8725 0.980769 
z2 0.130973 0.090833 0.1290 0 0.040 0.170 0.898204 
z3 0.047284 0.020535 0.0691 0 0.010 0.060 0.562325 
z4 0.216148 0.200064 0.0935 0.02521 0.140 0.270 0.65 
z5 0.795039 0.859133 0.1927 0.055172 0.710 0.930 1 
z6 0.113395 0.091004 0.0884 0.002396 0.050 0.160 0.754491 
z7 31.71617 6.799077 163.2888 0.031568 2.345 18.942 2803.911 
z8 −5.9986 −4.40389 4.7996 −26.7836 −9.987 −2.245 4.595012 
z9 −53.6487 −51.2433 7.4920 −72.8958 −59.70 −47.61 −36.4 

Source: elaborated by the authors. 

The presence of outliers and data heterogeneity can be explained by the large differ-
ence in the adoption of good practices in agriculture and the great number and technolog-
ical diversity of rural properties but also by possible problems of errors or omissions in 
the data, especially those resulting from the self-declaratory system of the Agricultural 
Census. These data-gathering problems should affect the eco-efficiency indicators, con-
siderably undervaluing estimations. Therefore, to ensure the reliability of the found indi-
ces, it is important to make some adjustments to reduce the impact of those problems. 

In order to avoid these problems, we use the jackstrap (available as an R package in 
https://CRAN.R-project.org/package=jackstrap (accessed on 8 May 2022)) method for the 
detection of outliers [43]. The application of this method selected bubbles that contained 
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10% of the total number of DMUs and 2000 bootstrap replications and calculated the aver-
age leverage in each DMU, as well as the value threshold with two basic models: DEA-
CRS and DEA-VRS. The jackstrap method for DEA-CRS found 25 and 13 outliers for the 
criteria of the Heaviside function and the Kolmogorov–Smirnov test (K–S), respectively. 
For DEA-VRS, the method detected 20 and 15 outliers of the Heaviside function and the 
K–S test. Among these options, we decided to use the strictest criterion, choosing the 
Heaviside function of the DEA-CRS. 

A detailed analysis of the records of the 25 DMU outliers found that these units had 
low values for certain inputs or high values for certain products. In this context, some of 
these DMUs are able to increase their inputs several times and continue to be eco-efficient. 
This outcome is very unlikely, because it is verified that the technological levels of these 
municipalities are not very far from the average found in the region, unless these differ-
ences represent errors in the data. For example, we have the case of Anajás (PA), which 
reported a super-efficiency index [44] with a CRS of 5.55, indicating that it can increase its 
resources by more than 450% and still remain in the eco-efficiency frontier. 

Figure 1 shows the density curves of the eco-efficiency obtained through the DEA-
CRS model applied before and after the removal of the 25 DMUs of major leverage. It is 
noticed that the removal of outliers generates a great impact on the distribution of the 
computed eco-efficiency scores. The new distribution indicates a higher mean and median 
and a shift to the region of higher eco-efficiency, indicating that the original efficiency 
scores are biased downwards due to the existence of outliers. 

It is important to notice that the number of DMUs removed represent less than 4.5% 
of the original sample and 48% of them are found in the State of Pará. Thus, from herein-
after, we present results of a sample of 527 (=552 − 25) DMUs. 

 
Figure 1. Density of the DEA-CRS efficiency. (Source: formulated by the authors). 

3.2. Statistical Inference of the DEA Indices 
Taking into account the sample without the outliers, the significance test of return to 

scale is carried out, since the arbitrary choice of the technology can result in inappropriate 
conclusions. According to the described method, this test was performed using the distri-
bution of eco-efficiency scores CCR and BCC obtained from the bootstrap with 2000 sam-
plings. The test has the null hypothesis (H0) that T is CCR and the alternative hypothesis 
(Ha) that T is BCC. The H0 should be rejected if S (Equation (15)) was significantly lower 
than the critical value to 𝛼𝛼 = 0.05. 

Since the estimated value of S = 0.9577 is higher than the critical value 𝑐𝑐𝛼𝛼 = 0.9210, 
the null hypothesis cannot be rejected. The results obtained also show an error type I equal 
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to 0.448 (superior to 𝛼𝛼), indicating that it is possible to make a mistake with a probability 
of 44.8%, if the null hypothesis were rejected, based on this estimation. As a consequence, 
it is possible to state that the technology T shows constant returns to scale. Thus, different 
sizes of counties (small, medium and large) can be equally eco-efficient. 

In the empirical literature, this result is controversial. It is in dissonance with the ev-
idence obtained by Souza at al. [14], which rejects the hypothesis of constant returns to 
scale in the technical efficiency analysis of 4964 Brazilian counties. However, the findings 
confirm the results of Freitas et al. (2019) [45], who found the possibility of efficiency in 
properties of all sizes. The data used in both works are from the 2006 Agricultural Census. 

If the municipality is considered as a productive unit, the result brings to light the 
old debate about the long-term sustainability of different sizes of property. It motivates 
the questioning of the hypothesis that, in a market of perfect competition, in the long term, 
small companies will tend to disappear, since their production scales do not allow them 
to operate at the minimum-unit-cost level. 

As indicated by Alves [46], the existence of convergence on a small number of large 
farms is not compatible with the existence of competitive markets, and it contradicts the 
observed world. For this reason, the author argues that the results of models that detect 
this tendency should make researchers inquire which market imperfections underlie this 
convergence. 

The high inequality in the distribution of land tenure in the studied region and in 
Brazil in general is widely recognized. However, when computing the Gini index to meas-
ure inequalities in land distribution, Hoffmann [47] shows that, in the last five censuses 
(from 1975 to 2017), the Brazilian land tenure structure remained quite stable, with a Gini 
index around 0.86. Thus, for this author, in this period, there is no significant upward or 
downward trend for the values of the average and median areas, as well as for the number 
of establishments. Therefore, despite the existence of a series of imperfections in the Bra-
zilian market [48], the thesis that size is not a condition for a company to be eco-efficient 
and the existence of constant returns to scale (CRS) can be supported. 

In addition, this result is consistent with some theoretical studies consulted. As ob-
served by Caves et al. [49] and Porter [50], small businesses can be competitive if they 
efficiently find their market niche and seize their flexibility and capacity for innovation, 
as, for example, in organic farming and in supplies for local markets. 

After accepting CRS technology, we continue by estimating the Shephard eco-effi-
ciency score oriented to the outputs and its confidence intervals, considering the random 
bias inherent in the data. We use the Simar et al. [31] procedure (available at the FEAR 
library website: https://pww.people. clemson.edu/Software/FEAR/fear.html (accessed on 
9 May 2022)), described in Section 2. The result with 2000 samplings has enabled the set-
ting of a stochastic production frontier that should be very close to the real one, as well as 
to estimate the corrected eco-efficiency indicators. However, due to the database size, only 
the five most eco-efficient counties and the five most eco-inefficient are depicted (Table 
2). In order to compare these results, we add to Table 2 the previously estimated scores. 
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Table 2. CRS Shephard eco-efficiency oriented to the output and the confidence interval (95%). 

DMU 

Without the 
Outliers and 

with Bias 
Correction  

Confidence Interval Without the 
Outliers and 
without Bias 
Correction  

With the  
Initial Sample Lower Limit Upper Limit 

Parauapebas 
(PA) 

0.936 0.910 0.983 0.998 0.450 

Novo Airão 
(AM) 0.897 0.861 0.973 0.985 0.847 

Medicilândia 
(PA) 0.891 0.869 0.938 0.953 0.506 

Presidente 
Figueiredo 

(AM) 
0.885 0.856 0.971 0.977 0.852 

Rio Preto da 
Eva (AM) 0.880 0.858 0.985 1.000 0.849 

Santa L. do 
Paruá (MA) 0.274 0.259 0.304 0.308 0.178 

Garrafão do 
Norte (PA) 

0.268 0.255 0.330 0.334 0.215 

Anajatuba 
(MA) 0.267 0.261 0.299 0.303 0.121 

Governador 
Nunes F. 

(MA) 
0.255 0.244 0.288 0.291 0.128 

Itapecuru Mi-
rim (MA) 

0.247 0.238 0.275 0.278 0.137 

Average  0.615 0.601 0.720 0.730 0.519 
Source: formulated by the authors. 

Table 2 shows that, in the studied region, there are relevant eco-inefficient behaviors. 
For example, the municipality of Parauapebas (PA) was the best positioned in the cor-
rected eco-efficiency ranking. Even so, the ratio of the output vector (y) by the scalar rep-
resents the eco-efficiency index of (y/0.936), reveals the possible improvements and gives 
the optimal level of production without modifying its inputs. The same metric can be cal-
culated for other municipalities. The aggregated values indicate that it is possible to in-
crease, throughout the studied region, the annual revenue by 50.17% and the preserved 
areas by 54.06% and, at the same time, to reduce the impact on the biodiversity index by 
21.4% and the GHG emissions by 37.15%. 

The results of Table 2 also indicate that the global average was of 0.615, but the eco-
efficiency averages among the counties vary from one state to another. The state with the 
highest average was Amapá with a score of 0.72, followed by Acre (0.70), Roraima (0.699), 
Mato Grosso (0.697), Amazonas (0.665), Pará (0.63), Tocantins (0.566), Maranhão (0.528) 
and Rondônia (0.513). 

In Table 2, it is possible to observe the confidence intervals. These indicate that cor-
rected indices can be statistically equal, since, if two intervals intersect, it would be possi-
ble to affirm that these DMUs do not have different levels of eco-efficiency. This is the case 
of the first five municipalities in the ranking. The result shows that great caution should 
be exercised when performing comparative analyses between DMUs. 

Furthermore, it is noted that the eco-efficiency indices corrected for bias are generally 
higher than the indices of the original sample and lower than the indices with the final 
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sample (without the outliers). This evidence suggests that the deterministic scores of the 
final sample must be overestimated and those of the initial sample underestimated. 

This argument is supported by Figure 2. Figure 2a depicts the density curve of the 
corrected eco-efficiency indicators, indicating that is very different from the curves of the 
deterministic eco-efficiency scores before and after the removal of the outliers represented 
in Figure 1. Thus, the probability of each eco-efficiency range of values differs in each 
model. Figure 2b displays the boxplots of the three distributions, indicating that the me-
dians, means and dispersions of the indices are different. The means and median of the 
corrected indices are situated between the mean and median of other distributions, having 
a lower interquartile range. This result suggests that the indices generated by the boot-
strap procedure, with their corresponding confidence intervals, are more efficient and ro-
bust. 

We also conduct tests of comparison of distributions. The ANOVA and Kruskal–Wal-
lis tests indicated that there are significant differences between the distributions. Post-hoc 
tests also confirm that there is a significant difference between the pairwise distributions. 
This finding highlights the relevance of performing bootstrap analysis when estimating 
efficiency indices with DEA. 

  
(a) Density function of Shepard efficiencies (b) Box plot of Shepard efficiencies 

Figure 2. Shephard efficiencies oriented to outputs (Source: formulated by the authors.). 

However, the eco-efficiency indicators obtained in this stage can only be considered 
compelling if all of the counties are operating with the same background. This is not evi-
dent when the values of the background variables shown in Table 1 are observed. So, it is 
necessary to embody these variables into the eco-efficiency analysis. 

3.3. Impact of the Contextual Variables into Eco-Efficiency Indicators 
The influence of environmental factors on the output-oriented Farrell CRS eco-inef-

ficiency corrected indices, which are, in this case, greater than or equal to 1, was estimated 
following the second-stage algorithm of [11], using the R FEAR Package. Table 3 presents 
the results of the tobit regression with 2000 bootstrap resamplings. As the estimated coef-
ficients (betas) of the variables do not have a direct interpretation equal to the linear mod-
els, the average marginal effect on eco-efficiency is included. 

According to these results, all background variables are different from zero and sig-
nificant at the 5% level. However, three of them, having values very close to zero, affect 
irrelevantly the eco-inefficiency. They are variables associated with: z7—demographic 
density of the county, a proxy of the market size; z8—latitude; and z9—longitude. The poor 
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significance of these last two variables indicates, unexpectedly, that spatial location has 
little importance to eco-efficiency. 

Table 3. Results of the model applied to second-stage estimations. 

Environmental 
Variables  

Beta 
Coefficient 

Confidence Interval of 95% Average 
Marginal 

Effect Lower Limit Upper Limit 

Y-intercept 2.2547 2.25 2.26  
z1—familiar 

farming 0.1219 0.11 0.13 0.12185 

z2—technical as-
sistance 

−0.4800 −0.49 −0.47 −0.48002 

z3—cooperative −0.0892 −0.10 −0.08 −0.08918 
z4—high school −0.6851 −0.69 −0.68 −0.68505 

z5—landlord −0.0340 −0.04 −0.03 −0.03400 
z6—financing 1.1557 1.15 1.17 1.15569 
z7—density  0.00004 0.00003 0.00004 0.00004 
z8—latitude 0.00024 0.00007 0.00042 0.00024 

z9—longitude 0.0084 0.00830 0.00850 0.00840 
Error variance 0.398 0.398 0.398  

Source: formulated by the authors. 

The variable z6—financing has the highest level of influence. However, this variable 
presented an unexpected signal, according to the theory, and it can indicate a serious mar-
ket failure. The average marginal effects in Table 3 express that an increment of 1% in the 
numbers of establishments with financing increases the value predicted in the eco-ineffi-
ciency of the counties by 1.15 points. 

This fact, even if is not unanimous, has already been shown by several researchers. 
In the 1980s, Taylor et al. [51], while studying growers in the state of Minas Gerais in 
Brazil, found that financing had a slightly negative effect in the allocative efficiency and 
in technical efficiency. Souza et al. [14] also obtained an unexpected beta coefficient to this 
variable, following Algorithm #1 and #2 of [11] in the efficiency analysis of 4964 Brazilian 
counties with data from the 2006 agricultural census. It can be explained by the politics of 
subsidized credit, which encourage the purchase of inputs and machinery at an inefficient 
price, reducing the allocative efficiency [52]. Araújo et al. [53] concluded that the subsi-
dized credit of the National Program for Strengthening Family Farming (PRONAF) im-
poses a selection bias and does not stimulate the productive diversification, which com-
promises the promotion of development and the reduction of rural poverty. 

The second variable with a greater impact is the educational level of managers. The 
average marginal effects in Table 3 show that the increment of 1% in the number of estab-
lishments whose manager has at least a high school degree may reduce the eco-ineffi-
ciency indicator in 0.6851 points. Furthermore, it indicates that rural managers with better 
training can have the expertise to assign more importance to economy and environmental 
issues, as well as in the management of the activities and in the selection of new technol-
ogies. This result corroborates other research outcomes [54,55]. For Fernandes et al. [52], 
rural managers, like any other managers, make better decisions when they are better pre-
pared. 

Another relevant factor to explain the differences observed in the eco-efficiency indi-
cators is technical assistance. Table 3 indicates that the average marginal effect in the eco-
inefficiency is −0.48002. This fact can be explained by the evidence that, when receiving 
technical assistance, the producers tend to correct the problem of inadequate use of inputs 
and also those related to what, how much and how to produce with less environmental 
impact. The result is supported by the study of Gomes et al. [56], which confirms the 
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existence of a positive relationship between the time in which the producers receive tech-
nical assistance and the efficiency indicators. Braga et al. [57] also show that the extension-
ist services impacted positively the income of the rural producers by 19%, considering 
that the private technical assistance presented a higher impact than the public rural exten-
sion. 

In Table 3, an addition of 1% in the number of properties classified as familiar agri-
culture increases eco-inefficiency by 0.12185 points. This fact can be related to the low 
level of education of the producers and the low technological diversity and specialization 
of work in the properties of this category. Usually, the family has the role of owner, man-
ager and producer and is also responsible for all production, marketing and logistics. 

This result is partially consistent with the findings of the pertinent empirical litera-
ture. However, it does not disagree with the previously stated argument about the possi-
bility of the small property (not necessarily of the family type) being as competitive as the 
large ones. Thus, public policy needs to gather initiatives that provide to familiar farms 
chances to compete on equal terms with large farms, especially regarding the prices paid 
by inputs and products' sale prices [48,58]. 

Table 3 also depicts a significant relation between eco-efficiency and cooperativism, 
which is very rare in the region. As observed by Ramos et al. (58), a cooperative provides 
strong chances for the enhancement of eco-efficiency, since the collective productive ar-
rangements improve access to information, making it easier to compare the results and 
replicate sustainable good practices. The cooperative allows farmers to enhance extension 
services and technical assistance, to raise their bargaining power in the marketing of prod-
ucts and the acquisition of inputs and to lessen the indivisibility of the high cost means of 
production (for example, harvesters and silos). 

Finally, our study shows that land property is another relevant factor in the reduction 
in eco-inefficiency, although the impact is small (−0.034). This result is remarkable in face 
of the recurring illegal appropriation of public land, denominated squatting. In these ir-
regular areas, the development of agricultural or forestry activities infringe environmen-
tal, agrarian, civil and tributary regulations [59]. In addition, they create uncertainty about 
the landholding status, causing social conflicts (especially with indigenous communities) 
and obstructing the implementation of conservation and economic development projects 
in the region [59]. 

4. Conclusions 
In this study, we estimated robust agricultural eco-efficiency scores among 527 mu-

nicipalities in the Amazon biome, pointing out how much it is possible to maximize eco-
nomic and environmental objectives, having as a reference the best practices in the region. 
We use the jackstrap method to identify and eliminate outliers that affected the efficiency 
levels. Then, using bootstrap techniques, we perform significance tests for returns of scale. 
Once the CRS technology was confirmed, we estimated the score corrected for the random 
bias inherent in the data sample. Furthermore, as the estimated scores are also affected by 
exogenous factors not considered in the eco-efficiency calculations, we apply boot-
strapped tobit truncated regression models to investigate how these environmental vari-
ables influenced these scores. The study indicates the compatibility between economic 
growth and environmental preservation in the Amazon biome and that eco-efficiency 
scores are significantly impacted by exogenous factors. In this context, we fill an important 
gap regarding the evaluation of the environmental economic performance of agriculture 
in one of the most vulnerable biomes in Brazil. 

Finally, we argue that the current analysis could be complemented by examining the 
dynamics of eco-efficiency indicators over time, identifying the dynamics of efficiency in 
the sector. Therefore, the natural extension of the investigation would be to include panel 
data in the analysis. This will be the subject of future research, as it is another gap found 
in the literature. 
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