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Abstract: The building sector accounts for nearly 40% of total primary energy consumption in the
U.S. and E.U. and 20% of worldwide delivered energy consumption. Climate projections predict an
increase of average annual temperatures between 1.1–5.4 ◦C by 2100. As urbanization is expected
to continue increasing at a rapid pace, the energy consumption of buildings is likely to play a
pivotal role in the overall energy budget. In this study, we used EnergyPlus building energy models
to estimate the future energy demands of commercial buildings in Salt Lake County, Utah, USA,
using locally-derived climate projections. We found significant variability in the energy demand
profiles when simulating the study buildings under different climate scenarios, based on the energy
standard the building was designed to meet, with reductions ranging from 10% to 60% in natural
gas consumption for heating and increases ranging from 10% to 30% in electricity consumption for
cooling. A case study, using projected 2040 building stock, showed a weighted average decrease in
heating energy of 25% and an increase of 15% in cooling energy. We also found that building standards
between ASHRAE 90.1-2004 and 90.1-2016 play a comparatively smaller role than variation in climate
scenarios on the energy demand variability within building types. Our findings underscore the large
range of potential future building energy consumption which depends on climatic conditions, as well
as building types and standards.
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1. Introduction

1.1. Motivation

Buildings are responsible for approximately 40% of total primary energy consumption in the U.S.
and E.U. [1] and for 20% of worldwide delivered energy consumption [2,3]. By 2050, 66% of the world
population, and 82% of North America, are predicted to be living in urban environments, increasing
the amount of energy consumed by buildings in cities [4]. Nevertheless, the relative impact of building
energy consumption as a percentage of total delivery energy worldwide is projected by the U.S. Energy
Information Administration to be constant between 2012 and 2040, as shown in Figure 1 [5].
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Figure 1. World energy consumption predictions, sector by sector [5]. 

These consumption scenarios primarily focus on economic growth for predicting future building 
energy consumption, but the report acknowledges the importance of energy-related components of 
climate pledges in advance of the 2015 Paris Climate Change Conference (COP21) [6]. However, 
according to a National Oceanic and Atmospheric Administration (NOAA) report, world average 
temperature is projected to increase by 2100 by 1.1 °C to 5.4 °C [7]. De Wilde and Coley describe the 
link between climate and buildings: “Buildings provide an interface between the outdoor 
environment, which is subject to climate change, and the indoor environment, which needs to be 
maintained within a range that keeps the occupants safe and comfortable, and which is suitable for 
any key processes that are taking places within the building” [8]. An increase in air temperature will 
have a significant impact on building energy consumption worldwide, increasing the cooling energy 
demand and reducing the heating energy demand. 

1.2. Literature Review and Previous Work 

Several studies in the literature have focused on the impact of climate variability on building 
energy consumption, including a recent review [9]. Using results from the Low Carbon Futures (LCF) 
and Adaptation and Resiliency In Energy Systems (ARIES) projects, a study presented potential 
outcomes on the provision and use of energy in buildings associated with a changing climate [10]. 
Netherlands [11], Norway [12], China [13,14], UK [15], Greece [16], India [17], Australia [18], Italy 
[19–21], Iran [22], and the USA [23,24]. 

The same climatic shift affects different locations differently, with impacts not only on the 
building energy consumption, but on the electric power grids. A study found that rising global 
temperatures will result in increased cooling needs in Swiss buildings leading to significant impacts 
on building designs and on the electric demand on the Swiss power grid. [25]. Similarly, in the U.S., 
given the high use of AC systems, climatic warming will increase the electric peak on the power grid 
by between 4.2% to 15% [26]; possibly more than estimated, given the non-linear relationship between 
dry bulb temperature and relative humidity [27]. 

Some researchers have used parametric methods to estimate building energy consumption, such 
as the heating degree days (HDD) and cooling degree days (CDD), in the context of the balance-point 
method for energy analysis. However, using the “fixed” balance point method was found to 
overestimate the energy consumption in most American states [28]. Another study investigated 
establishing energy benchmarks for both existing and new building types in order to quantify the 
impact of various intervention strategies [29]. 

The use of building energy modeling (BEM), therefore, seems a logical and necessary 
methodology to analyze the impact of future climate on building energy consumption. This approach 
consists of using computer-based tools to model and analyze building energy consumption, under 
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These consumption scenarios primarily focus on economic growth for predicting future building
energy consumption, but the report acknowledges the importance of energy-related components of
climate pledges in advance of the 2015 Paris Climate Change Conference (COP21) [6]. However,
according to a National Oceanic and Atmospheric Administration (NOAA) report, world average
temperature is projected to increase by 2100 by 1.1 ◦C to 5.4 ◦C [7]. De Wilde and Coley describe the
link between climate and buildings: “Buildings provide an interface between the outdoor environment,
which is subject to climate change, and the indoor environment, which needs to be maintained within
a range that keeps the occupants safe and comfortable, and which is suitable for any key processes that
are taking places within the building” [8]. An increase in air temperature will have a significant impact
on building energy consumption worldwide, increasing the cooling energy demand and reducing the
heating energy demand.

1.2. Literature Review and Previous Work

Several studies in the literature have focused on the impact of climate variability on building energy
consumption, including a recent review [9]. Using results from the Low Carbon Futures (LCF) and
Adaptation and Resiliency In Energy Systems (ARIES) projects, a study presented potential outcomes on
the provision and use of energy in buildings associated with a changing climate [10]. Netherlands [11],
Norway [12], China [13,14], UK [15], Greece [16], India [17], Australia [18], Italy [19–21], Iran [22],
and the USA [23,24].

The same climatic shift affects different locations differently, with impacts not only on the building
energy consumption, but on the electric power grids. A study found that rising global temperatures
will result in increased cooling needs in Swiss buildings leading to significant impacts on building
designs and on the electric demand on the Swiss power grid. [25]. Similarly, in the U.S., given the high
use of AC systems, climatic warming will increase the electric peak on the power grid by between
4.2% to 15% [26]; possibly more than estimated, given the non-linear relationship between dry bulb
temperature and relative humidity [27].

Some researchers have used parametric methods to estimate building energy consumption,
such as the heating degree days (HDD) and cooling degree days (CDD), in the context of the
balance-point method for energy analysis. However, using the “fixed” balance point method was found
to overestimate the energy consumption in most American states [28]. Another study investigated
establishing energy benchmarks for both existing and new building types in order to quantify the
impact of various intervention strategies [29].

The use of building energy modeling (BEM), therefore, seems a logical and necessary methodology
to analyze the impact of future climate on building energy consumption. This approach consists
of using computer-based tools to model and analyze building energy consumption, under different
climate boundary conditions [30,31]. A recent study employed EnergyPlus to estimate building energy
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consumption, on a district level, under future climate scenarios; however, this analysis was focused
on one building model only, a small office [32]. A multi-city study used EnergyPlus to understand
the impacts of climate change in building energy use in Miami, Baltimore and Boston [33]. However,
only two building types were used and a wider variety of building types would be required to accurately
represent the building stock in a city. A campus energy study used five representative EnergyPlus
models to analyze the implications of future climate changes on total energy consumption, heating and
cooling energy consumption, and peak electric demand for the University of Michigan, demonstrating
the usefulness of aggregating building archetypes and simulating them within a particular spatial area
to understand the response to future weather under different climate scenarios [34].

Bianchi et al. [35] previously analyzed the impact of climate variability on three commercial
building types and a central business district area comprised of one block of downtown Salt Lake
City. They highlighted the importance of considering building design and building types. In their
analysis, however, they used projected weather data based on global NOAA predictions [7]. It is
therefore necessary to perform building energy simulations with climatic predictions tailored for a
study location, in this case, Salt Lake County, in order to have a more reliable starting point to model
future building energy consumption, particularly under a changing climate [28,36].

Future building stock is a necessary component in estimating the impact of offsetting factors
associated with primary energy use. Thus, engineering models used in conjunction with a large
statistical sample of buildings (i.e., the Commercial Buildings Energy Consumption Survey or CBECS)
are a useful combination for projection models [37]. It is important, therefore, to use multiple building
types while also considering the likely distribution of building types in the projected building stock for
future years. Furthermore, the use of building prototypes is a well-established technique to quantify
potential energy savings [38].

U.S. Department of Energy researchers have investigated the impact of climate change on energy
consumption of buildings for over a quarter century [27], and many researchers have been using BEM
software to run models that link changes in energy use to changes in weather. “It appears beneficial
to obtain a more detailed understanding of how advanced design in different building types would
behave with global warming” [27] (p. 331). The same building type reacts to the same climatic variation
differently, depending on its specific design.

1.3. Significance of This Work

This study builds on and adds to the previous work in literature in the following ways:

• We used localized weather data specific to an urban area (Salt Lake County), developed by a
team of atmospheric scientists, accounting for site-specific future projections as input for building
energy simulations instead of average climate trends modeled for the whole country or the world.

• We used multiple building stock models, representing five commercial building types, in order
to understand how a given variation in dry bulb temperature affects different building types.
This study includes the five commercial building types most prevalent in the study area (large
office, small office, primary school, full-service restaurant, and high-rise multi-family apartment
buildings) collectively comprising 49% and 55% of the floor area of existing and projected future
building stock, respectively [39].

• We included multiple building energy standards (ASHRAE 90.1-2004, 2007, 2010, 2013 and 2016)
to understand how a given variation in dry bulb temperature affects a given building type when
built to meet different design standards.

• We considered the projected 2040 composition of Salt Lake County’s building stock to have a
more realistic prediction of aggregated commercial building energy consumption.

Previous studies, including those listed in Section 1.2, have included individual components
outlined above, but, to the authors’ knowledge, this is the first study to combine these elements.
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Furthermore, since a representative amount of building stock is considered, micro-climate effects,
such as urban heat islands, are not explicitly modeled.

The rest of this manuscript is structured as follows: Section 2 describes the materials and methods,
Section 3 presents the results, Section 4 provides a discussion of the findings, and Section 5 draws
conclusions gained from this study.

2. Materials and Methods

Building energy consumption was simulated for stock building models using actual 2012 observed
weather data and three 2040 projected climate scenarios weather files using EnergyPlus [40]. The cooling
and heating loads, as well as electricity and natural gas consumption, were taken from the energy
model simulation output for five commercial building types (large office, small office, primary school,
full-service restaurant, and high-rise multi-family apartment buildings) as built to five different energy
standards (ASHRAE 90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016).

2.1. Weather Data for Energy Modeling

The meteorological conditions for 2040 were developed by modifying the 2012 hourly temperature
and relative humidity readings from the Salt Lake City Airport (KSLC) with the utilization of three
climate change scenarios based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) [41,42].
CMIP is a sophisticated climate model that incorporates both unforced variability and changes in
radiative forcing to develop future projections. These scenarios were classified as “Low”, “Mean”,
and “High” according to the modeled temperature increase. The heating degree days (HDD) and
cooling degree days (CDD) were calculated using 65 ◦F (18.3 ◦C) as the base temperature.

2.2. Building Simulations

EnergyPlus [40] was used to run the building energy simulations. The EnergyPlus simulation
engine is a U.S. Department of Energy-supported building energy modeling program and is well
documented, validated, and open-source. EnergyPlus requires a weather file to simulate the
meteorological conditions during the period of simulation and an input data file to describe the
building being simulated. For this study, the weather files were used as mentioned in Section 2.1.
Commercial prototype building models [43] were used to represent the building stock selected for
simulation [38]. The commercial prototype building models used were designed for Denver, Colorado,
USA, the nearest available city in the same International Energy Conservation Code (IECC) climate zone
(5B) as Salt Lake City, Utah [44]. The commercial prototype models were created by Pacific Northwest
National Laboratory (PNNL) for the EnergyPlus version 8.0 [40] engine, and therefore, EnergyPlus 8.0
was used for the simulations. The buildings simulated were the Small Office, Large Office, Full-Service
Restaurant, Primary School, and High-Rise prototype building models—all of which are classified
as commercial buildings by the U.S. Department of Energy [43]. The commercial prototype building
models were designed to represent buildings that would meet ASHRAE Standard 90.1 (Energy Standard
for Buildings Except Low-Rise Residential Buildings) for the 90.1 Versions for 2004, 2007, 2010, 2013,
and 2016.

Addendum cb to Standard 90.1-2010 [45] added new requirements and clarification to the setback
and optimal start control requirements for building HVAC systems. As a result, the published
prototype models conforming to Standards 90.1-2013 and 90.1-2016 have new setback and optimum
start control strategies in the form of thermostat schedule modifications which are different from the
thermostat schedules used for the prototype models conforming to Standards 90.1-2004, 90.1-2007 and
90.1-2010 [46]. A detailed example of changes that were implemented in the thermostat scheduling
because of Addendum cb Standard 90.1-2010 can be found in Appendix A.

During our EnergyPlus simulation runs, we found significant variations in results, occurring
because of the thermostat schedule modifications. To provide consistency in results between different
ASHRAE 90.1 Standard years, we chose to make the schedules uniform among the compared prototype
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building models so that the results would reflect changes in the buildings themselves and not changes
in the operational strategies. The thermostat schedule used in the prototype models for Standards
90.1-2004, 2007 and 2010 (as shown in Appendix A) was chosen and it replaced the new schedules that
had been in the published prototype models for Standards 90.1-2013 and 2016. All results presented
below have been simulated using a uniform thermostat schedule taken from the prototype models for
Standards 90.1-2004, 2007 and 2010.

The modification was done by:

1. Searching for thermostat schedule changes in the input data files (IDFs) between the published
Standard 90.1-2004, 90.1-2007 and 90.1-2010 and the published Standard 90.1-2013 and 90.1-2016
prototype models.

2. Replacing the thermostat schedules that were different in the Standard (90.1-2013 and 90.1-2016)
prototype models with the respective thermostat schedules in Standard (90.1-2004, 90.1-2007 and
90.1-2010) prototype models.

In order to compare the impact of climate on building conditioning (HVAC) energy consumption,
two resulting EnergyPlus output metrics were compared:

1. Heating:Gas—This metric includes gas used by boilers, direct exchange coils that provide
supplementary heating to heat pumps, and gas use by main gas heating coils.

2. Cooling:Electricity—This metric includes electricity consumption due to heat pumps working
in cooling mode and chiller electric energy as well as electricity consumed by direct exchange
cooling coils.

2.3. Salt Lake County Case Study

Salt Lake County is a rapidly developing urban center with a population expected to grow by
almost 50%, from 2010 baseline levels, by 2040 [47]. The regional metropolitan planning organization,
the Wasatch Front Regional Council (WFRC), has developed future land use scenarios for 2040 in
support of its regional transportation plan [48]. The 2012 and projected 2040 square footage by building
type are shown in Table 1. The 2012 square footage of the five study building types accounts for 49% of
built area and will rise to nearly 55% by 2040. Therefore, estimating the energy demand changes for
these five building types can provide a substantially representative change in energy demand for Salt
Lake County.

Table 1. Current and projected growth fraction of commercial buildings found in the Salt Lake County
study area [48].

Building Type 2012 Sq. Ft. (%) Projected 2040 Sq. Ft. (%)

Lodging 2.77 2.12
Warehouse 17.13 8.81
Restaurant 1.17 0.88
Education 9.44 7.27
Hospital 2.26 1.74

Other 16.01 13.61
Large Office 11.14 14.55
Small Office 9.61 7.13
Large Retail 5.82 2.49
Small Retail 5.18 2.21

Mid-Rise Apartment 1.82 14.10
High-Rise Apartment 17.64 25.08
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3. Results

3.1. Contemporary and Future Meteorological Conditions

The means and standard deviations for the historical and projected meteorological scenarios,
along with the percent change from the 2012 baseline, are shown in Table 2. The increase in mean
temperature ranges from 0.9–2.3 ◦C compared to the baseline temperature. This is comparable to
projections from NOAA [7].

Table 2. Average annual temperature summary statistics for historical and projected meteorological
scenarios. The numbers in parentheses represent the percent change from the 2012 baseline.

Temperature (◦C) 2012 2040L 2040M 2040H

Mean 13.60 14.51 (6.5) 15.19 (11.0) 15.96 (16.0)
S.D. 11.10 11.29 (1.7) 11.21 (1.0) 11.06 (−0.4)

Heating and cooling degree days for each of the four study scenarios using 65 ◦F (18.3 ◦C) as the
base temperature are listed in Table 3. The percent change from the 2012 baseline was also calculated
for the three projected meteorological scenarios. The decrease in HDD modestly outpaced the mean
temperature increase (Table 2) for the Low and Medium scenarios (~1–4%) but was much more
noticeable for the High scenario (~8%). The increase in CDD was approximately 8–9% higher than the
decrease in HDD for all scenarios. This divergence in the impact of modeled temperature scenarios
on CDD/HDD shows that these are non-linear functions and will disproportionately affect energy
demands during the summer compared to the winter.

Table 3. Heating and cooling degree days for historical and projected meteorological scenarios.
The numbers in parentheses represent the percent change from the 2012 baseline.

Year 2012 2040L 2040M 2040H

HDD 2442.88 2273.10 (−7.2)
2113.38
(−14.5) 1927.66 (−23.6)

CDD 947.02 1109.93 (15.8) 1197.83 (23.4) 1293.01 (30.9)

3.2. Results of Building Simulations

3.2.1. Heating Natural Gas Consumption

The annual heating natural gas consumption and relative differences, with respect to 2012, for the
three meteorological scenarios for the study building types and standards are shown in Figure 2,
Appendix B, and Figure 3. The modeled 2040 meteorological scenarios result in lower natural gas
consumption for all building types and standard combinations, due to the lower demand for heating.
The office building type shows the two largest relative decreases in 2040 heating energy with respect to
the 2012 baseline, with large offices (Figure 3a) and small offices (Figure 3b) reaching reductions of
up to 30% and 75%, respectively. The high-rise apartment, restaurant, and primary school building
types (Figure 3c–e) showed relatively minor differences in natural gas consumption between the
building standards. High-rise apartment buildings (Figure 3c) show consistently smaller relative gas
consumption reductions across the building standards; however, as their share of the built area is
expected to be approximately a quarter of that taken up by the commercial sector, these reductions are
not negligible. Restaurants (Figure 3d) showed a nearly constant pattern of gas consumption reduction
across building standards. It must be noted that only approximately 40% of natural gas consumed by
restaurants is used for heating, while the majority is used for other purposes, primarily cooking, which
will not be directly affected by the meteorology. Throughout all cases, more modern building standards
result in lower absolute natural gas consumption regardless of the scenario (Figure 2, Appendix B).
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While the small office and primary school building types (Figure 3b,e) show the largest percentage
reductions, from 2012 baseline levels, for the 90.1-2010 Standard, the newer Standards (90.1-2013 and
90.1-2016) still result in lower absolute natural gas consumption. The energy demand of the combined
building stock (composed of these five building types which are expected to represent nearly 55% of the
commercial building stock by 2040) is reflective of the two largest contributors: high-rise apartments
and large offices (Figure 3f).
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3.2.2. Cooling Energy Consumption

The annual cooling electricity consumption and relative differences, with respect to 2012, for the
three meteorological scenarios for the study building types and standards are shown in Figure 4,
Appendix C, and Figure 5. Appendix D describes in detail the differences across building standards. For
all building types, the relative cooling electricity consumption differences for the different meteorological
and building standards are approximately of the same magnitude as the natural gas consumption
differences (Figure 3). However, the opposite pattern is found where higher temperature scenarios
require a larger increase in electricity consumption to provide for the cooling needs of the buildings.
The large office building type (Figure 5a) shows the highest relative increase in cooling electricity
consumption when built to the 90.1-2010 or 90.1-2013 building standards, with a small decrease for the
90.1-2016 Standard. Small offices and high-rise apartments (Figure 5b,c) show a decrease in relative
cooling electricity consumption for newer building standards. This could be interpreted as buildings
built to newer standards are less affected by increasing temperatures. Restaurants and primary
schools (Figure 5d,e) display a counter-intuitive pattern where the newer building standards are
more affected by increasing temperatures. However, the absolute electricity consumption consistently
decreases for newer building standards for all temperature scenarios including the 2012 baseline.
Therefore, while a relative increase may be larger percentagewise, the net consumption (Figure 4
and Appendix C) consistently decreases for newer standards. In a similar manner as for the heating
analysis, the combined building stock results (Figure 5f) are reflective of the contributions from large
office and high-rise apartments (Figure 5a,c) with a small contribution from the restaurant buildings
(Figure 5d).
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Figure 3. Annual heating natural gas consumption relative difference, with respect to 2012, for the three
projected meteorological scenarios for the study building types and ASHRAE 90.1 Standard Versions:
(a) large office, (b) small office, (c) high-rise apartments, (d) full-service restaurant, (e) primary school,
and (f) weighted sum of the five building types.
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4. Discussion

4.1. Meteorological Variability

The temperature changes expected to take place by 2040 are substantial compared to the 2012
baseline. The lowest climatic change scenario (2040L) yields an increase in average with an annual of
0.9 ◦C, the highest (2040H) of 2.3 ◦C, and the most likely (2040M) of 1.6 ◦C (Table 2). The effects of the
projected temperature increase result in substantial changes to HDD and CDD (Table 3). While the
lower and medium scenarios show comparable effects in HDD and CDD, the high scenario shows a
substantially higher impact on HDD and CDD. These findings underscore the resulting temperature
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extremes, not just average temperature changes, attributable to increased warming trends, and serve
as a sensitivity analysis of energy consumption in relationship to temperature.

4.2. Building Energy Consumption

The projected temperature increases result in reduced HDD and corresponding natural gas
consumption across all 2040 meteorological scenarios (Figure 3). The small and large office building
types show the largest natural gas consumption decreases of up to 75% and 30%, respectively,
when modeled to meet several ASHRAE 90.1 Building Standards. Together, these two building
types are projected to account for nearly a quarter of the total building stock, by square footage,
in 2040, therefore having a significant impact on heating energy consumption. The high-rise apartment
buildings, which will also account for approximately a quarter of built square footage, show markedly
lower reductions in the range of 10%.

On the other side of the energy consumption balance, restaurants and schools are projected to
increase their cooling electricity demands by up to 30% (Figure 5). However, these two building types
are only expected to account for a little over 8% of the building stock by 2040. High-rise apartments
and both small and large office building types, accounting for approximately half of all building stock,
will increase their cooling electricity demands by approximately 20%. Therefore, a large fraction of the
built environment will need significantly larger amounts of electricity to maintain functionality.

A significant finding of this study is the large range of energy consumption variability across
buildings. Across all building types, there is a greater relative reduction in energy consumption for
heating needs compared to the increase in cooling needs. However, the absolute magnitude of energy
consumption can vary by up to a factor of 10 when comparing heating and cooling needs, such as for
the restaurant building type (Figures A8 and A12).

4.3. Case Study Findings

The case study of projected Salt Lake County commercial building energy demands shows the
strong influence of the building types projected to have the largest floor area by square footage:
high-rise apartments and offices. The model results show that the impact of future climate on reduced
heating consumption is, percentagewise, similar to the impact on increased cooling consumption,
approximately 15% relative to 2012 consumption for the combined building stock, which accounts for
55% of the projected built environment in Salt Lake County. The small office building type is the most
sensitive to future climatic conditions, both cooling and heating; however, due to its comparatively
smaller contribution to the overall building stock, its influence is less reflected at the county level.

5. Conclusions

5.1. Implications

This study found that building energy consumption will vary substantially due to modeled
temperature increases. With a decrease in heating degree days and an increase in cooling degree
days, natural gas consumption is expected to decrease while electricity consumption is expected to
increase, based on currently available technologies where natural gas is the primary heating source and
electricity is used for cooling. These effects were found to vary significantly across building types with
small offices showing the largest decreases in natural gas consumption and schools showing the largest
increases in cooling electricity consumption. Building standards play a significant role in projected
energy demands with large offices showing the largest variability dependence on building standards.
This suggests that potential building energy savings due to retrofits can vary widely depending on
climatic conditions, and building types and standards, as found in previous studies [49]. The reductions
in local emissions due to lowered heating demand may have a potentially large positive impact on
local air quality. Conversely, additional electricity demand may have a negative air quality impact,
but this may not directly affect the local airshed since the primary electricity generating facilities are
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located outside the study area. In this study, we have shown that, due to the large differences, both in
absolute and relative terms, the energy demands of future urban development is noticeably sensitive
to building type growth.

5.2. Limitations

There are several limitations to this study, primarily because it is a predictive study with
several implied assumptions used. Climate variability is a large unknown, and as the largest energy
consumption driver, may result in substantially different outcomes if future weather changes in ways
that were not captured in these scenarios. Our analysis assumes no variation in cloud coverage for the
future climate scenarios. In the literature, some works have studied how cloud coverage, and therefore,
solar irradiation, will change in the future [50]; however, the IPCC models did not include major
changes in the cloud coverage. Future developments of our work will include this aspect for a more
complete analysis. In this study, we used the available building year standards (up to 2016), but no
future technology scenarios or scheduling are modeled, meaning that the impacts of increasingly
efficient equipment that is adopted in the future or the use of advanced control methodologies would
not be captured. Salt Lake County is developing rapidly but no additional heat island effects were
accounted for in this study. Although the buildings studied represent the majority (55%) of the projected
2040 building stock, not all building types were included in the analysis. Additionally, building energy
simulations do not provide exact numbers for the magnitude of energy consumption, but rather are
used to represent relative changes, and they use a large number of underlying assumptions about how
the parameters for the EnergyPlus prototype models were chosen. Although the diversification of
the building stock assumed in this work represents the real Salt Lake Valley building diversification,
each building model was not calibrated to represent a real building. Lastly, micro-climate effects, such
as urban heat islands, are not explicitly modeled in this study. Urban heat islands (UHIs) play an
important role on building energy performance in urban areas. The authors have previously published
on the presence of UHIs in the Salt Lake Valley [51]. The presented analysis does not include any
UHI effect on the results. UHI effect would increase the impact of climate change in urban areas with
respect to what is described in this work. Future developments of our work will include this aspect for
a more complete analysis. The focus of the present study was to estimate the impact of a changing
climate on the larger building stock cohort for Salt Lake County, without the inclusion of specific
building geometry.

5.3. Future Work

Future directions for this study include performing a similar analysis on residential buildings,
which tend to have energy use highly impacted by the weather. The urban heat island effect, magnified
due to the rapid urbanization taking place in Salt Lake County, may play a significant role in overall
energy consumption, and further work may enable the quantification of this effect. Other building
energy models could be used to calibrate and provide formal uncertainty estimates for these findings.
A complementary avenue of research would be to contextualize the cooling and heating energy
demands within the overall building energy budget. With rapid technological change in non-HVAC
equipment, such as the recent trend in lighting toward LEDs, and the associated energy demand
reductions as well as formal and informal incentives for these upgrades [52], heating and cooling may
represent an ever-increasing fraction of building energy consumption.
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Appendix A

This appendix presents the differences in thermostat schedules between 90.1-2004, 90.1-2007,
90.1-2010, 90.1-2013 and 90.1-2016 in large office, small office, high-rise, restaurant, and primary school
prototype building models as a result of Addendum cb to ASHRAE 90.1-2010.
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Figure A1. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and
90.1-2013, 90.1-2016 (b,d) large office prototype building models as a result of Addendum cb to
ASHRAE 90.1-2010.

For the large office prototype model, the thermostat schedule change for heating between the
90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016 prototype models were observed in the basement
thermostat. The thermostat schedule changes for cooling between the 90.1-2004, 90.1-2007, 90.1-2010,
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90.1-2013 and 90.1-2016 prototype models were observed in all the zones. The thermostat object was a
DualSetpoint object.
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90.1-2013, 90.1-2016 (b,d) small office prototype building models as a result of Addendum cb to
ASHRAE 90.1-2010.

For the small office prototype model, the thermostat schedule changes for cooling between the
90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016 prototype models were observed in the core
and four perimeter zones. The thermostat object was a DualSetpoint object.
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Figure A3. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and 90.1-
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Figure A3. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and
90.1-2013, 90.1-2016 (b,d) high-rise apartment prototype building models as a result of Addendum cb
to ASHRAE 90.1-2010.
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Figure A4. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and
90.1-2013, 90.1-2016 (b,d) restaurant prototype building models as a result of Addendum cb to ASHRAE
90.1-2010.

For the restaurant prototype model, the thermostat schedule changes for cooling between the
90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016 prototype models were observed in the kitchen
and dining zones. The thermostat object was a DualSetpoint object.
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Figure A5. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and 90.1-
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Figure A5. Differences in thermostat schedules between 90.1-2004, 90.1-2007, 90.1-2010 (a,c) and
90.1-2013, 90.1-2016 (b,d) primary school prototype building models as a result of Addendum cb to
ASHRAE 90.1-2010.

For the primary school prototype model, the thermostat schedule changes for heating between
the 90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016 prototype models were observed in all
zones except the mechanical room, bathroom, gym, kitchen, and the cafeteria. The thermostat schedule
changes for cooling between the 90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013 and 90.1-2016 prototype
models were observed in all zones except the mechanical room, bathroom, gym, kitchen, and the
cafeteria. The thermostat objects were DualSetpoint object.

Appendix B

This appendix presents the annual heating natural gas consumption for the baseline 2012 and
three projected meteorological scenarios and ASHRAE 90.1 Standard Versions for the large office,
small office, high-rise, restaurant, and primary school prototype building models.
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Appendix D

This Appendix summarizes the main differences between various building standards used in
this study.

This study uses the Prototype building models that were developed by researchers at the
Pacific Northwest National Lab (PNNL) to conduct analyses of the ANSI/ASHRAE/IES Standard 90.1.
The prototype building models were derived from the Department of Energy (DOE) Commercial
reference building models [43]. As the ASHRAE Standard 90.1 evolves, PNNL modifies the prototype
building models and therefore, we used different prototype building models in this study.

The differences between versions of the ASHRAE 90.1 Standards are too great to be published in a
single table. As these have already been published and their effects quantified, we reference below the
documents released by PNNL that detail the differences between the various standards as well as the
effects on energy use that they bring. An abridged summary is found in Table A1.

Table A1. Documentation describing differences between the 90.1-2004, 90.1-2007, 90.1-2010, 90.1-2013
and 90.1-2016 Standards and changes in energy use.

Differences Between ASHRAE 90.1
Standard Versions

Document Describing the Differences Between
Standards and Changes in Energy Use

2004 and 2007 ANSI/ASHRAE/IESNA Standard 90.1-2007 Final
Determination Quantitative Analysis [53]

2007 and 2010 ANSI/ASHRAE/IES Standard 90.1-2010 Final
Qualitative Determination [54]

2010 and 2013
ANSI/ASHRAE/IES Standard 90.1-2013

Determination of Energy Savings: Quantitative
Analysis [55]

2013 and 2016 ANSI/ASHRAE/IES Standard 90.1-2016 Performance
Rating Method Reference Manual [56]

The only change that the authors have made to the DOE Prototype buildings has been described
in detail in the document in Section 2.2 for reasons described therein. The effects of these changes on
building schedules are demonstrated in Appendix A.

Listed below are the significant improvements in the Standards grouped by category:

1. Building Envelope:

• The building envelope requirements change significantly between 90.1-2004 and 90.1-2007
for both opaque surfaces and fenestration, including a new classification system for types of
windows. Addenda to 90.1-2007 include adjustments to a limited set of envelope performance
values for metal buildings as well as provisions that impact infiltration, roof solar heat
gain, and window area by wall orientation. 90.1-2013 increases stringency of building
envelope requirements.

2. Heating, Ventilating and Air Conditioning:

• Addendum 90.1-04g increases the efficiency values for equipment with cooling capacity of
65,000 Btu/h or larger when manufactured on or after January 1, 2010.

• Outdoor air ventilation rates are not the same for the prototypes as modeled for 90.1-2004
and 90.1-2010 because the source of outdoor air minimum flow rates is ASHRAE Standard
62.1 and different versions govern the inputs for 90.1-2004 and 90.1-2010 models.

• Fan power limitation is different between 90.1-2004, 90.1-2007 and 90.1-2010 Standards.
90.1-2013 applies new efficiency requirements to individual fans. 90.1-2013 reduces fan
energy usage and improves economizer effectiveness.

• Improvements in the minimum boiler efficiency of basic 90.1-2004 Standard is made. 90.1-2013
reduces energy usage for large boilers.
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• The minimum efficiency requirements for air-cooled and water-cooled chillers are revised.
• The system piping pressure drops are revised for the 90.1-2004 baseline models and 59.9 ft

for the 90.1-2010 models.

3. Lighting:

• 90.1-2010 incorporates major changes that reduce lighting energy usage. For the first time,
addenda introduce rules that require access to daylight and daylighting controls. Changes
also include extensive updates to both interior and exterior basic lighting power allowances.
Finally, significant control requirements are added or changed for both interior and exterior
lighting. 90.1-2013 adds control requirements for lighting alterations and decreases lighting
power density in most building types.
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