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Abstract

Poultry waste composting is a necessary technique for agricultural farm sustainability.
Composting is a dynamic process influenced by multiple variables. Humidity and tempera-
ture play fundamental roles in analyzing its different phases according to the environment
and composting technique. Current developments for monitoring these variables include
automation via intelligent Internet of Things (IoT)-based sensor networks for variable track-
ing. These advancements serve as efficient tools for modeling that facilitate the simulation
and prediction of composting process variables to improve system efficiency. Therefore,
this paper presents the dynamic modeling of composting via forced aeration processes in
high-mountain climates, with the intent of estimating biomass temperature dynamics in
different phases using system identification techniques. To this end, four dynamic model
estimation structures are employed: transfer function (TF), state space (SS), process (P),
and Hammerstein—-Wiener (HW). The and model quality, fitting results, and standard
error metrics of the different models found in each phase are assessed through residual
analysis from each structure by validation with real system data. Our results show that
the second-order underdamped multiple-input-single-output (MISO) process model with
added noise demonstrates the best fit and validation performance.

Keywords: aerobic composting; composting monitoring; dynamic modeling; system
identification; wireless sensor network

1. Introduction

Global poultry production generates substantial nutrient-rich waste if mismanaged,
with environmental risks involving soil, groundwater, and greenhouse gas emissions [1].
Composting transforms poultry litter into organic fertilizer, mitigating these impacts while
enhancing soil fertility for sustainable agriculture [2]. In high-mountain climates such
as Cundinamarca, Colombia (2835 m above sea level), low temperatures (7-19 °C) and
fluctuating moisture levels hinder the achievement of optimal composting conditions such
as the thermophilic temperatures (>50 °C) necessary for effective pathogen elimination [3].
This study employs system identification techniques with IoT-based monitoring to model
and optimize poultry litter composting dynamics under these challenging conditions.

The surge in global meat demand has intensified poultry production, resulting in
substantial waste from egg production that requires sustainable management [4]. Aero-
bic composting using forced-aeration static piles effectively transforms poultry litter into
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fertilizer, mitigating emissions, soil erosion, and dependence on synthetic fertilizers [5,6].
The key parameters of temperature, moisture, and aeration govern microbial activity and
process efficiency; however, their complex interactions challenge traditional modeling [7-9].
In high-mountain environments, these challenges are amplified by environmental variabil-
ity, necessitating advanced adaptable modeling approaches [1].

High-mountain composting faces unique constraints, as low ambient temperatures
and variable moisture impede the thermophilic phases that are critical for organic matter
stabilization [3,7]. Insufficient aeration risks anaerobic conditions, whereas excessive
aeration may reduce efficiency by preventing thermophilic temperatures [9]. In addition,
variations in moisture levels tied to the makeup of the substrate make microbial activity
more difficult to manage [8]. Traditional models focusing on heat and mass transfer are
computationally intensive and typically tailored to specific materials, which limits their
usefulness in varied settings [10,11].

In Colombia, an experimental study was conducted at high altitude to evaluate com-
posting strategies under mountain climate conditions [12]. The research showed that
low temperatures and small-scale operations hinder the development of thermophiles
and effective sanitization. The application of bioactivators and bokashi has improved
compost quality and reduced pathogen levels. While this study offers a comprehen-
sive experimental evaluation, it does not incorporate modeling approaches or system
identification techniques.

Recent advancements in composting modeling include statistical methods such as re-
sponse surface optimization [13] and artificial neural networks (ANN) [14-16], which have
been extended by hybrid mechanistic data-driven models and advanced machine learning
approaches to enhance process optimization. For instance, a hybrid modeling approach in-
tegrating mechanistic and data-driven methods for fermentation process optimization was
reviewed in [17], with an emphasis on system identification for bioreactor control. Similarly,
a deep hybrid model for bioreactor systems combining first principles with neural networks
was developed in [18], resulting in enhanced control accuracy Advanced ML approaches
such as random forest [19], deep learning (e.g., transformers), and reinforcement learning
offer improved predictive accuracy for complex biological processes [11,20]. Concurrently,
system identification methods have become relevant in modeling biological and environ-
mental processes. Hybrid differential equations have shown good predictive capabilities
when employed for simulating water systems, as demonstrated in [21]. Similarly, a system
identification approach for real-time control of anaerobic digestion was described in [22],
emphasizing its flexibility. Industry 4.0 technologies such as IoT and Al can enable real-time
monitoring and control to provide enhanced agricultural efficiency [23-26]. These advance-
ments highlight the potential of such data-driven approaches, including the one proposed
in this study to address the complexities of composting in high-mountain climates.

Compared to traditional models, ML techniques exhibit higher predictive accuracy
when simulating compost dynamics. In addition to this enhanced accuracy, ML approaches
offer advantages such as faster computation, lower processing costs, and reduced demand
for experimental resources and human labor, making them highly suitable in organic
waste composting systems [27]. For example, [28] reported that the use of Al and ML
tools has enabled the optimization of composting parameters, prediction of compost
maturity, monitoring of moisture content in industrial-scale systems, estimation of compost
enzymatic activity, and classification of compost maturity using theoretical, analytical and
statistical methods [29].
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In [30], the authors forecast humic acid content using a backpropagation ANN,
while [31] found that ANN models provided the best performance for modeling the com-
posting process. In [32], the authors compared the performance of an ANN and a response
surface methodology (RSM) model in optimizing compost maturity parameters. Their study
demonstrated that while both models were efficient, ANN presented an advantage com-
pared to RSM. In another study [33], the authors employed six ML methods to develop
models for predicting the germination index (GI) during manure composting, finding that
the random forest (RF) and extra trees (ET) models presented the best predictive perfor-
mances for GI. Similarly, [34] tested seven ML models to predict the humification index (HI)
during composting, finding that the gradient boosting regression tree technique provided
the best performance for modeling HI. The authors also identified that the C/N ratio and
aeration rate were the most influential variables in HI modeling. Finally, [35] presented a
sensor-based ML system to predict compost maturity and monitor gas emissions in real
time. Using environmental data and ten composting datasets, models such as XGBoost and
CatBoost achieved high predictive accuracy. The tested approach was found to enhance
waste management efficiency, transparency, and sustainability. While the above studies
demonstrate the relevance of ML in composting modeling, there are still challenges re-
lated to data requirements and model complexity, highlighting the need for alternative
approaches [10,11].

System identification offers a practical and data-driven approach for the modeling
of composting in high-mountain climates, yet its application in such contexts remains
underexplored [19,36]. The integration of system identification with IoT data provides a
resource-efficient alternative that can model composting dynamics without the need for
extensive biochemical characterization [37,38].

Despite these advances, a gap remains in modeling composting processes for high-
mountain conditions using adaptable methods. Several methods require extensive knowl-
edge of biochemical processes, which consider large datasets or do not respond well to
environmental variability. In contrast, this study uses IoT data to develop and test dynamic
models for controlling temperature in a forced-aeration poultry litter composting system in
Cundinamarca, Colombia. The resulting models help to improve process efficiency and
provide a scalable, environmentally friendly solution for waste management in challenging
environmental conditions.

2. Materials and Methods

This section describes the experimental setup and methods used to develop dynamic
models for temperature control in poultry litter composting systems under high-mountain
climate conditions. The study was conducted at an automated composting pilot plant
in La Vega, Cundinamarca, Colombia which is equipped with IoT-based monitoring and
control systems. The facility enables forced aeration and temperature regulation through
a heat exchanger, supported by real-time data acquisition from calibrated environmental
sensors. Two composting experiments were carried out using poultry manure and sawdust
mixtures, with sensor data collected at regular intervals to capture process dynamics. The
collected data were used to develop and compare several system identification models
aiming to represent the biopile’s thermal behavior efficiently under variable environmental
and operational conditions.

2.1. Automated Composting Plant

This study was conducted at a research and training center located in La Vega
(4°52'18.932" N, 74°25'6.54" W), Cundinamarca, Colombia, at the Alto del Vino (2835 m
above sea level) on the eastern mountain range to the west of Bogotad. The poultry pro-
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duction farm experiences average daytime temperatures of approximately 19 °C, which
decrease to around 7 °C during the night [1]. The composting plant, housed in a green-
house with brick and cement flooring, comprises four cubicles (i, j, k, 1), each with a 4.3 m3
capacity, as shown in Figure 1. Each cubicle uses 4.0-inch perforated PVC pipes for aeration,
supplied by an industrial fan (c) controlled by manual valves (n, o, p, q). The fan assembly
includes a damper valve (d) and a gas burner (b) with a heat exchanger equipped with a
solenoid valve and an ignition pilot. A variable speed drive adjusts airflow. Three sensors
monitor the process: a temperature sensor (e) at the heat exchanger outlet, a combined
temperature and oxygen sensor (g) inside the biopile, and a humidity sensor (h), also in
the biopile. All sensors are connected to an IoT-based control system (f) for both manual
and remote operation. The thermophilic phase was maintained at approximately 40 °C for
7 days, constrained by the high-mountain climate’s low ambient temperatures (7-19 °C)
and the heat exchanger’s capacity, preventing the system from reaching the >55 °C thresh-
old recommended for pathogen elimination [3]. This phase is aligned with cold-climate
composting studies, where lower temperatures suffice to stabilize organic matter.

LAYOUT

Figure 1. Process and instrumentation diagram: (a) gas pipe, (b) heat exchanger, (c) blower,
(d) damper, (e) temperature sensor, (f) system control, (g) temperature and oxygen sensors,
(h) moisture sensor, (i-1) modules, (m) floor aeration pipe, hand valves (n—q).

2.2. Control and Communications Architecture

Figure 2 shows the control and communications architecture, which is composed of
an industrial Arduino that acquires all analog signals of the system (biopile temperature,
air temperature, moisture, and damper position). The acquired signals are sent by serial
communication to an industrial Raspberry Pi that includes an integrated human—machine
interface where the plant commissioning operations are performed (ignition of the gas heat
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exchanger, output control, control of the frequency inverter cfw 300b, and control of the
damper valve). The Raspberry Pi is connected to a modem to allow internet access via
GSM/GPRS.

Modem GSM/GPRS

i

Temperature/Oxygen
‘—
Industrial Raspb pi Serial icati Temperature
ndustrial Raspberry Pi erial comunication . .
and HMI Industrial Arduino Moisture
Damper
A4 y A
Driver Electovalve Valve
CFW300B and Damper
Pilot

Figure 2. Technology architecture for control and communications.

The experimental procedure at the pilot plant began with manual collection of poultry
manure from the barn, which was subsequently placed in each cubicle. Manure-pine saw-
dust mixtures were prepared to control excess moisture and enhance biomass porosity [3].
Figure 3a shows the four cubicles loaded and ready for operation. Before starting, two
pipeline valves were opened to aerate two cubicles simultaneously and a temperature and
oxygen sensor (LSI Lastem) and moisture sensor were inserted into the biomass, as shown
in Figure 3c. The operator verified the process variables (Figure 3d) and activated the
heat exchanger and industrial fan via the inverter. Aeration was conducted separately
for cubicles i and j (Experiment 2) and cubicles k and 1 (Experiment 1) over 15 days each,
with a 5-min sampling interval used to capture rapid temperature changes during the
thermophilic phase while balancing computational efficiency [7].

The plant operated 12 h nightly due to low temperatures (7-19 °C). Table 1 lists the ini-
tial conditions. This decision was based on local environmental conditions, where daytime
temperatures in the region rise to around 19 °C and with peaks of up to 23 °C. The plant is
located inside a greenhouse that retains heat and minimizes sharp daytime temperature
drops; these conditions reduced the need for additional heating during daylight hours,
allowing for efficient thermal management with nighttime operation only.

Experiment 1 collected 4302 data points related to biomass temperature, substrate
moisture, and hot air temperature, while Experiment 2 collected 3077 data points at the
same sampling rate, which were used for model validation. All sensor data were prepro-
cessed using a moving average filter (window size = 5 samples) to reduce high-frequency
noise, and outliers exceeding +3 standard deviations were removed. Data acquisition was
implemented using Node-RED with parallel storage in MariaDB and Firebase databases.

Substrate moisture was measured using an FDS-100 resistive soil moisture sensor
(probe diameter: 3 mm, output signal: 4-20 mA, operating voltage: 7-24 V, current con-
sumption: 3-5 mA, cable length: 1.5 m). Biomass temperature and oxygen concentration
were monitored with an EXP421 LSI Lastem sensor (thermistor-based for temperature and
electrochemical for oxygen; temperature range: from —40 to —70 °C, accuracy: +0.5 °C;
oxygen range: 0-25 %, accuracy: +0.3 %). The hot air temperature inside the combustion
chamber was measured using a Type-K thermocouple connected to a gas burner unit. All
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sensors were calibrated weekly to minimize measurement drift. Measurements were taken
every 5 min (sampling frequency: 0.0033 Hz) throughout the experimental periods.

() ()

Figure 3. Commissioning of the automated composting plant with forced aeration: (a) cubicles

loaded with chicken manure, (b) forced aeration techniques, (c) sensor implementation in the biopile,
(d) plant verification and commissioning.

Table 1. Characteristics of the experiments.

Experiment 1 Experiment 2
Biopile Composition Manure (%) 63 63
Sawdust (%) 37 37
Humidity (%) 100 100
Aeration (L/m) 1.092 1.092
Experiment time (h) 12 12

Selection of the Estimation Model

After collecting the data of the measured variables [39], the input (humidity, heater
temperature, and air flow) and output (biomass temperature) data were preprocessed
and the system was classified as MISO [40]. Within the theory of system identification, it is
recommended to start with a mathematical relationship of inputs and outputs and then
move on to more complex structures [41]. Therefore, three structures were initially selected:
transfer function (TF), state space (SS), and process (P); then, a nonlinear Hammerstein—
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Wiener (HW) structure was selected. Another important characteristic to consider in system
identification is the model order; accordingly, the study began with a review of classical
energy and mass balance equations found in the literature describing the composting pro-
cess. It was observed that most of these models are first-order; for this reason, the modeling
work was started with first- and second-order models. Model estimation was performed
using 50% of the measured data from Experiment 1. The dataset used for this purpose
started at data point 1235, as the humidity from that point onward remained within the
range of 50% to 60%, ensuring that the composting process had properly commenced.

2.3. Model Estimation by Transfer Function

Model estimation using a discrete transfer function was applied to the composting
process, as it enables straightforward implementation of a simulation model or future
predictions of plant behavior [42]. For this purpose, the model was implemented in Matlab
using the tfest function, which applies the output-error (OE) polynomial algorithm [43].
The values of the three inputs and one output were parameterized using a sampling
time of 300 s. Among the evaluated models, the second-order model provided the best
response in terms of system representation. The identified transfer functions are presented
in Equations (1)—(3):

BT(z) 0.001204z 1 M
HT(z) 1-0569z~1 —0.431z-2’
BT(z) 0.001929z~! )
H(z)  1-0.9858z"1 —0.01075z2’
BT(z 0.0003272z !

(z) 3)

F(z) ~ 1-00197z-1 — 0979122

Respectively corresponding to the inputs of HT(t) (heater temperature), H(t) (hu-
midity), and F(t) (flow) used in the estimation. The system’s sole output is BT (¢) (biopile
temperature).

2.4. State-Space Model Estimation

The state-space model is a mathematical representation of a system in which the inputs
and outputs are related through a set of first-order differential equations. To estimate the
discrete-time model of the composting process, a sampling time Ts was defined and the
model order was determined using the ssest function in Matlab, which employs the
canonical variate algorithm. The discrete-time state-space representation of the system is
provided by Equations (4) and (5) [44]:

x(t+1) = Ax(t) + Bu(t) + Ke(t), (4)

y(t) = Cx(t) + Du(t) +e(t), (5)

where A, B,C, D, and K are matrices in the state space of the appropriate dimensions,
u(t) is the input vector, y(t) is the output, e(t) is the perturbation, and x(t) is the state

vector. The estimated matrices of this type of representation are presented below in
Equations (6)—(10):

1
A= 0 , (6)
—0.9859 1.986

5 [0.0005328 0.002377 0.000192]

0.0005416  0.00235 0.0001874
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c=1 0], (8)
p=[0 0 o, 9)
«_ 01613 (10)
0.1607

An observable canonical form was realized, representing the state-space system in a
reduced-parameter structure where specific elements of the matrices are fixed to zero or
one. The canonical indices are identifiable in matrices A and B. This model enables the
estimation of two perturbation coefficients, denoted by K; the D matrix is a zero vector,
indicating that there is no direct feed-through from the input to the output.

2.5. Model Estimation by Process Structure

The process model represents poultry litter composting dynamics using a continuous-
time transfer function, capturing heat transfer and microbial degradation in the biopile [45].
Key parameters include K, (static gain, reflecting the steady-state temperature response
to inputs such as aeration), T, (inverse of the natural frequency, indicating the speed
of temperature changes), and { (the damping coefficient, representing microbial activity
stabilization) [46]. These parameters simplify modeling for high-mountain climates, where
temperature control is critical. The model’s simplicity allows for estimation of delay and
for coefficients that are interpretable as poles and zeros, supporting first- to third-order
models with real or complex poles [47]. Noise (white or colored) is included in the output,
as shown in the discrete-domain input-output relationship in Equation (11):

Y(z) = G(z)U(z) + H(z)E(z) (11)

where Y(z) is the output corresponding to BT (t), G(z) is the discrete transfer function,
U(z) represents the input or inputs, E(z) is the error (white Gaussian noise), and H(z) is
the noise sensitivity function. Model estimation was performed taking into account two
dominant complex poles and a second-order underdamped system, leading to the structure
presented in Equation (12), which is expressed in the frequency domain with z = e/“'Ts:

Kpz=2 4 2Kpz 71 + K,

T? —4Tw? —4T?wl = 2T? — 6Tw?  16Tw* +4Tw(T? +T*
T2 2 7 T

G(z) =

(12)
72

The resulting model structure for a multiple-input-single-output (MISO) system with
three inputs and one output is presented in Equation (13):

Y = G11(2)Ui(2) + Gr2(2)Ua(2) + Gr3(2)Us(2) (13)
where Gi1(z), G12(z), and Gy3(z) are shown in Equations (14), (15), and (16), respectively:

1422428271414
. , 14
1) = 1130982 1 152 11 6851543 o

Gra(z) = 0.15327z~2 +0.3065z ! + 0.15327 (15)
12350 3088122 + 1.422- 1 + 10793654.6’
—0.03574z=2 — 0.07148z ! — 0.03574

T 318771022 — 17834z 1 + 1.0161¢21°

Gi3(z) (16)
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For estimation of the noise sensitivity function, an autoregressive moving average
(ARMA) structure is used for the perturbation model, as shown in Equation (17):

Npo(2)
Dyo(2)

y(z) = G(z)U(z) + E(z) (17)

where Ny, and D;,, are provided by Equations (18) and (19), respectively:

_ —221z724-8z71 41021
~90000z~2 + 180000z 1 + 90000’
2636z 248271 +10.63
~90000z~2 + 180000z~ 4 90000

Niuo(z) (18)

Dyo(z) (19)

ARMA models are autoregressive models that do not incorporate exogenous inputs,
making them well suited for modeling processes based solely on time series data. They
include a polynomial component that accounts for the moving average of the noise [48].
In this particular case, a second-order ARMA model was estimated, resulting in a total of
twelve model coefficients.

2.6. Hammerstein—Wiener (HW) Model Estimation

The HW model implemented for system identification combines nonlinear in-
put/output blocks with a linear transfer function, which can model interactions between
aeration, moisture, and temperature in high-mountain biopiles [49]. As shown in Figure 4,
the structure includes a nonlinear input block f(u(t)), a linear transfer function B(z)/F(z),
and a nonlinear output block g(x(t)).

) Wiener model
Hammerstein model

u(t)

Nonlinear Input | w(t)| | Linear component | [X(t) [Nonlinear output

y(t)
"] block fu(t)) B(z)/F(z) "] block g (x(t)) >

Figure 4. Hammerstein-Wiener (HW) structure.

This enables accurate representation of the nonlinear dynamics involved in poultry
litter composting, where:

* f(-) is a smooth nonlinear function that transforms the input signal u(t) into
w(t) = f(u(t)) as the output of the nonlinear block.
*  The linear state space composed of matrices A, B, C, D of appropriate sizes can be
taken to a transfer function realization provided by % that transforms w(t) into x(t).
e  x(t) is an internal variable that represents the output of the linear block and has the
same dimension as y(f).
e g(-) is a smooth nonlinear function that maps the output of the linear block x(t) to the
output of the system y(t) as y(t) = g(x(t)).
For ny outputs and nu inputs, the linear block is a transfer function matrix containing
inputs, as shown in Equation (20):
Bji(z)
F;i(z)

wherej=1,2,...,nyandi =1,2,...,nu. In order to use this structure, it is necessary to

(20)

specify nb (number of zeros), nf (number of poles), and nk (delay from input to output in
terms of samples) [50]. Finally, the method was implemented in the software by excluding
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input and output nonlinearities, resulting in a linear transfer function. All corresponding
parameters are presented in Equations (21)—(29):

nb = [2 2 2}, 1)
nf=2 2 2], 22)
nk = {2 2 2}, (23)

0 00576 —0.0566]
B= |0 03285 —0.3253
0 —0.0025 0.0025 |

Bfm:{l 1 1}, (25)
(1 —1.3046 0.3057 |

(24)

~

F= |1 —-04585 —0.5370|, (26)

|1 —-1.7170 0.7176 |
Ffree = {1 1 1}, (27)
InputNonlinearity = {3 x 1 idUnitGain}, (28)
OutputNonlinearity = {1 x 1 idUnitGain}, (29)

where the terms InputNonlinearity and OutputNonlinearity, specified as idUnitGain in the
software implementation, correspond to identity mappings in the mathematical model;
that is, the nonlinear functions f(-) and g(-) are defined as in Equation (30):

flu(t)) =u(t), g(x(t) =x(¥), (30)

which implies that the input and output signals are passed through the system without any
nonlinear transformation. In this case, both blocks act as identity functions, meaning that
the overall system behaves as a purely linear transfer function model. This simplification
is often used to validate the linear dynamics of the system before introducing nonlinear
components in more complex identification procedures.

The biggest strength of this approach is how flexible it is and how well it fine-tunes its
settings. It starts with a basic model such as a linear state-space or transfer function, then
uses a nonlinear unknown set of building blocks to tweak the model’s parameters. This
method helps to capture real-world input-output behaviors such as actuator saturation and
hysteresis. The data are fitted much better by modeling each unique behavior separately.
This adaptability represents a key breakthrough in this research, resulting in plans to
continue improving the model in order to make it more accurate and reduce errors in
the future.

3. Results and Discussion

Four dynamic system identification models were studied in the context of an au-
tomated chicken manure composting plant using forced aeration under extreme high-
mountain humidity and temperature conditions. The composting process progressed
satisfactorily, as shown in Figure 5. The mesophilic phase, dominated by mesophilic mi-
croorganisms breaking down soluble and degradable molecules, lasted 7 days (25-40 °C),
with rapid temperature increases from spontaneous heat release. The thermophilic phase
followed, where thermophilic microorganisms facilitates rapid decomposition of pro-
teins, fats, and complex carbohydrates, lasting 5 days at approximately 45 °C. The mat-
uration phase began on day 13, reaching 30 °C by day 16 and cooling toward ambient
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temperature [1]. Physicochemical properties (e.g., C/N ratio, pH) were not measured due
to experimental constraints. According to the literature, a carbon-to-nitrogen (C/N) ratio
below 20 and pH range of 6.5-8.0 are indicative of mature compost [5]. The experiment
was conducted in a research facility located in a high-mountain climate; this environmental
condition influenced the thermophilic phase, which exhibited a moderate temperature
peak below the typical range of (50-65 °C). The temperature dynamics highlight the in-
fluence of lower temperatures on heat retention. In real-world composting systems, this
may require supplemental strategies such as structural insulation, longer aeration cycles,
and robust heat-exchanging processes; however, as reported in composting studies, a range
of (40-65 °C) is adequate for a thermophilic phase [51,52].

The dynamic responses of the BT obtained from the three modeling techniques in com-
parison with the experimental data are shown in Figure 5. In addition, Figure 6 hows
how the temperature profile follows the expected biological behavior from the initial
mesophilic stage, through the thermophilic peak, then into mesophilic cooling and matu-
ration stage. The three models describe the basic temperature pattern of the composting
process. The state-space model (mp1) demonstrated superior fitting performance (85.71%)
during the mesophilic and thermophilic phases, mirroring the peaks of biological activity
commonly found during proliferation of microorganisms. State-space models can represent
higher-order physical systems and analyze any nonlinear systems with multiple inputs
and outputs [53], making them better suited for modeling transient dynamics that occur
in the early stages of composting. However, mp1 showed limitations in describing the
mesophilic cooling phase, reflecting its reduced sensitivity to the decrease in metabolic
activity and system stabilization. On the other hand, the process model (P2U1) showed
better fitting (84.48%) during the cooling phase, although it showed lower accuracy during
the biologically active phases. This suggests that this model more effectively depicts the
slower dynamics associated with microbial decline and humification processes. The trans-
fer function model (mp2) presented the lowest overall performance (55.59%), failing to
model transitional behaviors or the thermophilic peak. This finding suggests that a sim-
plified model may be insufficient to accurately represent the thermal dynamics of the
composting process.

%104 Estimated Models
3 L T

. Validation Data/|

- mpl:85.7%
mp2:55.6%

- P2U1:84.5%

,‘{' Mesophilic | Thermophilic | Mesophilic
phase phase phase

4 6 8 10 12 14
t [Minutes| %10

Figure 5. Validation of the mp1, mp2, and P2U1 models for simulating the composting process in
Experiment 1.

In contrast, Figure 6 shows the BT of the biopile using the nonlinear structure, which
exhibits a good model fit. However, the HW model (mhw1) exhibits oscillations through-
out all phases of the composting process when compared to the validation data, and a
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mismatch is observed in the initial conditions. This mismatch may be attributed to the high
variability in the initial composting conditions, such as moisture content, material density,
and microbial diversity. Nevertheless, the model provided a more accurate representation
during the mesophilic cooling phase. Similarly, Figure 7 displays the validation results
for all models using 50% of the real data that were not used in the estimation process. All
models reproduce the general composting behavior to some extent.

a5 %«10~4 Estimated Models
. , A ‘ o | : Val‘idation Data
f'fﬁ‘-g‘g # - mhw1:69.6%
3r L \N 1
o \ .
Mesophilic | Thermophilic | Mesophilic /'
phase phase phase
15 | | |
2 4 8 10 12 14
t [Minutes] %10°

Figure 6. Validation of the nonlinear simulation model of the composting process in Experiment 1.

x10~4 Estimated Models
2.8+ i
- Validation Data
2.6+ - mp1:82.2% i
mp2:77.5% .
=94l - P2UL:79.8% |
\S .
2.2+ i
Thermophilic | Mesophilic

2r phase phase .

0.8 0.9 1 1.1 1.2
¢t [Minutes| x 106

Figure 7. Validation of all simulation models of the composting process.

Subsequently, the results of the four model structures were compared using data from
Experiment 2, which were different from those used in the identification process. Figure 8
illustrates the behavior of three models compared against the data from Experiment 2.
The mp1 and P2U1 models were able to reproduce the basic dynamics of the composting
process. In contrast, the mp2 model failed to reflect the fundamental temperature profile,
exhibiting a significant mismatch. The mp1 model also showed deviations in the initial
conditions as well as during the mesophilic and thermophilic phases. The P2U1 model
demonstrated improved performance in capturing the initial conditions and the mesophilic
phase compared to the mp1 model; however, it was not able to accurately reproduce the
behavior during the thermophilic phase.

Figure 9 presents the results of the model with a nonlinear structure using data
from Experiment 2. A noticeable discrepancy is observed in the initial conditions and
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across all phases of the composting process. To determine the fitness and error of the
models, we considered several well-known metrics: the normalized root mean square

n _17)2
error (NRMSE), expressed as NMSE = % ; the root mean square error (RMSE),
i=1\J1

RMSE = 4/ % Y"1 (yi — ¥i)% and the mean absolute error (MAE), MAE = %Zl’-l:l lyi — 7il,
which indicates the overall quality of the adjustment. The performance metrics computed
for the different estimated models are summarized in Table 2.

%104 Estimated Models
Ly T
n T Mesophilic |
phase '
=39 |
\;}/ e
; - Validation Data
3 e : : .
/' Mesophilic Thermophilic mpl:7.7%
mp2:64.1%
phase phase - P2U1:75.9%
5 5.5 6 6.5 7 7.5 8 8.5
t [Minutes] %107

Figure 8. Validation of the mp1, mp2, and P2U1 simulation models of the composting process in

Experiment 2.

The system identification approach effectively modeled poultry litter composting un-
der high-mountain climate conditions, with the P2U1 process model achieving the highest
fit (75.89% in Experiment 2). The inaccuracies observed during the thermophilic phase
may be attributed to the biological complexity of the process, as microbial activity is highly
sensitive to variations in composting parameters such as aeration and moisture content.
These variations exhibit the need for adaptive modeling strategies that can effectively
address environmental variability and emphasize the importance of integrating real-time
environmental sensing. Overall, our study demonstrates the potential of using system
identification as a data-driven tool for optimizing composting processes in Cundinamarca,
Colombia without relying on complex biochemical models [7].

%104 Estimated Models
‘ . Validé,tion Data
4 - mhwl1:62.0%
=350 |
=
_~ Mesophilic | Thermophilic | Mesophilic
3 ~ phase phase phase ]

5 5.5 6 6.5 7 7.5 8
t [Minutes] x10°

Figure 9. Validation of the nonlinear simulation model of the composting process in Experiment 2.
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The use of system identification to effectively model poultry litter composting in the
high-mountain climate of Cundinamarca, Colombia offers a data-driven alternative to
complex biochemical models. Table 2 presents the comparative results of the dynamic
models evaluated under three experimental conditions. In Experiment 1, using 100% of the
data, the mp1 model achieved the highest fit (85.71%) and the lowest error values (RMSE:
0.581 °C, MAE: 0.432 °C), accurately capturing temperature dynamics under ideal data
conditions. The P2U1 model also performed well (fit: 84.4%), with slightly higher errors
but consistent accuracy. In contrast, the mp2 and mhw1 models demonstrated lower perfor-
mance, with reduced fits (55.59% and 69.63%, respectively) and higher error magnitudes.

Table 2. Model fit and error metrics.

Experiment 1 Experiment 1 Experiment 2
100% Data 50% Data 100% Data

Fit RMSE MAE Fit RMSE MAE Fit RMSE MAE
(%) (°C) (°C) (%) (°C) (°C) (%) °C) Q)

mpl 85.71 0.58134 0.43198 82.20 0.49413 0.39382 7.70 3.3404  2.9945

mp2 55.59  1.8067 15148 7753  0.62359 0.49329 64.11  1.2990 0.9837
mhwl 69.63 1.2354 1.0001  79.78 0.5613 0.41874 62.05 13736 1.1424

pP2U1 8448 0.6312 052305 8445 043174 0.33555 75.89  0.87271 0.64844

Models

When evaluated using only 50% of the data in Experiment 1, simulating sensor failure
or data scarcity, the P2U1 model outperformed all others (fit: 84.45%, RMSE: 0.432 °C,
MAE: 0.336 °C), demonstrating greater robustness and adaptability. Although the mpl1
and mhw1 models maintained acceptable performance, with fits of 82.20% and 79.78%,
respectively, their error metrics increased slightly, indicating reduced reliability under
limited data conditions. Interestingly, the mp2 model showed improved performance in
this case, but still did not surpass P2U1, particularly in overall accuracy and consistency.

In Experiment 2, where process variability was significantly higher, model perfor-
mance declined across the board. The mp1 model’s fit dropped sharply to 7.70% (RMSE:
3.340 °C, MAE: 2.995 °C), highlighting its limited adaptability. In contrast, the P2U1
model again led the results with a strong fit of 75.89% and relatively low errors (RMSE:
0.873 °C, MAE: 0.648 °C), confirming its ability to handle dynamic and uncertain com-
posting conditions. The mhw1 and mp2 models showed intermediate performance but
did not match the robustness of P2U1. These findings suggest that simpler models such as
mp1 perform well under stable and complete data conditions but struggle under variable
or incomplete scenarios; conversely, P2U1 remains accurate and reliable across a range of
operating conditions. Although it exhibited some limitations during the thermophilic
phase, the adaptability of a model to process variability is more critical for composting
systems located in high-mountain climates than achieving extreme accuracy in a specific
phase. Overall, these results demonstrate the potential of P2U1 for practical compost-
ing applications, and reinforce system identification as a promising tool for optimizing
processes in unpredictable environments.

Model performance was evaluated not only through fit and error metrics but also
through statistical residual analysis, specifically:

e The whiteness test; a good model has its residuals within the confidence interval of the
data obtained from the simulation model, with the exception of lag 0, which ensures
that the residuals are uncorrelated.

*  The test of independence; a good model has residuals that are uncorrelated with the
data, i.e., the residuals should not show a systematic pattern.
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Figure 10 presents the autocorrelation of the residuals and the cross-correlation be-
tween the residuals and the inputs based on the validation using 50% of the data from
Experiment 1. It is evident that the autocorrelation for the mp2 (red) and mhw1 (light blue)
models is the highest among all cases. A similar trend is observed in the cross-correlation
results, indicating that the residuals of these two models are significantly correlated with
the input data, which is an indication of poor model quality. The shaded band along the
x-axis represents the 99% confidence interval; correlations falling within this region are
considered statistically insignificant, provided that the lag values remain close to zero.
The figure illustrates that the residuals of the mp2 and mhw1 models exceed the confi-
dence bounds more frequently, suggesting the presence of structure in the residuals that
these models fail to capture. In contrast, the state-space model (mp1) (green) and process
model (P2U1) (purple) exhibit residual behaviors that fall mostly within the confidence
region, further supporting the better performance and adequacy of these models seen in

the previous evaluations.
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Figure 10. Residuals analysis, showing autocorrelation of the models with data from Experiment 1.

Finally, Figure 11 shows the autocorrelation of the residuals and cross-correlation
between the residuals and inputs for model validation using 100% of the data from Experi-
ment 2. The P2U1 process model and HW model exhibit the highest autocorrelation (red
and light blue, respectively); in contrast, the Hammerstein—-Wiener and state-space models
show higher cross-correlation than the mp1 and P2U1 models. The P2U1 model shows the
best fit to the experimental data. Composting processes involving microbial activity, heat
transfer, and organic matter degradation are complex due to variable feedstock, making
precise modeling challenging. Mechanistic models are often inflexible and data-intensive,
making them less suitable for decision-making than the data-driven approach provided
by system identification, which enhances accessibility and optimization [54]. The P2U1
model’s robust fit (75.89%) supports its integration into the IoT system (Figure 2) by embed-
ding its transfer function in a Raspberry Pi controller to adjust fan speed or heat exchanger
settings for thermophilic conditions. Based on simulations, the model predicts potential
aeration energy savings of 10-15%; however, these are simulation-based estimates and
require real-world validation through operational testing in the pilot plant [23].
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Figure 11. Residuals analysis, showing autocorrelation of the models with data from Experiment 2.

4. Conclusions

This study employed system identification to model the composting process in forced-
aeration piles under high mountain climates utilizing four techniques: three linear models
(state-space, process, and transfer function) and one nonlinear model (Hammerstein—
Wiener). The process model best captured the mesophilic phases, while the state space
model excelled in describing both mesophilic and thermophilic stages. Despite capturing
mesophilic behavior, the HW model showed limitations due to oscillations, while the trans-
fer function model underperformed overall. Validation with independent datasets revealed
the process model’s superior predictive accuracy, although none of the models adequately
described the thermophilic phase, likely due to environmental variability. This study’s key
contribution lies in demonstrating system identification as a robust data-driven alterna-
tive to traditional energy and mass balance approaches, enabling accurate modeling of
composting dynamics without extensive biochemical characterization. However, limita-
tions include the tested models’ focus on temperature, excluding moisture and ventilation,
and the use of identical substrates, which restricts generalizability. Future work should in-
tegrate these factors and explore adaptive or hybrid models in order to enhance robustness
and scalability.

This study provides practical ideas for sustainably handling waste in poultry farming.
Using the tested IoT setup, farmers can monitor key factors such as airflow and temperature
in real time, which helps to save energy and produce better compost. What stands out is
how flexible this method is; for instance, it can be adjusted to work with various materials
and climates, meaning that it is not limited to high-mountain areas. Finally, these models
can be easily integrated into existing composting processes, taking into account automated
tools that fit into modern agricultural systems. This approach enables informed decisions,
can predict when compost is ready with greater accuracy, and considers environmental
regulations, helping to make farming more sustainable.
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