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Abstract: The swift development of autonomous vehicles raises the necessity of semantically map-
ping the environment by producing distinguishable representations to recognise similar areas. To
this end, in this article, we present an efficient technique to cut up a robot’s trajectory into semanti-
cally consistent communities based on graph-inspired descriptors. This allows an agent to localise
itself in future tasks under different environmental circumstances in an urban area. The proposed
semantic grouping technique utilizes the Leiden Community Detection Algorithm (LeCDA), which is
a novel and efficient method of low computational complexity and exploits semantic and topometric
information from the observed scenes. The presented experimentation was carried out on a novel
dataset from the city of Xanthi, Greece (dubbed as Gryphonurban urban dataset), which was recorded
by RGB-D, IMU and GNSS sensors mounted on a moving vehicle. Our results exhibit the formulation
of a semantic map with visually coherent communities and the realisation of an effective localisation
mechanism for autonomous vehicles in urban environments.

Keywords: community detection; semantic segmentation; semantic mapping; graph-inspired de-
scriptors; Gryphonurban dataset; autonomous navigation

1. Introduction

Contemporary research provides modern autonomous systems with the ability to
semantically recognise and categorise regions or entities, as presented in [1,2]. An au-
tonomous system is one that can achieve a given set of goals in a changing environ-
ment—gathering information about its surroundings and working for an extended period
of time without human control or intervention. Driverless cars and autonomous mobile
robots (AMRs) used in warehouses are two common examples [3]. In this regard, the
interpretation of complex environments, such as urban scenes, constitutes a challenging
task, with disturbances from dynamic or obscured entities, leading to a growing interest in
the semantic segmentation and mapping of urban environments [2,4].

In addition, during the navigation of a vehicle within a residential area, entities that
contain important clues for humans should be detected and recognised. Furthermore,
Artificial Intelligence (AI) enhances the autonomous agents’ capabilities to semantically
perceive their environment and accurately recall spatial memories, contributing to the
fundamentals of cooperation between humans and robots or among multiple agents. There-
fore, autonomous platforms must maintain the cognitive ability to interpret locations and
extract semantic information to represent their environment correctly. The most appropriate
way to organize all this information relies on a semantic map, which corresponds to an
enhanced representation of the environment with high-level geometric information and
quality features.
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However, due to the dynamics and plethora of different entities in an urban scene,
the formulation of semantic communities requires thorough research, as it is currently
lacking in the field. In this paper, our methodology is visualised in Figure 1, establishing
the creation of undirected graphs with semantic and metric information to describe an
urban scene, contributing to the above segmentation. Specifically, our main contributions
that are important to the research community are presented below:

• A robust model to generate semantic communities in an urban challenging envi-
ronment based on a community detection algorithm of graph-inspired topometric
descriptors of observed entities;

• The creation of graph-based description vectors, for which we semantically segment
every input image and produce the corresponding descriptor in the form of an undi-
rected graph;

• A novel dataset recorded in the city of Xanthi, Greece, with a moving car that contains
distinct semantic regions with consistent visual information, in order to validate
our system.

Figure 1. Schematic representation of the procedural steps for the proposed system. Firstly, each
input image is semantically segmented, and a disparity map for each stereo image pair is computed.
Then, communities are detected by means of graph-based descriptors that include nodes representing
the designated entities and edges weighted by the L2-score between their centroids.

The rest of the paper is structured as follows. In Section 2, we discuss representative
works from the related literature. Section 3 contains a detailed explanation of our approach.
In Section 4, we present the procedure followed in order to form our novel Gryphonurban
dataset from the city of Xanthi, Greece, and we present the results of our experiments.
In Section 5, a useful discussion of our findings is provided, while in Section 6, we draw
conclusions and present our plans for future work.

2. Related Literature

In this section, two main different mapping approaches are utilised. The first one is
metric maps, retaining geometric information about the environment, while the second
one, namely the topological maps, represents the surroundings in the form of a graph
containing a set of regions interconnected with links. The combination of the above models
produces the so-called “topometric map” [5,6]. The first step in creating a topometric map
of the environment requires the calculation of similarity measurements between successive
camera measurements. The mechanisms for quantifying these similarities, in terms of the
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degree to which information is extracted, vary between different approaches; however,
three categories can be identified, namely image-based, histogram-based and Bag-of-Words
(BoW). Image-based techniques use pixel differences between consecutive images to detect
any change in a scene. In histogram-based methods, the images are compared using feature
statistics [7]. Finally, the Bag-of-Words model is the standard approach for simplifying
visual representations and similarity statistics [8]. Topometric maps, by means of clustering
algorithms, are utilised to categorize the different indoor regions in the corresponding
clusters [9]. Besides, multiple sources of information can be exploited towards a robust
topometric semantic map suitable for street-moving vehicles’ trajectories [4]. The final
map combines low-cost yet less accurate semantic information from satellite images with
more detailed data from street-view camera measurements. The traditional definition
of occupancy grids has been extended to that of a semantic occupancy grid [10], which
encodes the presence or absence of an object category at each grid location. The main
objective of such a representation is to predict the probability that each semantic class
presents at each location in a topometic birds-eye-view map [11]. In addition, other works
propose and evaluate a learning-based architecture to perform semantic segmentation,
place categorisation and topometric mapping on occupancy grid maps [12].

A semantic map provides an enriched description of the environment intended for
advanced navigation, fine planning and robust localisation [1,13]. Besides, semantic maps
have been proposed as an information tool for land planning and pasture management [14].
Existing works [15,16] have revealed that high-level semantic features provide a more
robust representation of the scene as they incorporate the information of object properties
and their mutual relationships. Hence, they are able to successfully deal with global locali-
sation under extreme appearance changes [15]. Lightweight mapping methods have been
proposed to organize environmental objects’ semantic and geometric properties through a
topological graph. On that basis, a robust localisation based on the graph description of the
semantically segmented local scene is built, called an object-level Topological Semantic Map
(OLTSM) [17]. Some additional works, such as [18,19], utilise sequential data throughout
a trajectory to identify different regions within it, while semantic place partitioning is
achieved through a learned vocabulary combined with both spatial and temporal informa-
tion [20]. Moreover, a quad-tree method to decompose the environment into cells and a
spectral clustering technique to group them into semantic regions is presented in [21]. The
identification of intersections and terminal points within an occupancy grid provides the
means for segmenting metric maps into semantic regions [22]. The method proposed in [23]
was based on the Single-Linkage (SLINK) agglomerative algorithm [24]. This unsupervised
and incremental approach allows an autonomous system to learn about the organisation of
the observed environment and localisation within it. Lastly, Census Transform Histogram
(CENTRIST) and GIST descriptors were used to apply an unsupervised approach with
a Self-Organising Map for classification [25]. Essentially, these approaches are based on
detecting distinct segments in the robot’s trajectory by exporting local features from each
input image in order to achieve localisation with respect to the recognised regions. Never-
theless, even though their effectiveness was proven for indoor environments, they have
not been tested in more dynamic urban scenes (containing many dynamic entities such as
pedestrians, moving vehicles, traffic lights, changing terrain, etc.). Therefore, the successful
formulation of semantic communities in urban areas is still an open challenge. Creating
graph-based descriptors is an innovative solution to achieve accurate outdoor localisation,
and [26,27] were based on the created graphs, achieving high performance.

3. Approach

In this section, our approach to creating semantic communities in an outdoor environ-
ment is detailed by describing the selected technique for representing the input images,
as well as the algorithm for clustering the feature vectors according to their similarity.
Unlike other information mechanisms, such as visual word histograms, the proposed
graph-inspired descriptor leverages semantic and topometric information from the environ-
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ment. Hence, the first step of the proposed method is the semantic recognition of entities
and the computation of their full pose relative to the world coordinate frame. Then, the
above information is used to generate representative descriptors from each input image,
fed into a community detection approach to generate a semantic map of the robot’s route.
To evaluate our method, we created an image dataset from a vehicle’s trajectory in the
streets of the town of Xanthi.

3.1. Generation of Graph-Based Descriptors

In order to achieve the semantic segmentation of the obtained images while empha-
sising high applicability and low computational complexity, we adopt the open-source
SegNet [28] architecture, which is widely acknowledged in such applications [29]. This
network is pre-trained on the CamVid dataset [30] on the following class labels: sky, building,
road, tree, side-walk, pole, road marking, bicyclist, sign symbol, car, person and unlabelled. The
trained SegNet model is utilised to infer our Gryphonurban dataset, achieving a mean Inter-
section of Union (mIoU) accuracy (inference accuracy) of 62%. Throughout, the input of
this network is a 360× 480 frame; thus, each recorded image is converted to the respective
size. Furthermore, discrete entities from each semantic class are detected by applying the
Moore–Neighbour detection algorithm [31], modified by Jacob discontinuity criteria, over
the segmentation outcome, resulting in a set E of e different entities. The semantic results
of the Gryphonurban imagery indicate that a maximum of two entities per semantic class is
located in every scene. Additionally, in order to incorporate topological information into
our proposed descriptors, each processed image is divided into two parts, namely the right
(r) and the left (l), as shown in Figure 1. Thus, each of the detected entities is assigned to
one of the above sections, based on the majority of its pixels. The road class is constantly
assigned to r since no more than one instance per frame is detected for the whole dataset.

The process of localising semantic entities from a running vehicle requires the extrac-
tion of depth information and the 6DoF position of the respective camera sensor. Depth
data can be obtained via various approaches, such as the ones in [32,33]. Our visual imagery
dataset was created by utilising a basic set-up comprising a stereo camera rig and a GNSS
sensor, associated with the recorded image stream. Therefore, due to its low computational
complexity, we compute the disparity measurements based on the Semi-Global Matching
(SGM) method due to its low computational complexity [34]. With the above information,
the position of each semantic entity is calculated according to the procedure described
in [34].

As the robot explores a new environment, each scene is described through metric and
semantic information. Specifically, each image captured from the robot’s path is interpreted
in the form of an undirected graph. Therefore, for each semantic entity in every scene, we
compute its centroid in the 3D world (cme). Graph nodes represent semantic entities (cme),
while edges are weighted by the Euclidean distance between them. Thus, the proposed
descriptor includes k = 2 · e nodes, while the multitude of edges is equal to k·(k−1)

2 . In
addition, each node receives a binary value (0 or 1), depending on its topological position
in relation to the vehicle (left or right, respectively). Figure 1 exhibits the resulting graph
for each street-view frame, which can be interpreted as a square matrix Ds. The values of
the main diagonal of Ds denote the aforementioned topological position. Each descriptor
is retained as a sparse matrix to account for the fact that the existence of each class is not
always guaranteed, ensuring memory efficiency. Finally, the description vectors are created
by a vectorisation process. Algorithm 1 describes the above procedure for generating
graph-inspired description vectors (Dv).

The next step of our approach refers to the calculation of similarity values among the
recorded images through the computed Dv. Specifically, we base this procedure on the
similarity L2-score [35]:

W = 1− 0.5 · ||D̄v1 − D̄v2||2, (1)

where D̄v1 and D̄v2 denote L2 normalised unit vectors. This normalisation is applied to
constrain the effect of certain regions containing significantly more semantic entities than
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others. Score W ∈ [0, 1] quantifies the similarity among graph-based description vectors D̄v,
with higher values indicating increased semantic and topometric correlation. Subsequently,
we shape a similarity matrix M quantifying the degree of resemblance among all recorded
frames, which is further utilised to deduce whether the related images belong to the same
community.

Algorithm 1: Pseudocode algorithm for the creation of the proposed graph-
based description vector.

1 Input: A: l or r labels and e: number of entities
2 Output: Dv description vector
3 for t1 = 1, 2, . . . e do
4 if A(t1) ==‘l’ then
5 Ds[t1, t1]← 0
6 else
7 Ds[t1, t1]← 1
8 end if
9 for t2 = t1, 2, . . . e do

10 de ← ||cme(t1)
− cme(t2)

||2
11 Ds[t1, t2]← de
12 end for
13 end for
14 Dv ← vec(Ds) // vectorisation of Ds

3.2. Generation of Semantic Communities

Matrix M contains the information regarding the complete similarity structure of the
executed route. At this point, we need to emphasise that our goal is to group coherent
trajectory regions. Thus, the whole matrix is converted into a new graph, the nodes of
which correspond to images and the edges to their similarity scores. Then, clustering is
achieved through the LeCDA [36] due to its thoroughly explored communities, which
guarantees strong connections among the contained nodes. In our previous works [9,37],
a predecessor of LeCDA was utilised for a similar task, namely the Louvain Community
Detection Algorithm (LaCDA) [38]. However, as described in [36], the LaCDA may lead to
disconnected communities, where two or more clusters co-exist in a community without
sharing any edges. To this end, instead of directly aggregating nodes to a new level, Leiden
integrates a refinement phase to evaluate the consistency of the formed communities. In
addition, adopting a fast local move algorithm for node movement among the communities
contributes to speeding up the whole process. The crucial objective of both algorithms is to
achieve maximum modularity, which is used to measure the strength of dividing a network
into communities. The modularity is calculated as follows:

H =
1

2m

1

∑
c
(ec − γ

K2
c

2m
), (2)

where ec is the number of edges in the community c, m is the total number of edges in the
network, γ > 0 is a resolution parameter that expresses the number of communities that
will be formed and Kc is the sum of the edges in the community c. According to [36], γ > 0
is a resolution parameter, where higher resolutions lead to more communities, while lower
resolutions lead to fewer communities. In our work, we based the selection of γ on the work
of [39], who analysed the Hamiltonian function and its different parameters. Each node be-
longs to the community that yields the maximum modularity value. This phase is repeated
until local maximum modularity is achieved, and then, all the communities are reduced to
vertices, creating a new graph. By means of LeCDA, the images are clustered into multiple
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community configurations, each of which is associated with a particular modularity value.
We choose maximum modularity to produce the best possible segmentation.

4. Results

In this section, our approach is extensively evaluated for the accuracy of the exper-
imental setup that makes up the proposed technique through the Gryphonurban dataset.
Secondly, comparative results are presented among the proposed graph-based descriptors,
with different similarity metrics and SURF, SIFT and ORB features for the two community
detection algorithms.

4.1. Gryphonurban Dataset Formulation

In order to effectively evaluate our system, samples from an outdoor environment are
required with distinctive semantic regions. To achieve that, we recorded a novel dataset
from an urban area located in Xanthi. The Gryphonurban dataset (https://robotics.pme.
duth.gr/research/gryphon_urban/ (accessed on 9 September 2022)) was recorded from
a moving vehicle while driving around the city, obtaining a few thousand frames. We
implemented one route within the city during the morning of a sunny day, resulting
in about 1500 street-view images. Our camera system and post-processing reflect the
current state-of-the-art in the automotive domain. RGB images were recorded with an
automotive-grade 12 cm baseline stereo camera and a focal length of 2.5 mm with 97◦

HFOV. Each stereo image pair was subsequently debayered and rectified. We relied on [40]
for extrinsic and intrinsic calibration. The resulting images were visually more pleasing
and proved easier to annotate. The frame rate of the camera is 48 fps. This dataset contains
8868 unlabeled images captured at three different times in a day. Moreover, 291 semantic
labeled images were randomly selected from the dataset. The size of each image file
is 640 × 480 pixels, while the file is associated with geolocation details. The Robotics
Operation System (ROS) Melodic version implemented the image-capturing procedure.
The trunk of our vehicle housed a Single Board Computer (SBC) with an Intel Core 2 Duo
processor, a shockproof hard disk with a storage capacity of 250 GB and a smartphone with
the Share GPS application installed. Every image in our dataset is assigned its respective
vehicle velocity and GNSS data, recorded by the Share GPS application and synchronised
through ROS. The traversed route was 10 km, and the execution time was calculated at
45 min with an average vehicle velocity of 40 km/h. Figure 2 visualises the route’s overview,
highlighted with a blue line.

Figure 2. Visualisation of the proposed Gryphonurban dataset, together with the hardware set-up
and vehicle used for its creation. Additionally, some images from the route with the corresponding
semantic information are presented.

https://robotics.pme.duth.gr/research/gryphon_urban/
https://robotics.pme.duth.gr/research/gryphon_urban/
https://robotics.pme.duth.gr/research/gryphon_urban/
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4.2. Performance Evaluation

First, our final system was tested in relation to the achieved performance of community
detection. The selected measurement refers to the percentage of robot observations assigned
to the proper community according to a manually created ground-truth map (see Figure 4,
semantic areas 1, 2, 3 and 4). In order to conclude the proposed clustering process, several
testing scenarios were performed. Specifically, the choice of the LeCDA was compared
against the LaCDA one, evaluating the robustness of the exported semantic communities.
The modularity value of LaCDA ∆Q is computed for all neighbouring communities:

∆Q =

(
∑in +ki,in

2m
−
(

∑tot +ki
2m

)2
)
−(

∑in
2m
−
(

∑tot
2m

)2
−
(

ki
2m

)2
)

,

(3)

where ∑in is the sum of the links’ weights within the community to which the node i is
assigned, ∑tot is the sum of the links’ weights associated with the nodes in the community,
ki,in is the sum of the weights of the links from node i to the rest of the community, ki is
the sum of the link’s weights incident to node i, and m is the sum of the link’s weights in
the network.

In order to emphasise the robustness of the graph-based descriptors for creating
semantic communities, further experiments were conducted related to the performance
of the proposed description vectors’ structure. Specifically, to finalise the form of graph-
inspired descriptors, as analysed in Section 2, four different cases were developed:

Case 1: In this format, the proposed descriptor includes k = 2 · e nodes, while the
multitude of edges is equal to [ (k·(k−1))

2 ] as discussed in Section 2. The value of each vector
is assigned with 0 or 1, depending on the existence or absence of an entity. Therefore, no
metric information is included among the semantic entities.

Case 2: This case is analysed in Section 3.1. The resulting size of the generated
description vectors is similar to Case 1; however, the edges of the graph are weighted by
the Euclidean distance among the entities’ centroids.

Case 3: This case is similar to the above Case 2, except that we set each component of
the main diagonal of the matrix to be equal to 0 in order to assess the effect of topological
information in the description.

Case 4: In this case, the camera position is taken as the origin, and each centroid is
assigned to a 3D vector from the origin. Similarly, the edges of the graph are weighted by
the Euclidean distance among the entities and camera centroids.

Moreover, several types of similarity measurements for the generation of the cor-
responding weights, which are used in the respective community detection algorithm,
were also evaluated: (i) L2-score, (ii) Sum of Absolute Differences (SAD) similarity and
(iii) Jaccard index. Below, the SAD and Jaccard similarity measurements’ formulas are
presented, whilst for the L2-score, Equation (1) is applied in the converted unit vectors [41]:

S = 1− ∑
(i)∈Dv

|Dv1[i]− Dv2[i]|, (4)

J =
|Dv1

⋂Dv2|
|Dv1

⋃Dv2|
, (5)

where Dv1 and Dv2 represent the graph-inspired descriptors. For the computation of J,
the Dv is the set of Dv descriptor’s values, which are converted to binary form, in which
entities’ existence is represented by 1, while no knowledge about their topology is included.

Table 1 shows the percentage of accurately clustered database instances to the proper
community, as indicated by the ground-truth. More specifically, comparative results are
presented among the Case 1, Case 2, Case 3 and Case 4 proposed graph-based descriptors,
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with different similarity metrics for the two community detection algorithms. As can be
seen, the LeCDA combined with the L2-score in Case 2 achieves the highest accuracy,
justifying our proposal for incorporating semantic, metric and topological information
into a single descriptor. Figure 3 depicts the corresponding similarity matrices produced
via score measurements from the most prominent graph-based descriptors’ Case 1 and
Case 2 in comparison with Case 3 and Case 4. Finally, the performance of our proposal is
compared against the corresponding accuracy of the SURF [42], SIFT [43] and ORB [44]
descriptors. Note that we chose to compare with the ORB, SIFT, SURF algorithms, which,
similar to our descriptor, do not require any training for their creation. Hence, for each case
of the above-mentioned descriptors, we generate the corresponding BoW and a description
histogram for every obtained camera frame. Then, we calculate the W scores among these
vectors by applying Equation (1), and we create a similarity matrix to use within the LeCDA
and LaCDA.

Table 1. Comparative accuracy (%) results of clustered ground-truth images in each semantic area
for different experimental set-ups in Case 1, Case 2, Case 3 and Case 4. Table entries marked with
“-” correspond to communities that are not detected. The higher performance rates are represented
in bold.

LeCDA LaCDA

Semantic Areas 1 2 3 4 1 2 3 4

Case 1

L2-score 25% 67% 60% 51% 34% 56% 62% 49%

Jaccard 20% 50% 30% 51% 23% 15% 40% -

SAD 31% 75% 62% 32% 22% 79% 58% 45%

Case 2

L2-score 55% 100% 92% 71% 42% 60% 74% 56%

Jaccard 20% 50% 30% 51% 23% 15% 40% -

SAD 49% 88% 76% 32% 31% 85% 67% 48%

Case 3
L2-score 20% 59% 60% 50% 34% 56% 62% 45%

Jaccard 20% 50% 26% 51% 23% 15% 37% -

SAD 27% 73% 60% 30% 18% 75% 55% 39%

Case 4

L2-score 22% 65% 60% 51% 30% 50% 60% 49%

Jaccard 18% 47% 28% 51% 23% 15% 40% -

SAD 30% 75% 60% 31% 20% 77% 58% 45%

(a) (b)

Figure 3. Similarity matrices produced through (a) Case 1 and (b) Case 2.

Subsequently, Table 2 similarly shows the percentage of accurately clustered database
instances to the proper community, as indicated by the ground-truth. More specifically,
comparative results are presented among the proposed graph-based descriptors (Case2),
with different similarity metrics and SURF, SIFT and ORB features for the two community
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detection algorithms. As can be seen, the LeCDA combined with the L2-score achieves
high accuracy, justifying our proposal for incorporating semantic, metric and topological
information into a single descriptor. On the contrary, hand-crafted features present low
performance, as their discriminative capabilities are not sufficient to capture the com-
plexity of an outdoor environment. Figure 4 visualises the semantic resulting maps for
each experiment.

Table 2. Comparative accuracy (%) results of clustered ground-truth images in each semantic area for
different experimental set-ups. Table entries marked with ”-” correspond to communities that are not
detected. Throughout, 0% performance indicates communities that are included but not recognised
according to the ground-truth. The higher performance rates are represented in bold.

LeCDA LaCDA

Semantic Areas 1 2 3 4 1 2 3 4

Ours
(Case 2)

L2-score 55% 100% 92% 71% 42% 60% 74% 56%

Jaccard 20% 50% 30% 51% 23% 15% 40% -

SAD 49% 88% 76% 32% 31% 85% 67% 48%

SURF 20% - 20% 0% 22% 0% 15% 0%

SIFT 49% 20% 32% 20% 41% 10% 36% 18%

ORB 16% 0% 22% 0% 19% 0% 15% 0%

Figure 4. Mapping results produced for different community detection setups, as compared to the
ground-truth. Cases (i), (ii) and (iii) arise from the implementation of graph-inspired descriptors,
with (i) being produced through the L2-score, (ii) through the SAD-based similarity and (iii) through
the Jaccard index. The semantic maps visualised in (ivA, ivB), (vA, vB) and (viA, viB) are extracted
via SURF, SIFT and ORB descriptors, respectively.

5. Discussion

The ability to construct a map from a moving robot is essential for performing au-
tonomous tasks and has been extensively studied according to the literature. Creating
maps allows the robot to develop autonomous skills such as navigation, interaction with
the environment and self-localisation, among others. The scientific community has focused
on modern approaches to representing the environmental map in recent decades. Currently,
the scientific community is becoming increasingly interested in so-called semantic solutions,
which incorporate geometric information and semantic knowledge. Understanding the se-
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mantics of the human environment is the key to robots being truly integrated into everyday
life. In general, ground-based robots that are capable of scheduling tasks usually combine
semantic knowledge in their maps (e.g., categorising places, such as rooms, corridors, or
gardens, and object labels). It is known that urban environments are especially challenging
and require efficiency and robustness. The generation of semantic maps contributes to the
solution of the above-mentioned problem, as their creation is based on the understanding
of the environment by the robot, which resembles human comprehension. Therefore, with
this work, we aim for every autonomous moving robot to recognize each area it encounters
and to know the entities that exist in them so that it is able to move and localize correctly
in a dynamic environment. To this end, it is necessary to properly organise knowledge
in a methodological way so that it can be retrieved in a natural associative way by the
robot, facilitating communication with humans or other agents. We hope that the creation
of the proposed system will be one of the main applications of autonomous vehicles in
the future. In general, in any case where GNSS is not available, the current system can
be used to provide full localisation. For the creation of our proposed integrated system,
initially, an unsupervised technique for semantic clustering and localisation was described.
The available visual and odometry data were combined in Louvain or Leiden community
detection algorithms to produce the topological map of a previously unexplored environ-
ment. However, environmental and road conditions can affect the created city-spaces. In
this work, we made use of the part of the dataset that had been taken during the morning
hours, considering that the lighting was sufficient for the entities’ recognition. In order to
reduce the effect of such conditions, the image segmentation mechanism needs to be trained
over multiple environmental conditions in order to provide the necessary generalisation
capabilities. Another challenge remains with objects of the same category placed too close
to each other. A possible solution to address those cases would be to adopt probabilistic
methods that only accept correlations with high confidence and suspend these candidates
until subsequent detections confirm their assignment.

6. Conclusions

In this article, a novel technique for generating semantic communities in outdoor
challenging scenery is presented, based on the description properties we exploited through
semantic and topometric information from a recorded scene. Our proposed descriptors
achieve highly accurate and competitive results due to the realisation of the urban scenes
into a graph-based representation of observed entities. Owing to their high fidelity and
the inherited cityscape potentiality, the proposed descriptors are suitable for use in urban-
related autonomous driving pipelines in order to confront complex applications, such as
last-mile delivery. In our future work, we plan to expand our method into a condition-
invariant representation by adopting image segmentation mechanisms capable of accom-
modating different lighting and environmental conditions to endow the method with the
robustness required for the target applications.
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Abbreviations

The following abbreviations are used in this manuscript:

mIoU Mean Intersection of Union
SLINK Single Linkage
SAD Sum of Absolute Differences
ROS Robotic Operation System
SBC Single Board Computer
SGM Semi-Global Matching
LD Census Transform Histogram
OLTSM Topological Semantic Map
BoW Bag-of-Words
LaCDA Louvain Community Detection Algorithm
LeCDA Leiden Community Detection Algorithm
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