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Abstract: This paper provides the theoretical foundation for the approximation of the regions of
attraction in hyperbolic and polynomial systems based on the eigenfunctions deduced from the
data-driven approximation of the Koopman operator. In addition, it shows that the same method
is suitable for analyzing higher-dimensional systems in which the state space dimension is greater
than three. The approximation of the Koopman operator is based on extended dynamic mode
decomposition, and the method relies solely on this approximation to find and analyze the system’s
fixed points. In other words, knowledge of the model differential equations or their linearization is
not necessary for this analysis. The reliability of this approach is demonstrated through two examples
of dynamical systems, e.g., a population model in which the theoretical boundary is known, and a
higher-dimensional chemical reaction system constituting an original result.

Keywords: regions of attraction; extended dynamic mode decomposition; Koopman operator;
nonlinear systems

1. Introduction

The analysis of nonlinear systems often focuses on the stability of the fixed point or
equilibrium point of the system, especially the global stability of this unique point. When
the fixed point is not unique, the concept of the region of attraction (ROA) is as important
as the stability of the point. In general terms, the ROA represents the extent to which
a disturbance can drive the system away from a stable equilibrium point so that it can still
return to it. In other words, the ROA indicates from which initial conditions the system
converges to a stable point. This analysis is useful in biological or ecological systems, where
there are several equilibrium points in which one or all species vanish, and other points
where the species coexist [1,2].

There are traditional techniques for approximating the ROA of asymptotically stable
equilibrium points, such as the computation of the level sets of a local Lyapunov function [3],
the backwards integration of systems from saddle equilibrium points to approximate the
boundary of the ROA [4], or the computation of the level sets of a local energy function,
similar to the Lyapunov approach. As local energy functions are constant along the
trajectories of the system, they can provide the stable manifold of the saddle points in
the boundary. Consequently, these stable manifolds form the whole boundary of the
ROA [4]. Among these techniques, integrating the system back from the saddle points in
the boundary does not require knowledge of the local Lyapunov (or energy) function of the
system, and provides a less conservative approximation.

All the above methods rely upon the explicit knowledge of a mathematical model,
i.e., a set of differential equations that result from mathematical modeling and parameter
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identification methods [5–7], and backward and forward integration require that the system
be backwards-integrable.

In this paper, we propose a data-driven approach based solely on information gathered
either from the collection of experimental data from a physical system or the numerical
integration of an existing numerical simulator of arbitrary form and complexity. If experi-
mental data are available, there is no need to derive a mathematical model or identify the
model parameters. Such data, along with numerical methods, allow the approximation of
the Koopman operator, which has a set of eigenfunctions that can be used to approximate
the ROA [8,9]. Rather than describing the time evolution of the system states, the Koopman
operator describes the evolution of the eigenfunctions [10]. Analyzing these eigenfunc-
tions allows identification of invariant subspaces that acquire specific characteristics of a
dynamical system. For example, if an eigenfunction has an associated eigenvalue equal to
one, the value of this function is invariant along the trajectories of the dynamical system.
As a consequence, an eigenfunction with an associated eigenvalue equal to one defines an
invariant subspace useful for capturing specific characteristics of the dynamical system.

A number of recent studies [11–14] have pointed out that eigenfunctions that have
an associated eigenvalue equal to one are useful for nonlinear system analysis. However,
they do not formalize the characteristics of these functions theoretically in order to perform
the analysis. In [11], the authors use time averages of observables, i.e., the average of
arbitrary functions of a trajectory of the state from a particular initial condition. These
functions converge to the unitary (or near unitary) eigenfunction, and as such their level
sets provide visual information on the state space partition. This procedure provides
insight into the partition of the state space in two-dimensional systems or slices of three-
dimensional ones. However, this analysis does not provide a criterion for obtaining the
partition of the state space, as it only provides visual information, and this is the reason it
is limited to low-dimensional systems. In addition, for calculation of the time averages, it
is necessary to have the solution (or numerical integration) of the difference/differential
equations from every point of the state space under consideration in order to obtain the
graph depicting the level sets. Another notable approach is that from [13], which uses the
isostables of a system. An isostable of a stable equilibrium point is a set of initial conditions
with trajectories that converge synchronously to the attractor, that is, their trajectories
simultaneously intersect subsequent isostables along a trajectory that converges to a stable
point. Here, the definition of isostability is taken from the magnitude of the slowest
Koopman operator eigenfunction, the level sets of which provide the isostables. Another
important contribution in [14] is a global stability analysis and the approximation of the
region of attraction based on spectral analysis of the Koopman eigenfunctions. The global
stability analysis comes from the zero-level sets of the Koopman eigenfunctions related to
the Koopman eigenvalues, for which the real part is less than zero. The approximation of
the region of attraction is taken from the traditional analysis of Lyapunov functions, which
are built upon the same Koopman eigenfunctions and eigenvalues as in the global stability
analysis. To obtain these eigenfunctions and eigenvalues, the authors used a numerical
method based on Taylor and Bernstein polynomials, where it is necessary to know the
analytic vector field of the system. Similar to the Lyapunov and energy function-based
methods, these methods require calculation of the level sets of a particular function, which
yields the same problems with regarding the classification of an arbitrary initial condition
in higher dimensional spaces.

Probably the most notable contribution that comes close to developing a purely data-
driven technique is from Williams et al., with their development of the extended dynamic
mode decomposition algorithm [9]. The authors provide more insight into the determina-
tion of the ROA for the particular case of a Duffing oscillator with two basins of attraction,
and analyze the leading (unitary) eigenfunction to determine which basin of attraction a
point belongs to. The criterion for this classification is the use of the mean value of the
unitary eigenfunction as a threshold. Subsequently, the authors parameterize the ROA by
recalculating an approximation of the Koopman operator on each basin. Even though the
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development in [9] shows an accurate procedure for obtaining the ROA in the particular
case of the Duffing oscillator, there are issues that are not covered in this development.
For instance, there is no guarantee of the existence of unitary eigenfunctions when using
the approximation methods of the Koopman operator. When a unitary eigenfunction is
present, it is often trivial, i.e., the function value is constant in the whole state space, and as a
consequence it does not provide information about the system. Furthermore, ROA analysis
methods based on the fixed points of the system rely on the model equations and their
linearization to determine the location and stability of the fixed point. Moreover, while
the mean value of the unitary eigenfunction may work in the particular case of the Duffing
oscillator, it is not a generalized criterion. Hence, it may not work for other types of systems,
and guidelines on how to generalize it to higher-dimensional systems are lacking.

In this study, the above-mentioned problems are addressed, resulting in the follow-
ing contributions:

• The development of an algebraic condition, rather than a complex geometric analysis,
to determine the region of attraction based on a set of unitary eigenfunctions. This
result is supported by theorem (i.e., Theorem 2 in the following and its proof);

• The proposal of an approach which is purely data-driven, i.e., all the necessary in-
formation comes from the approximation of the Koopman operator, including the
location and local stability of the fixed points;

• The proposal of an approach which is suitable for analyzing higher-dimensional
dynamical systems (i.e., those with dimensionality greater than three).

The rest of this paper is organized as follows. The next section introduces the main
concepts, namely, the region of attraction, Koopman operator theory, and extended dynamic
mode decomposition algorithm. Section 3 presents and discusses the main contribution
of this study, i.e., a numerical procedure for evaluating the regions of attractions based
on the EDMD and the calculation of eigenfunctions associated with unitary eigenvalues.
Next, The methodology is applied to two examples in Section 4, namely, a population
model and a higher-dimensional chemical reaction system. In both cases, the data are
provided by numerical simulation of a model; however, we stress here that the procedure
is applicable to experimental data as well, provided that any such data are available in
sufficient numbers to secure a sufficiently accurate approximation. The last section is
devoted to our concluding remarks and future research prospects.

The notations A> and A+ are the transpose and pseudoinverse of a matrix, respec-
tively, where A ∈ Rn×n.

2. Basic Concepts and Methods
2.1. Regions of Attraction

Consider a nonlinear dynamical system (M; T(x); k) in discrete time with state vari-
ables x ∈ M, whereM⊆ Rn is the nonempty compact state space, k ∈ Z+

0 is the discrete
time, and T : M→M is the differentiable vector-valued evolution map, i.e.,

x(k + 1) = T(x(k)), x0 = x(0). (1)

The solution to (1) is the successive application of T from an initial condition x0 ∈ M
at k = 0, i.e., xk = Tk(x0) ∈ M, which is an infinite sequence called a trajectory of the
system. Suppose x∗ ∈ M is a fixed point of (1), i.e.,

Tk(x∗) = x∗. (2)

The linearization principle defines the local stability of hyperbolic fixed points, i.e., points
that satisfy the Hartman–Grobman theorem [3,15]. This principle states that a fixed point
x∗s is asymptotically stable if the modulus of all the eigenvalues of the Jacobian matrix
evaluated at the fixed point is less than one, and unstable otherwise. Additionally, the
type-k of a hyperbolic fixed point is defined as the number k of eigenvalues with a modulus
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greater than one. If only one eigenvalue has a modulus greater than one, the fixed point x∗

is a type-1 point. When the index k of unstable fixed points is equal to or greater than one
and less than n the fixed point is called a saddle, denoted by x̂∗. The type-1 saddle points
play an important role in the approximation of the ROA.

Eigenvalues λ have a corresponding eigenvector Eλ that spans the eigenspace associ-
ated with the eigenvalue. For eigenvalues with a modulus smaller than one, the direct sum of
their eigenspaces is the generalized stable eigenspace of a fixed point, i.e., Es = ⊕E|λ|<1. Con-
versely, for eigenvalues with a modulus greater than one, the direct sum of their eigenspaces
is the generalized unstable eigenspace of a fixed point, i.e., Eu = ⊕E|λ|>1. The type of
hyperbolic fixed point defines the dimension of the corresponding eigenspaces, Eu ∈ Rk

and Es ∈ Rn−k. The state space Rn is the direct sum of the two invariant stable and unstable
eigenspaces Rn = Es ⊕ Eu.

As the Hartman–Grobman theorem establishes a one-to-one correspondence between
the nonlinear system and its linearization, it is locally the case that the stable and unstable
eigenspaces are tangent to the unstable and stable manifolds of the hyperbolic fixed point.
The definitions of these manifolds are

Wu(x∗) = {x ∈ Rn : lim
k→−∞

Tk(x) = x∗}, (3)

Ws(x∗) = {x ∈ Rn : lim
k→∞

Tk(x) = x∗}, (4)

for the unstable and stable manifold of a fixed point, respectively, assuming that an inverse
for the backward flow exists for Tk.

Prior to statement of the theorem characterizing the ROA of an asymptotically stable
point, we denote the ROA of the fixed point as RA(x∗s ) and the stability boundary as
∂RA(x∗s ). From the definitions of the unstable and stable manifolds (3) and (4), any system
under analysis must satisfy the following three assumptions:

A1: All the fixed points on ∂RA(x∗s ) are type-1.
A2: The Wu(x∗) and Ws(x∗) of the type-1 points on ∂RA(x∗s ) satisfy the transversal-

ity condition.
A3: Every trajectory that starts on ∂RA(x∗s ) converges to one of the type-1 points as

k→ ∞.

Remark 1. Manifolds A and B inM satisfy the transversality condition if the intersection of the
tangent spaces of A and B span the tangent space ofM.

For any hyperbolic dynamical system that satisfies assumptions (A1–A3), the region
of attraction of an asymptotically stable point is,

Theorem 1 ((Th. 9-(10,11)) in [4]). Consider the dynamical system (1) and assume that it satisfies
assumptions (A1–A3). Define {x̂∗i }

P
i=1 as the P type-1 hyperbolic fixed points on the boundary, that

is, the stability region of an asymptotically stable fixed point. Then,

1. x̂∗i ∈ ∂RA(xs) ⇐⇒ Wu(x̂∗i ) ∩ RA(x∗s ) 6= ∅
2. ∂RA(x∗s ) = ∪Ws(x̂∗i ).

Hence, the stability boundary is the union of the type-1 hyperbolic fixed points’ stable
manifolds on the stability boundary.

Remark 2. Assumption (A1) is a generic property of differentiable dynamical systems, while
assumptions (A2) and (A3) must be verified.

2.2. Basics of Koopman Operator Theory

Consider a set of arbitrary functions of state, the so-called “observables” f (x) : M→ C
for system (1), that belong to some function space, i.e., f (x) ∈ F . There is a discrete-time
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linear operator Uk, the Koopman operator, which defines the time evolution of these
observables, i.e., [

Uk f
]
(x) = f

(
Tk(x)

)
. (5)

The left-hand side of (5) is the time evolution of the observables, while the right-
hand side is the time evolution of the state subsequently evaluated by the observables.
The Koopman operator is linear but infinite-dimensional, and some form of truncation to a
finite-dimensional approximation is required in practice, thereby introducing a trade-off
between accuracy and dimensionality.

The linear operator has a spectral decomposition of tuples {(µi, φi(x), vi)}∞
i=1 of eigen-

values, eigenfunctions, and modes. The eigenvalues and eigenfunctions satisfy the con-
dition that the corresponding eigenvalue determines the dynamics or time evolution of
a specific eigenfunction

[Ukφi](x) = µk
i φi(x), (6)

and the modes map the linear evolution of eigenfunctions (6) into the original observables
by weighting the eigenfunctions

f (x) =
∞

∑
i=1

viφi(x). (7)

The importance and advantages of the Koopman operator and the diagonalization
provided by the spectral decomposition are highlighted by Equations (6) and (7). Hence,
the evolution of observables with respect to the spectral decomposition of the Koopman
operator is

f
(

Tk(x)
)
=
[
Uk f

]
(x) =

∞

∑
i=1

viµ
k
i φi(x). (8)

2.3. Extended Dynamic Mode Decomposition Algorithm

The objective of the EDMD algorithm [9] is to obtain a finite and discrete-time approx-
imation of the Koopman operator based on sampled data of the underlying dynamical
system [16,17].

The EDMD algorithm that approximates the discrete-time Koopman operator of (1)
requires N pairs of snapshot data, either from the numerical solution of an existing mathe-
matical model or from experimental measurements at a specific sampling time ∆t. The sets
of snapshot pairs {(xi, yi)}N

i=1 satisfy the relationship yi = xi+1 = T(xi) and their definition
in matrix form is

X =
[
x1 x2 · · · xN

]
, Y =

[
y1 y2 · · · yN

]
. (9)

The “extended” part of the EDMD algorithm consists in the approximation of the
Koopman operator on a “lifted” space of the state variables, rather than approximating the
state space as in the dynamic mode decomposition algorithm [18]. The “lifting” procedure
consists in evaluating the state of the system with the set of observables Ψ : M→ Cd×1;
Ψ(x) = [ψ1(x), . . . , ψd(x)]>. However, the choice of observables for a particular system
is an open question; common choices include orthogonal polynomials [19], radial basis
functions [9], or an arbitrarily constructed set with polynomial elements, trigonometric
functions, logarithmic functions, or any combination of them [20]. Our choice here is a
low-rank orthogonal polynomial basis [21–24], where every element of Ψ(x) is the tensor
product of n univariate orthogonal polynomials from a set {παj(xj)}p

αj=0
, where αj is the

degree of the polynomial on the jth component of the x vector, and p is the maximum
degree of the polynomial. Every component of Ψ(x) is provided by
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ψl(x) =
n

∏
j=1

παj(xj). (10)

Additionally, the low-rank orthogonal polynomial basis comes from the truncation
scheme for the non-empty finite set of indices α, where the choice of indices is based on
q-quasi-norms (the quantity ‖ · ‖q is not a norm, as it does not satisfy the triangle inequality),
as follows: α = {α ∈ Nn : ‖α‖q ≤ p}, with

‖α‖q =

(
n

∑
i=1

α
q
i

) 1
q

. (11)

This choice of truncation scheme has three advantages. First, it reduces the number of
elements in the set of observables Ψ(x), and therefore handles the curse of dimensionality
problem when the dimension of the state space grows and available computational resources
are limited. The second advantage is empirical, and refers to the numerical stability of the
least squares solution for the approximation of the Koopman operator. Having a reduced
orthogonal basis improves the condition number of the matrices involved in the computation.
The third advantage is the reduction of the amount of data required to compute the approxi-
mation. In comparison with other types of observable functions, the decomposition provides
accurate approximations with significantly fewer data points.

To illustrate the advantages of the methodology in comparison with the previous litera-
ture on the subject, the authors of [9] used 1000 radial basis functions to obtain the approx-
imation of a benchmark problem, e.g., the Duffing oscillator with two basins of attraction.
About 104 data-points are required to compute the approximation of the Koopman operator
and to subsequently find the level sets of the stable manifold and divide the two regions of
attraction. In comparison, our previous work [25] allows the same results to be achieved with
a polynomial basis of 25 elements and a dataset of about 103 data points.

For a detailed description of the use of p–q quasi-norms for the EDMD algorithm, we
refer to previous works by the authors [23,24].

Furthermore, the approximation of the discrete-time d-dimensional Koopman operator
Ud satisfies the following condition [9]:

Ψ(Y) = UdΨ(X) + r(X), (12)

where r(X) ∈ F is the residual term to be minimized in order to find Ud. This minimization
accepts a closed-form solution within the least mean squares problem, where the objective
function has the form

‖r(X)‖2 =
1
N

N

∑
i=1

1
2
‖Ψ(yi)−UdΨ(xi)‖2

2, (13)

and the solution is
Ud , AG+, (14)

where G, A ∈ Cd×d are square matrices provided by

G =
1
N

N

∑
i=1

Ψ(xi)Ψ(xi)
>, (15)

A =
1
N

N

∑
i=1

Ψ(yi)Ψ(xi)
>. (16)

The dimension of the basis of observable functions and the parameters of each individual
function have an impact on the stability of the numerical algorithm. In general, poor selection
of the observable functions leads to a poor condition number on the regression matrix G.
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Hence, it is often necessary to use a Moore–Penrose pseudo-inverse function. Even though this
method provides a solution, it leads to propagation of the error in the approximation of the
Koopman operator, especially when calculating the spectral decomposition of the Koopman
matrix Ud to obtain the eigenfunctions and modes. The use of orthogonal polynomials and
p–q quasi-norm reduction yields a better conditioned regression matrix G.

The finite-dimensional and discrete-time approximation of the Koopman operator
from the EDMD algorithm has eigenvalues M = diag(µ1, . . . , µd), right eigenvectors
Ξ = [ξ1, . . . , ξd], and left eigenvectors, Ξ−1 = W?. Furthermore, the approximation of the
eigenfunctions Φ = [φ1, . . . , φd]

> comes from weighting the set of observables with the
matrix of left eigenvectors [9,16]:

Φ>(x) = Ψ(x)>W?. (17)

Using (7), the recovery of the original observables Ψ(x) from the set of eigenfunctions
is provided by

Ψ(x) = ΞΦ(x). (18)

Using (8), the time evolution of observables according to the spectrum of the Koopman
operator is provided by

Ψ(Tk(x)) = ΞMkΦ(x). (19)

The common practice to recover the state is to include the functions that capture each of
the states in the set of observables, i.e., ψi(x) = xi. The value of the time evolution of the
states is the value of these particular elements of Ψ(x). The matrix B ∈ Rd×n recovers these
values from (19), where B is a matrix of unit vectors êi indexing the n observables that
captures every one of the states, i.e., fi(x) = xi. As for a polynomial basis, these elements
are not always present, and B is a matrix of unit vectors indexing injective observables.
To clarify the importance of using the inverse of injective observables against other methods
to recover the state, we refer to previous works by the authors [23,24].

The evolution of observables (19) is used to define the state evolution map according
to the approximation of the Koopman decomposition {(µi, φi(x), vi)}d

i=1, i.e., evolving (1)
k times from an initial condition x0

x(k) = Tk(x0) = Ψ−1
B

(
B>ΞMkΦ(x0)

)
, (20)

where Ψ−1
B (x) denotes the inverse of the injective observables selected by B.

Note that in addition to the forward evolution of the states, the discrete-time approxi-
mation provides their evolution in reverse time:

x(−k) = Ψ−1
B

(
B>ΞM−kΦ(x0)

)
. (21)

In conclusion, the EDMD allows for a linear discrete-time representation on an ex-
tended space of a nonlinear system, along with the advantages that the induced spectrum
and evolution maps provide. These advantages are the core of this analysis of the ROA.

For completeness, and in order to state both the advantages and the shortcomings of
this approximation, note that the EDMD algorithm assumes knowledge of the full state
of the system, and does not take noisy signals into account. Therefore, the application
of the algorithm in real-world scenarios requires complementing its development with
an observer able to handle these issues.

3. Evaluation of the ROA Using EDMD

In order to obtain the ROA of asymptotically stable fixed points in a data-driven fash-
ion using the EDMD approximation of the Koopman operator, it is necessary to accomplish
numerous tasks. First, it is necessary to find the location of the fixed points and determine
their stability, especially for the asymptotically stable and type-1 points. Subsequently,
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the spectrum of the Koopman operator approximation can be analyzed in keeping with the
theoretical concepts from Section 2.1 in order to approximate the ROA of the asymptotically
stable fixed points under multistability phenomena.

In order to accomplish this objective, several assumptions must hold in order for the
algorithm to be applied. First, the EDMD algorithm must have knowledge of the full
state and enough trajectories from the dynamical system in order to have an accurate
approximation of the operator. This condition can be checked using the empirical error
by comparing the orbits of the system from (1) with the discrete-time Koopman state
evolution map (20). Second, assumptions (A1–A3) introduced in Section 2.1 must hold.
In general, however, it is necessary to know the differential equation model in order to
check assumptions (A2) and (A3). Due to this difficulty, we limit our analysis to mass
action systems for illustration of the results in Section 4. This type of system inherently
satisfies the assumptions [1].

3.1. Fixed Points Approximation

The first step of the analysis consists in locating the fixed points of the hyperbolic
system to assess their stability. A fixed point of the discrete-time nonlinear system (1) is an
invariant subspace that has the property that whenever the state starts in it, it will remain
in it for all future time, as in (2).

To approximate the fixed points, consider the forward and backward state evolution
maps of a dynamical system in discrete time provided by the Koopman operator approxima-
tion in (20) and (21). If the evolution of these mappings is invariant, i.e., maps to themselves,
then the system is at a fixed point. To accurately approximate these points, we propose to
formulate a minimization problem where the objective function is the Euclidean norm of
the comparison between the state and its approximate discrete-time evolution (20) [25].

Lemma 1 (Fixed points). Let (M; T(x); k) be a dynamical system that admits a Koopman
operator approximation (Fd; Ud; k), and let x∗ be a fixed point of T(x). Then,

x∗ = argmin
x

∥∥∥Ψ−1
B

(
B>ΞMkΦ(x0)

)
− x
∥∥∥2

2
. (22)

Proof. Let Tk(x) = Ψ−1
B (B>ΞMkΦ(x0)) be the flow map of (M; T(x); k), assume k = K

is finite, and define b(x) = Ψ−1
B (B>ΞMΦ(x)) using Definition 2 and b(x); then, the least

squares problem

J(x) =
1
2
‖b(x)− x‖2 (23)

with solution
x∗ = argmin

x
(J(x)), (24)

provides the location of the fixed points.

Remark 3. Note that this procedure is possible in the portion of the state space where the data
snapshots lie, and corresponds to the fixed points of the nonlinear underlying hyperbolic dynamical
system. If the system is not hyperbolic, this condition does not hold.

Remark 4. This lemma is only accountable for the location of the fixed points in the state space,
and does not provide information about their stability.

Remark 5. Equation (20) is a nonlinear discrete-time evolution mapping, and under the definition
of fixed point, i.e., T̄k(x∗) = x∗, it is possible to obtain the approximation of the hyperbolic fixed
points by solving

x̄∗ ⊆ {x ∈ Rn : T̄k(x)− x = 0}. (25)
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In practice, this procedure has two issues. First, as the nonlinear mapping (20) comes from a set of
observables, the dimension and complexity of these functions affect the possibility of finding a solution
in polynomial time. As a consequence, in higher-order polynomial expansions, even if it is possible to
find a solution the computational time is high. Second, when there is a solution, it is not clear which
elements of the subset represent an actual fixed point of the system. Solving a nonlinear set of equations
provides several solutions in the complex plane, some of which correspond to the real-valued solutions
of the system, i.e., not all the points of the subset are fixed points of the system, while the converse is
true. Considering the data-driven case, the fixed points of the system are not known a priori; therefore
using this definition to approximate the fixed points is not feasible.

With the location of the fixed points known, it is necessary to establish their stability.

3.2. Stability of Fixed Points

The traditional way of establishing the local stability of a hyperbolic fixed point is
through analysis of the Jacobian matrix of the system (1) as evaluated at the fixed point. Our
proposed approach is to analyze the state evolution map from the discrete approximation
of the Koopman operator in the same way. In other words, the stability comes from the
linearization of (20), which is a nonlinear mapping of the state.

Definition 1 (Stability). Let (M; T(x); k) be a dynamical system that admits a Koopman operator
approximation (Fd; Ud; k). Define b(x) = Ψ−1

B (B>ΞMkΦ(x)) from the state evolution map (20);
then, the local linearization of b(x) at a given point x∗ is

x(k + 1) =
[

∂T(x)
∂x1

· · · ∂T(x)
∂xn

]∣∣∣∣
x∗

x(k)

=

[
∂b(x)
∂x1

· · · ∂b(x)
∂xn

]∣∣∣∣
x∗

x(k)

=Hx(k). (26)

The local stability of a fixed point x∗ according to the eigenvalues {µi}n
i=1 from the spectral

decomposition of the matrix H is provided as follows:

• if |µi| < 1 for all i = 1, . . . , n then x∗ is asymptotically stable;
• if |µi| > 1 for all i = 1, . . . , n then x∗ is unstable;
• if |µi| > 1 for some i = 1, . . . , nk and |µi| < 1 for some i = nk + 1, . . . , n, then x∗ is unstable

and has modal components that converge to it, making it a saddle point.

Remark 6. Note that the inequalities are strictly greater-than or less-than, which is in accordance
with the assumption of hyperbolicity.

With information about the location and stability of the fixed points obtained, the main
result of this paper can be formulated, i.e., the approximation of the boundary of the ROA
via eigenfunctions of the discrete-time Koopman operator.

3.3. Approximation of the ROA Boundary

This section describes the approximation of the ROA of asymptotically stable fixed
points in a data-driven approach using the discrete-time approximation of the Koopman
operator. The claim of the main result of this study is that the level sets of a unitary
eigenfunction provide the boundary of the ROA of the asymptotically stable fixed points.
This holds from the following set of premises:

1. A system that admits a Koopman operator transformation has an infinite set
of eigenfunctions.

2. There exist nontrivial eigenfunctions that have an associated eigenvalue equal to one
(unitary eigenfunctions).

3. A unitary eigenfunction is invariant along the trajectories of the system (per Equation (6)).
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4. The trajectories of the system are level sets of a unitary eigenfunction.
5. The stable manifold of a type-1 saddle point in an n-dimensional system is an

(n− 1)-dimensional hypersurface composed by the union of the trajectories that
converge to the point (from Equation (4)).

6. The level set of a unitary eigenfunction at a type-1 fixed point is the stable manifold
of that point.

7. The boundary of the ROA of an asymptotically stable fixed point is the union of the
stable manifolds of the type-1 fixed points in the boundary (from theorem 1).

In other words, if it is possible to capture the (n− 1)-dimensional hypersurfaces that
converge to the type-1 saddle points in the boundary of the ROA via the Koopman operator,
then it is possible to find the boundary of the ROA. If there are eigenfunctions that are
invariant along the trajectories of the system, then evaluating these eigenfunctions on the
type-1 saddle points of the system provides the constant values for which the unitary
eigenfunctions capture the stable manifold of the saddle points, i.e., the level sets of the
unitary eigenfunction. A level set of an arbitrary function h(x) : Rn → C for any constant
c ∈ C is Γc(h(x)) = {x ∈ Rn : h(x) = c}.

To guarantee the existence of nontrivial unitary eigenfunctions, we consider the
following property of the eigenfunctions of the Koopman operator (see Property 1 in [14]
for its analogues in continuous time).

Property 1. Suppose that φ1, φ2 ∈ Fd are Koopman eigenfunctions of an arbitrary system with
associated eigenvalues µ1 and µ2, respectively. If φ̄(x) = φk1

1 (x)φk2
2 (x) ∈ Fd for constants

k1, k2 ∈ C, then φ̄(x) is an eigenfunction constructed upon the product of two arbitrary eigenfunc-
tions with the associated eigenvalue µ̄ = µk1

1 µk2
2 .

Proof. It follows from condition (6) that

[Udφ̄](x) =
[
Ud(φ

k1
1 φk2

2 )
]
(x) (27)

= ([Udφ1](x))k1([Udφ2](x))k2 (28)

= µk1
1 φk1

1 (x)µk2
2 φk2

2 (x). (29)

This means that with a finite approximation of the Koopman operator, there is are infi-
nite possible dependent eigenfunctions, showing that Premise 1 holds. Moreover, from the
previous construction, it is possible to find the complex constants k1 and k2 for eigenvalues
µ1 and µ2 such that µ̄ = 1 and φ̄(x) = φ+(x), where φ+ denotes an eigenfunction with
a unitary associated eigenvalue. From (6), it follows that φ+(x) is an eigenfunction that is
invariant along the trajectories of the system, as

[Uk
dφ+](x) = φ+(x), (30)

which demonstrates that Premises 2 and 4 hold, and explains Premise 3. As a result of the
previous development, we can state our main result:

Theorem 2. If there exists a dynamical system (M; T(x); k) with multiple stable points that admits
a Koopman operator approximation (Fd; Ud; k), then the approximation of the stable manifold of the
type-1 saddle points x̂∗ in the boundary of the ROA is the level set of a unitary eigenfunction φ+(x)
with a constant value taken from evaluation of the unitary eigenfunction at the saddle point at the
boundary, i.e.,

Ws(x̂∗) = Γcφ+(x̂∗)φ+(x) (31)

⊆ {x ∈ Rn : φ+(x) = cφ+(x̂∗)}. (32)
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Proof. From the definition of a stable manifold of a type-1 saddle point (4) in Section 2.1,

Ws(x̂∗) = {x ∈ Rn : lim
k→∞

Tk(x) = x̂∗}. (33)

Evaluating this manifold with an arbitrary eigenfunction φ(x) and using the condition
of the Koopman operator in (5) provides

φ(Ws(x̂∗)) ≈ {x ∈ Rn : lim
k→∞

φ(Tk(x)) = φ(x̂∗)} (34)

≈ {x ∈ Rn : lim
k→∞

[Uk
dφ](x) = φ(x̂∗)}. (35)

Hence, for this arbitrary eigenfunction the associated eigenvalue must be unitary in
order for the equality to hold. Moreover, from (30) it is clear that the time evolution of
an eigenfunction with a unitary associated eigenvalue is invariant along the trajectories of
the system; in other words, it is independent of time evolution. These two developments
imply that

φ(Ws(x̂∗)) = {x ∈ Rn : φ+(x) = cφ+(x̂∗)}. (36)

Note that the right-hand part of (36) is the definition of a level set for an eigenfunction
with a unitary associated eigenvalue φ+(x). As the trivial eigenfunction φµ=1 = 1 belongs
to the set of eigenfunctions with unitary associated eigenvalues, the left-hand side holds
for a subset of the unitary eigenfunctions φ+(x). Therefore, the stable manifold of a type-1
saddle point at the boundary of the ROA is

Γcφ+(x̂∗)φ+(x) ⊆ {x ∈ Rn : φ+(x) = cφ+(x̂∗)}. (37)

In summary, the spectral decomposition of the discrete-time approximation of the
Koopman operator can be used to find the nontrivial unitary eigenfunction, which, when
evaluated at the type-1 points, characterizes the ROA of the asymptotically stable points.

3.4. Algorithm

The approach presented in Sections 2.3, 3.1 and 3.3 for obtaining the attraction regions
of asymptotically stable fixed points is summarized in Algorithm 1, for which the following
assumptions hold:

B1: The system under consideration has multiple hyperbolic fixed points.
B2: At least one of the fixed points is asymptotically stable.
B3: There are sufficient snapshot data (either from measurements of the real system or

from numerical simulation) to construct a discrete approximation of the Koopman
operator. This condition can be checked using the empirical error, which is a compar-
ison between the data from the numerical integration of the system dynamics and the
state evolution map from the approximation of the discrete-time Koopman operator.
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Algorithm 1 ROA with data-driven discrete Koopman operator.

Ensure: Assumptions (B1–B3) are satisfied
1: Data: {xi, yi}N

i=1 return ∂RA(x∗s )
2: procedure ROA({xi, yi}N

i=1, q, p)

3: [Φ(x), M]←− EDMD
(
{xi, yi}N

i=1, q, p
)

4: b(x)←− Ψ−1
B (B>ΞMkΦ(x))

5: x∗ ←− argminx‖b(x)− x‖2
2

6: Eq ←− size(x∗)
7: for i← 1, Eq do

8: Hi ←−
[

∂b(x)
∂x1
· · · ∂b(x)

∂xn

]∣∣∣
x∗i

9: {µi,j}n
j=1 ←− eig(Hi)

10: if |µi,j| < 1 for all j = 1, . . . , n then
11: x∗i ← x∗s
12: else if |µi,j| < 1 for some j = 1, . . . , n then
13: x∗i ← x̂∗

14: else
15: x∗ ← x∗u
16: end if
17: end for
18: Êq ←− size(x̂∗)
19: Es ←− size(x∗s )
20: φ+(x)←− {φk1

1 (x)φk2
2 (x) : µk1

1 µk2
2 = 1}

21: for i← 1, Es do
22: for j← 1, Êq do
23: Ws

j (x̂∗j )←− {x ∈ Rn : φ+(x) = φ+(x̂∗j )}
24: end for
25: ∂RA(x∗i ) = ∪Ws(x̂∗j )
26: end for
27: end procedure

4. Simulation Results

In order to test the reliability of the methodology and algorithm, they were applied to
a model of competitive exclusion with two state variables. This model has the advantage
of having an analytical description of the ROA under certain parameters, and is suitable
for graphically showing the effect of eigenfunctions with a unitary eigenvalue. Next,
the reliability of the algorithm in a higher-dimensional system composed of five state
variables, i.e., a mass-action kinetics (MAK) model is demonstrated. This latter example
shows the advantage of not having to calculate level sets or handle complex geometries of
the (n− 1)-dimensional stable manifold hyperplanes. The population model and the mass-
action kinetics systems are suitable for this analysis because of their geometric properties.
They are non-negative compartmental systems that, depending on the parameterization,
have hyperbolic fixed points that satisfy the Hartman–Grobman theorem [1]. The hy-
perbolicity of the fixed points implies that their unstable and stable manifolds intersect
transversely at the saddle points. Therefore, Assumptions (A1–A3) are satisfied in this kind
of system under the right parameterization.

The numerical integration of the systems from a random set of initial conditions
provides the dataset of trajectories for the algorithm. A subset is used to calculate the
Koopman operator’s approximation via the EDMD algorithm (training set) and another
subset is used for testing the algorithm’s accuracy. The algorithm empirical error criterion
for a number Ns of test trajectories and a length Ki for every one of those trajectories is
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e =
1

∑Ns
i=1 Ki

(
Ns

∑
i=1

Ki

∑
k=1

|Tk(xi)−Uk
d g(xi)|

|Tk(xi)|

)
, (38)

where this error serves to determine the best p–q parameters from a sweep over the different
values and to verify whether assumption B3 holds.

From the test set, it is possible to evaluate the convergence from every initial condition.
Comparing the real convergence with the classification results of the algorithm provides
the accuracy of the method according to the number of misclassified initial conditions over
the total.

4.1. A Competition Model

Consider the following network describing the dynamics of a population model where
two species compete for the same resource:

s1 2s1

s2 2s2

s1+s2 s1

s1+s2 s2

r1

r2
r3

r4
r5

r6

(39)

where s1 and s2 are the competing species. The dynamics of the species depend on six
parameters: r1 and r3 respectively describe the population growth rates of each species,
r2 and r4 represent the logistic terms accounting for the competition between members
of the same species (resulting in carrying capacities for the environment of r1/r2 and
r3/r4, respectively), r5 describes the competitive effect of species s2 on species s1, and r6
describes the opposite competitive effect between species. The values of these constants
determine the potential outcome of the competition. Depending on their values, there can
be co-existence or exclusion of one species against the other. The case of interest is the
exclusionary one, and the objective is to find the set of initial conditions within the state
space that lead the model to one of the stable points at which one species completely takes
over the other. The differential equations that describe the population (39) are

ẋ1 = r1x1 − r2x2
1 − r5x1x2 (40)

ẋ2 = r3x2 − r4x2
2 − r6x1x2, (41)

where the parameterization in order for the species to have two particular asymptotically
stable fixed points is r = [2 1 2 1 3 3]>. With this choice, the system has four fixed points:
an unstable point at the origin defined as x∗A, a saddle point at (0.5, 0.5) defined as x∗D,
and two asymptotically stable points at (0, 2) and (2, 0), defined as x∗B and x∗C, respectively.
The geometry of this problem provides a simple representation of a type-1 saddle stable
manifold, which is the line x1 = x2, thereby providing a closed formulation for compari-
son with the stable manifold generated by the construction of the eigenfunction with an
associated eigenvalue equal to one.

The numerical integration of the system from 200 uniformly distributed random initial
conditions with a ∆t = 0.1 over x1, x2 ∈ [0 2] and stopped upon convergence provides the
datasets for approximating and testing the operator via the EDMD algorithm. Each set has
50% of the available trajectories, for a total of 7285 datapoints each.

The application of the algorithm on the training set with a Laguerre polynomial basis
and a truncation scheme sweeping over several p–q values provides the best performance
when q = 1.1 and p = 3. This selection produces a polynomial basis of 13 elements of
order equal or less than 3 and a Koopman operator of order 13. Figure 1 shows the retained
indices after implementing the truncation scheme.



Automation 2023, 4 70

0 1 2 3

0

1

2

3

Figure 1. Retained indices for the approximation of the Koopman operator for the competition model
when choosing q = 1.1 and p = 3.

The next step of the method is the location and stability of the fixed points. Their
location via Lemma 1 provides an absolute error of 0.15%. Moreover, the method in
Section 3.2 accurately provides their stability according to the linearization of the nonlinear
state evolution map (20) and the analysis of the eigenvalues λ from the linearization
evaluated at the identified fixed points. Table 1 summarizes these results.

Table 1. Competition model fixed points, location, and stability.

Theoretical Algorithmic |λ1| |λ2| Stability

x∗A (0, 0) (−0.006, −0.006) 1.21 1.22 Unstable
x∗B (0, 2) (0, 2) 0.66 0.82 AS
x∗C (2, 0) (2, 0) 0.82 0.66 AS
x∗D (0.5, 0.5) (0.5, 0.5) 0.81 1.10 Saddle

Figure 2 depicts the comparison between the theoretical trajectories provided by
integration of the differential Equations (40) and (41) and the state evolution map (20) from
the same initial conditions. In addition, it depicts the comparison between the theoretical
boundary of the attraction regions x1 = x2 and the boundary established by the level set of
the constructed unitary eigenfunction from (32). The percentual error in the classification
of the initial conditions, i.e., the number of misclassified initial conditions over the total,
is 2%, while the mean absolute error between the boundary of the regions of attraction,
i.e., the difference between the x1 = x2 theoretical boundary and the boundary identified
from the level set of the unitary eigenfunction, is 3%.
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Figure 2. Trajectories and boundary of the asymptotically stable points of (left) the system of
differential equations and (right) the Koopman operator and unitary eigenfunction.
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Figure 3 shows four eigenfunctions of the Koopman operator, including the trivial
eigenfunction with a value that is constant in the whole state space. This eigenfunction is
commonly the result of the EDMD algorithm, and does not provide any useful information
about the system. Therefore, it is necessary to obtain a nontrivial unitary eigenfunction
from (29). To achieve this objective, setting µk1

1 µk2
2 = 1 and computing a solution for

k1 and k2 results in the desired unitary eigenfunction. However, caution should be exercised
with this calculation as there are an infinite number of solutions for the choice of constants.
In practice, the method used is to first set one and then calculate the other.

Figure 3 depicts the resulting unitary eigenfunction that captures the stable manifold of
the saddle point, and the two eigenfunctions with real-valued eigenvalues close to one used
for the construction. The eigenvalues of these eigenfunctions are µ1 = 1.07 and µ2 = 0.83.
Inspecting the near-unitary eigenfunction with µ1 = 1.07 shows that it could potentially
be used for the classification on its own, and indeed this eigenfunction does provide good
results, although not as accurate as the construction of the unitary eigenfunction. At this
point, it is not clear how to select the base eigenfunctions properly for the construction
of the unitary eigenfunction, and although the algorithm provides accurate results when
the base eigenfunctions for the construction of the unitary eigenfunction do not have real-
valued eigenvalues, the lack of real-valued eigenfunctions for use in construction degrades
the accuracy.

Figure 3. Eigenfunctions of the Koopman operator: (top left) trivial eigenfunction with µ = 1;
(top right) constructed eigenfunction φ+; (bottom left) first eigenfunction for constructing φ+;
(bottom right) second eigenfunction for constructing φ+.

4.2. Mass Action Kinetics

Consider the following network, which describes an auto-catalytic replicator in a
continuous-flow stirred tank reactor:
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s1+2s3 s2+3s3

s2+2s4 3s4

s3 s5

s4 s5

r1

r2

r3

r4

(42)

here, there are two species, s3 and s4. Species s3 consumes substrate s1 to reproduce and
produces the resource s2 as a byproduct, which is suitable for the reproduction of the second
species s4. Finally, s5 represents the dead species from both groups. The constants r1 > r3
and r2 > r4 are the paired of replication rate and species death, respectively. Considering d
as the dilution rate, that is, the material exchange with the environment, the dynamics of
the network (42) are described by the differential equations

ẋ1 = −r1x1x2
3 + d− dx1 (43)

ẋ2 = +r1x1x2
3 − r2x2x2

4 − dx2 (44)

ẋ3 = +r1x1x2
3 − r3x3 − dx3 (45)

ẋ4 = +r2x2x2
4 − r4x4 − dx4 (46)

ẋ5 = +r3x3 + r4x4 − dx5, (47)

where the substrate s1 is the only component of the input flow. The value for the vector
of the reaction rates is k = [7 5 0.3 0.05]>, yielding five fixed points: three asymptotically
stable points (the working point, defined as x∗A, where the two species thrive and coexist,
a point where species s3 thrives and species s4 washes out, defined as x∗C, and a wash-
out point where the concentration of both species is zero, defined as x∗E) and two saddle
points, defined as x∗B and x∗D. The objective is to find the ROA of the working point using
the unitary eigenfunction. This example highlights the contributions of this work, as the
dimension of the state is 5, instead of being a two-dimensional or three-dimensional system
that can be sliced for analysis. The stable manifold of the saddle points is a four-dimensional
hypersurface. Therefore, it has a complex geometry, and the criterion for classifying the test
set of initial conditions is not trivial. In particular, we show that it is not necessary to deal
with complex geometries or higher-dimensional hyperplanes to perform the classification.

The numerical integration of the differential Equations (43)–(47) from 360 randomly
distributed initial conditions and ∆t = 0.1 generates the set of orbits for training and
testing the algorithm. From this set of orbits, 50% are used to approximate the operator via
the EDMD algorithm, while the other 50% to test the accuracy of the state evolution (20)
map and the accuracy of the classification, where each set has 79, 948 points. Additionally,
sweeping over several p–q values provides the best performance for the truncation scheme
when q = 0.8 and p = 4, which leads to an approximation of the Koopman operator of
order 163, and thus a set of 163 eigenfunctions, eigenvalues, and modes. From the set of
eigenfunctions, there are two eigenfunctions with real eigenvalues closest to one, which
are µ1 = 1.00008 and µ2 = 0.99983. Considering that the eigenvalues associated with
these eigenfunctions are close enough to one, these unitary eigenfunctions are sufficient to
perform the analysis.

The identification of the fixed points via Lemma 1 provides an absolute error of 0.15%,
and their stability according to the method in Section 3.2 provides an accurate description.
Table 2 shows the results from the theoretical and algorithmic location of the fixed points,
where the error is the percentual difference between the theoretical and the experimental
magnitudes of the vectors that provide the location of the fixed points, i.e.,

Error%i =

∣∣‖x∗i ‖ − ‖x̄∗i ‖∣∣
‖x∗i ‖

× 100. (48)
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Table 3 shows the results of taking the norm of the eigenvalues λ from the Hessian
matrix of (20) evaluated at each of the previously identified fixed points.

Table 2. Location of fixed points.

Theoretical Algorithmic Error %

x∗A (0.23, 0.09, 0.30, 0.54, 0.59) (0.23, 0.09, 0.30, 0.54, 0.59) 0.00
x∗B (0.21, 0.67, 0.30, 0.07, 0.47) (0.23, 0.62, 0.30, 0.11, 0.49) 1.82
x∗C (0.23, 0.76, 0.30, 0.00, 0.46) (0.23, 0.76, 0.30, 0.00, 0.46) 0.00
x∗D (0.76, 0.23, 0.09, 0.00, 0.14) (0.70, 0.30, 0.11, 0.00, 0.17) 2.86
x∗E (1.00, 0.00, 0.00, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00, 0.00) 0.00

Table 3. Stability of fixed points.

|λ1| |λ2| |λ3| |λ4| |λ5| Stability

x∗A 0.89 0.98 0.98 0.97 0.98 AS Working Point
x∗B 1.04 0.98 0.98 0.98 0.98 Saddle
x∗C 0.98 0.98 0.93 0.98 0.98 AS x4 Wash-out
x∗D 1.05 0.96 0.98 0.98 0.97 Saddle
x∗E 0.90 0.98 0.98 0.97 0.97 AS Wash-out

The next step in the algorithm is finding a classification scheme that does not depend
on the geometry of the four-dimensional hyperplanes that compose the stable manifold
of the type-1 saddle points. For this purpose, we use a saddle classifier [24]. This type of
classifier divides the set of initial conditions x0 ∈ M of the testing trajectories into a subset
X ⊂M and its complement X′, where the evaluation of an arbitrary initial condition with a
unitary eigenfunction compared to the evaluation of the type-1 point with the same unitary
eigenfunction provides the criterion for the division:

X ⊆ {x0 ∈ Rn : <φ+(x0) ≥ <φ+(x̂∗)}, (49)

where < denotes the real part of the evaluation. This provides a simple algebraic criterion
for the classification of initial conditions into their respective ROAs.

Figure 4 depicts the result of performing the evaluation of the saddle points and the
initial conditions of the test set with the unitary eigenfunctions; here, φ+1 corresponds
to the eigenfunction with µ+1 = 1.00008 and φ+2 corresponds to the eigenfunction with
µ+2 = 0.99983. The test set is carefully chosen such that there are 60 initial conditions that
converge to each of the three asymptotically stable fixed points. Furthermore, the division
of this set into two subsets results in one set of 90 testing initial conditions when performing
the analysis and another set of 90 initial conditions to perform final testing of the classifi-
cation. Indexing over the analysis set provides the horizontal axis in Figure 4. Moreover,
the vertical axis shows the result of evaluating each of the 90 different initial conditions
with the trivial unitary eigenfunction φ1+ , where it is clear that the trivial eigenfunction
does not provide any information.

The other two unitary eigenfunctions do provide useful information about the clas-
sification scheme. Using φ+1 , it is clear that evaluating the saddle point x̂∗B is an accurate
criterion for the classification of initial conditions that converge to the asymptotically stable
point x∗A, i.e.,

XA ⊆
{

x0 ∈ R5 : φ+1(x0) ≤ φ+1(x̂∗B)
}

. (50)
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Furthermore, when performing the same evaluation process with the second unitary
eigenfunction φ+2 it is clear that evaluating the saddle point x̂∗D is an accurate comparison
criterion for classifying the initial conditions that converge to the wash-out point x∗E, i.e.,

XE ⊆
{

x0 ∈ R5 : φ+2(x0) ≤ φ+2(x̂∗D)
}

. (51)

Note that the < notation is dropped for the two classifiers (50) and (51), as these are
real-valued eigenfunctions. The combination of these two conditions specifies the criteria
used to classify the initial conditions that converge to the different asymptotically stable
fixed points. Figure 5 shows the result of applying the classification criteria over the second
set of testing initial conditions. Again, the horizontal axis indexes over the three groups
of 30 initial conditions that converge to each of the stable points. Moreover, the vertical
axis shows the classification of the initial conditions according to the classifiers, where an
incorrect classification has the correct value surrounding it. The evaluation of the points
with the second unitary eigenfunction is only for illustration purposes. The final test over
this set yields an error of 12% misclassified points.
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Figure 4. Eigenfunctions with unitary associated eigenvalue: (top) trivial; (center) µ > 1;
(bottom) µ < 1.
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Figure 5. Classification of the initial conditions according to the evaluation of the eigenfunctions on
the saddle points.

5. Critical Analysis and Perspectives

Even if we had the tools for extracting all kinds of information regarding the system,
there are limitations to the deduction of the eigenfunctions. The right choice of the polyno-
mial basis based on the known structure of the differential equation, the optimal truncation
scheme and the choice of eigenfunctions to construct the one with the unitary associated
eigenvalue are open questions for improving the algorithm and the analysis. The reliability
of the algorithm depends on the satisfaction of assumption (B3), i.e., having enough data
for the approximation of the operator. This data assumption is enough to perform the
analysis, although it has underlying time and space implications. Increasing the dimension
of the state necessarily increases the number of elements in the polynomial basis and the
computational effort required to calculate the inverse in (14).

Furthermore, there is the problem of the amount and quality of data required to
accurately approximate the Koopman operator. For the two case studies, the amount of
data is sufficient to produce an accurate nonlinear model of the systems and the integra-
tion provides clean data devoid of noise. Moreover, to consider the proposed method
over traditional identification techniques, it is necessary to develop experimental design
techniques specifically for the calculation of the Koopman operator in order to reduce
the necessary data. Additionally, the data from experimental setups are noisy, and often
lack the measurements of the whole state. Therefore, it is necessary to complement the
algorithm with a noise-filtering observer designed to handle these issues.

Furthermore, the relationship between the eigenfunctions and their associated eigen-
values remains open. There are other dynamical characteristics to be analyzed from this
association, as the dynamic behavior of eigenfunctions with associated eigenvalues that
match the local spectra of the fixed points is a potential source of information on the
underlying dynamical system.

A possible improvement could be in the choice or construction of eigenfunctions; all
eigenfunctions capture different information and properties (relevant or not, accurate or
not), and the analysis is limited to the invariant sets of these eigenfunctions. An analysis
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based on the spectral and geometric characteristics of real-valued and complex-valued
eigenfunctions could provide more information about the system for control purposes.

6. Conclusions

This paper deals with the analysis of nonlinear dynamical systems using the spectrum
of the Koopman operator, more specifically, the construction of invariant sets called unitary
eigenfunctions that capture the stable manifold of type-1 saddle points. The union of these
stable manifolds is the boundary of the region of attraction of asymptotically stable fixed
points, and the evaluation of these unitary eigenfunctions provides a simple algebraic
criterion to determine the region of attraction of these stable points. Furthermore, all of
this information is obtained through a data-driven approach without the need for the
differential equation model. Based solely on data from the system, the algorithm can
provide the location and local stability of the fixed points of the system. The extension
of these data-driven tools can provide new methods for analyzing complex systems and
the ability to reformulate traditional linear controller synthesis methods to work with the
discrete-time Koopman operator approximation.

The data-driven representation of the Koopman operator provides the spectral decom-
position that can complement traditional techniques for synthesis and control and provide
a black-box tool for dealing with systems for which the exact dynamics are challenging to
model and identify.

To improve this analysis, ir remains necessary to explore the polynomial structure
of the system and find relationships between the system and the polynomial bases that
provide the approximation in order to optimize their selection. When coupled with more
accurate eigenfunctions deduced from optimal truncation schemes, these relationships can
allow eigenfunctions to be identified with additional information regarding the nonlinear
dynamical system for control purposes, reducing the amount and quality of data necessary
for the approximation.
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