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Abstract: Starting from the problem of studying the parametric robustness in the case of the control 
of a permanent magnet-synchronous motor (PMSM), although robust control systems correspond 
entirely to this problem, due to the complexity of the algorithms of the robust type, in this article 
the use of switched systems theory is proposed as a study option, given the fact that these types of 
systems are suitable both for the study of systems with variable structure and for systems with sig-
nificant parametric variation under conditions of lower complexity of the control algorithms. The 
study begins by linearizing a PMSM model at a static operating point and continues with a system-
atic presentation of the basic elements and concepts concerning the stability of switched systems by 
applying these concepts to the control system of a PMSM based on the field-oriented control (FOC) 
strategy, which usually changes the value of its parameters during operation (stator resistance Rs, 
stator inductances Ld and Lq, but also combined inertia of PMSM rotor and load J). The numerical 
simulations performed in Simulink validate the fact that, for parametric variations of the PMSM 
structure, the PMSM control switched systems preserve qualitative performance in terms of its con-
trol. A series of Matlab programs are presented based on the YALMIP toolbox to obtain Pi matrices, 
by solving Lyapunov–Metzler type inequalities, and using dwell time to demonstrate stability, as 
well as the qualitative study of the performance of PMSM control switched systems by presenting 
in phase plane and state space analysis of the evolution of state vectors: ω PMSM rotor speed, iq 
current, and id current. 
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1. Introduction 
Simultaneously with the development of interest in PMSM, due to undeniable con-

struction and performance advantages, PMSM control systems and their applications 
have been developed in areas such as robotics, CNC machines, computer peripherals, and 
aerospace engineering. These require both high performance of the control system and 
parametric robustness in the sense of performance preservation in case of significant var-
iation of PMSM parameters [1–4]. 

Common control strategies for PMSM include FOC and direct torque control (DTC) 
[5–8]. If the DTC strategy provides acceptable performance but with a relatively simple 
control system, the FOC strategy provides both superior control performance and a con-
trol structure that can be implemented in low- and medium-cost embedded systems. 

Different types of control systems can provide high performance, but variable costs 
of implementation in embedded systems have been developed and implemented in a par-
ticular manner depending on the applications and requirements of the PMSM control sys-
tem. Thus, one can mention adaptive [9,10], predictive [11,12], and sliding mode control 
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(SMC) [13,14], as well as neuro-fuzzy [15,16] and computational intelligence-based control 
systems [17,18]. 

In terms of parametric robustness, robust control systems [19–21] have obviously 
been developed and implemented with excellent results, but the complexity of robust 
computational algorithms should not be neglected. 

Switched systems are characterized by the fact that at certain moments of time, under 
the action of a switching signal, they can change their structure or parameter values. Thus, 
if the system changes its parameter values within a relatively large range, the use of 
switched systems theory [22–28] can be an alternative approach to the study of parametric 
robustness under the circumstances of a decrease in the complexity of the implemented 
algorithms. 

This paper presents the FOC control strategy for the control of a PMSM by empha-
sizing very good control performance on the condition that implementation in an embed-
ded system proves to be easy [29]. Elements of switched systems theory are also used to 
study parametric robustness. 

Among the YALMIP toolbox facilities we can mention specialized solvers for the clas-
ses of problems to which it is applied, and a unitary explanation of the way to use the 
syntax. The studies from [30–33] were written especially by the YALMIP toolbox devel-
opers and were chosen as examples of problem classes regarding automatic robust convex 
programming and explicit model-predictive control (MPC) for linear parameter-varying 
(LPV) systems used for stability and optimality. With the help of the YALMIP toolbox, 
Lyapunov–Metzler-type inequalities can be solved, which is the way to demonstrate the 
stability of switched systems. 

Compared to other elements of qualitative analysis for systems stability with time-
varying parameters, among which we can list Kharitonov’s theorem, the Nyquist stability 
criterion, and the Bode characteristics with other design elements of robust controllers for 
PMSM presented in [34], solving the Lyapunov–Metzler-type inequalities can produce in-
formation regarding system stability even under the conditions of some parametric and 
structural changes. 

The main contributions of this paper can be summarized as follows: 
 PMSM model linearization at a static operating point; 
 Basic elements and concept summary of switched-systems stability; 
 Application of FOC control strategy and control switched systems for the control of 

a PMSM under significant variation of parameters that usually change value during 
operation (stator resistance Rs, stator inductances Ld and Lq, but also combined inertia 
of PMSM rotor and load J); 

 Matlab/Simulink program implementation for calculation of the control system char-
acteristic matrices under parametric variations, calculation of the positive definite 
matrices Pi from Lyapunov–Metzler inequalities to demonstrate system stability; 

 Matlab program implementation for calculation of the dwell time; 
 Numerical simulations development for the PMSM control switched systems using 

a switching signal with frequency lower than the one corresponding to the dwell 
time; 

 Qualitative study of the PMSM control system performance by presenting in phase 
plane and state space the evolution of state vectors: ω PMSM rotor speed, iq current, 
and id current. 
The rest of the paper is organized as follows. The PMSM mathematical model and 

the FOC-type strategy are presented in Section 2, and the basic concepts of the switched 
systems are presented in Section 3. The numerical simulations realized in Matlab/Sim-
ulink programming and numerical computing environment for the PMSM control 
switched systems are presented in Section 4, while the final section presents conclusions 
and perspectives on future approaches. 

2. PMSM Mathematical Model and FOC-Type Strategy 
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The FOC–PMSM control strategy shown as a block diagram in Figure 1 emphasizes 
the two cascade control loops; inner loop for current control and outer loop for the PMSM 
rotor speed control. 

The mathematical model of the PMSM is a nonlinear one, and is presented by the 
relations in the system (1) [5–8]. 
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where ud, uq and id, iq denote the stator voltages and stator currents of the PMSM, respec-
tively, these relations being valid in the d–q reference frame. We have denoted the stator 
inductances and resistances of the PMSM in the d–q reference frame as Ld, Lq and Rd, Rq. 
We also denoted the stator resistance of the PMSM as Rs, the PMSM rotor speed as ω, the 
flux linkage as λ0, the number of pair poles as np, the PMSM rotor moment inertia com-
bined with load moment inertia as J, the load torque as TL, and finally the viscous friction 
coefficient as B. 

 
Figure 1. General block diagram for PMSM control system based on FOC-type strategy. 

For Ld = Lq system (1) can be written under the usual form given by the system (2). 
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The linearization of the PMSM nonlinear model are achieved around an operating 
point (x*, u*), where the states and commands are given in (3): 

   TLqd
T

qd Tuuuiix ******* ;    (3)

The following equilibrium relation can be written around this operating point: 
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  0, ** uxf  (4)

A linear system described in (5) can also be associated with the system (3): 








)()(

)()()()(

txty

tutwtxtx

C

DBA
 (5)

where 
















































































000

000
;

100

001
;

1
00

0
1

0

00
1

;

2

3
0

0

0*

**

DCBA

J

L

L

J

B

J

n
L

n

L

R
n

inn
L

R

q

q

p

q

p

q

s
p

qpp
q

s








 (6)

As a typical example of the static operating point, we can choose a state vector of the 
PMSM control system defined in the relation (7). 
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3. Switched Systems—A General Description 
Hybrid systems can generally be defined as systems in which continuous and dis-

crete actions and states dynamically interact with each other. Of these systems, those that 
are continuous, but influenced by discrete events and have the effect of continuously 
changing the described dynamics, define the switched-type systems. To be define them 
more accurately, the differential system [22–24]  

))(()( txftx   (8)

can be considered, where nn RRf :  is a Lipschitz function. 
System (8) can be rewritten in the following form, which characterizes a switched 

system: 

))(()( )( txftx t  (9)

where there are N smooth vector fields, Nif i , , and there is also a switching signal 
piecewise constant ],1[: NR  . 

For example, the equations defining the temperature pattern in a heated room can be 
written as [22–24]: 
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where θ represents the room temperature and λ and β are two quantities which charac-
terize the heating process. Based on these, system (10) can be written as a switched system: 

   1,0)(),()()()(  ttttt ext   (11)

For the linear case, the switched systems can be written as 

0)( )0(),()( xxtxAtx t    (12)
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A necessary condition for the stability of the switching system where the switching 
random function tit  ,)(  is that all matrices NiAi ,,1,  are Hurwitz. 

If σ(t) is a switching signal defined for example as in the following expression: 
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where 2T is the period of the system, and ),(  t is the transition matrix of the system (12) 
considered periodic in this example, the monodromy matrix is defined as 

TATA eeT 12)0,2(    (14)

According to [23] the system is asymptotically stable if the monodromy matrix has 
subunit eigenvalues modulus. 

For the general form of the linear case, one can consider the switched systems 
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where the notations are the usual ones, and NiAi ,,1,  , are Hurwitz matrices. 
There is the matter of finding the minimum of 0  for which 
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wher: i is the H norm associated with the system  iiii DCBA ,,,  defined in relation (16). 
In this respect the following theorem is presented [24–26]: 

Theorem 1. Given the system (15) and assuming that there is a positive definite matrix P 
so that the following relation is satisfied, 
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then the global asymptotic stability of the switched systems (15) is ensured for the switch-
ing signal   and in addition the following inequality is fulfilled:  
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Proof of Theorem 1. From Schur’s lemma and from (18), the inequality 02  i
T
i DDI  

and the relation (20) are obtained. 
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Based on these, relation (21) ensures the global asymptotic stability in the case of random 
switching for any input w square-integrable. 
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This is equivalent to choosing a Lyapunov function PxxxV T)( whose derivative 0V . 
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and from this, by integrating V , the relation (24) is obtained, which represents the con-
clusion of the proof of the theorem. 
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Under these conditions, norm H  of the system   DCBA ,,,  is less than   for 
any α in the considered simplex. 

The following are two examples that ensure a better understanding of what has been 
presented so far and of how the presentation continues. 

3.1. Example 1 
Let us consider a switching system described by the following subsystems defined 

by the matrices: 
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Using the Matlab environment, the eigenvalues are calculated as follows: eig(A1) = 
{−3, −1} and eig(A2) = {−2, −5}. The result is that A1 and A2 are Hurwitz matrices. By applying 
the relation (21), we obtain the next system: 
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Using the Matlab environment and YALMIP toolbox, the matrix P containing the so-
lution to the system (28) is obtained as: 
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0359.02849.0
P  (29)

Since eig(P) = {0.1708, 0.2969}, matrix P is positive definite and ensures the global as-
ymptotic stability of the switched systems defined by (27). 
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3.2. Example 2 
Let us consider a switching system described by the following subsystems defined 

by the matrices: 
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Using the Matlab environment, the eigenvalues are calculated as eig(A1) = eig(A2) = 
{−1.0000 + 1.0000i, −1.0000 − 1.0000i} from which it results that A1 and A2 are Hurwitz ma-
trices. 

Following the above method, it is demonstrated that there is no matrix P > 0 which 
verifies the system (28). Thus, the above theorem cannot be applied and it cannot be stated 
that the switched system described by (30) is stable even if the two subsystems are stable. 
This proves once again that local stability does not imply global stability, and the condi-
tions imposed by a system such as (28) are too restrictive. In contrast, Theorem 2, below, 
has more restrictive conditions but ensures the stability of the switched systems [24]. 

First, the term dwell time is described by the following definition [25–27]: 
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This results in )1,0(  so that 
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From relations (36) and (38) the global asymptotic stability of the switched system is ob-
tained. It can be pointed out that inequalities (32) and (33) are known as Lyapunov–Metz-
ler inequalities. 

A number of ways of estimating the dwell time of the switched systems are presented 
in [26,27], where we propose an estimate used in practical examples. An upper limit for 
the minimum dwell time T* is given by T*  i
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Evidently, by using the above theorems, the stability of a switched system can be 
demonstrated if the switching signal does not switch more often than the dwell time. In 
terms of establishing a control law of a switched system, similarly to the way the above 
Lyapunov functions have been chosen, corresponding control laws can be obtained for 
the closed loop system. 

4. Numerical Simulations for PMSM Control Switched Systems 
For the PMSM control in the classical structure (Figure 1), the so-called FOC control 

strategy, with the outer speed control loop supplying the references for the inner id and iq 
current control loops, Figure 2 shows the implementation in Matlab/Simulink, noting that 
the current reference idref is set to 0 for the maximization of the electromagnetic torque Te. 

Usually, the controllers of the two inner current control loops and the controller of 
the outer PMSM rotor speed control loop are of PI type. 

 
Figure 2. Simulink implementation for PMSM control system based on FOC-type strategy. 

Below the numerical simulations are presented for the control system of a PMSM, 
with nominal parameters as given in Table 1. 

Table 1. PMSM nominal parameters. 

Parameter Value Unit 
Stator resistance—Rs 2.875 Ω 
Inductances on d-q axis—Ld , Lq  0.0085 H 
Combined inertia of PMSM rotor and load—J 0.008 kg·m2 
Combined viscous friction of PMSM rotor and load—B 0.01 N·m·s/rad 
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Flux induced by the permanent magnets of the PMSM ro-
tor in the stator phases—λ0 

0.175 Wb 

Pole pairs number—np  4  

Figure 3 shows the evolution of the parameters of interest (rotor speed noted with ω, 
electromagnetic and load torques noted with Te and TL, stator currents noted with ia, ib, ic, 
and d-q frame currents noted with id and iq) of the PMSM control system based on the 
classic FOC control structure with PI-type controllers, following the numerical simula-
tions by applying two-step signals for the speed reference ωref = [800, 1200] rpm and a load 
torque TL of 0.5 Nm. It can be noted that the PMSM control system demonstrates good 
performance. 

 
Figure 3. Time evolution parameters of the PMSM control system based on FOC-type strategy: ωref 
= [800, 1200] rpm and TL = 0.5 Nm. 

In addition, Figures 4–6 show the evolution of the PMSM control system states (ω 
PMSM rotor speed, iq current, and id current) in the form of the phase plan for their corre-
sponding combinations. 

Moreover, for two successive steps of the PMSM reference speed, Figures 7 and 8 
show the evolution in state plane. It can be noted that the steady-state conditions are 
achieved after a relatively fast transient regime and damped oscillations. 
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Figure 4. Image of the phase plan: iq current versus id current. 

 
Figure 5. Image of the phase plan: rotor speed versus id current. 

 
Figure 6. Image of the phase plan: rotor speed versus iq current. 
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Figure 7. Image of the state space: rotor speed versus iq current versus id current (ωref = 800 rpm). 

 
Figure 8. Image of the state space: rotor speed versus iq current versus id current (ωref = [800, 1200] 
rpm). 

In the case of the PMSM control, it can be noted that a number of its parameters may 
vary. These include stator resistance Rs, stator inductances Ld and Lq, but also combined 
inertia of PMSM rotor and load J. 

Thus, using the notions described in Section 3 for switched systems, it is possible to 
achieve a qualitative study on the behavior of the PMSM control system in case of para-
metric variation. 

Thus, Figure 9 shows the general block diagram for PMSM control system based on 
FOC-type strategy and switched systems. 

The parametric structure of the PMSM is considered to change over time, and the 
time points at which these changes occur are correlated with an external signal called the 
switching signal. 

Thus, Figures 10 and 11 show the Matlab/Simulink implementation for PMSM con-
trol system based on FOC-type strategy for PMSM variable structure with switching sig-
nal type 1. 
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Figure 9. General block diagram for PMSM control system based on FOC-type strategy and 
switched systems. 

 
Figure 10. Simulink implementation for PMSM control system based on FOC-type strategy for 
PMSM variable structure with switching signal type 1. 

 
Figure 11. Switching signal type 1. 
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It is considered that the variation of the PMSM parameters corresponds to that shown 
in Table 2. 

Table 2. PMSM variation parameters—variable structure 1. 

Parameter Value 1 Value 2 Unit 
Stator resistance—Rs 2.875 4.875 Ω 
Combined inertia of PMSM rotor and load—J 0.008 0.016 kg·m2 

For the verification of Lyapunov–Metzler inequalities, Figure 12 shows the diagram 
of a program implemented in Matlab using the YALMIP toolbox. 

 
Figure 12. Matlab program for matrices Ai and Pi determination—variable structure 1. 

The matrices A1 and A2 are obtained similarly to the following relations (40): 




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



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



























625.0625.650

3529.825294.573100

11005294.573

;

25.125.1310

3529.822353.338100

11002353.338

21 AA  (40)

Using the Matlab environment, the eigenvalues are calculated as follows: eig(A1) = 
{−426.1689, −209.2358, −42.316}, and eig(A2) = {−669.5222 −467.6463, −10.5154}. This results 
in A1 and A2 being Hurwitz matrices. 

Using the Matlab environment and YALMIP toolbox, the matrices P1 and P2 contain-
ing the solution to the system are obtained as follows: 
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
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


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1105.00123.00020.0

0123.00022.00004.0

0020.00004.00008.0

;

0221.00077.00019.0

0077.00046.00013.0

0019.00013.00016.0

21 PP  (41)

Since eig(P1) = {0.001, 0.0022, 0.0252} and eig(P2) = {0.0006, 0.001, 0.1119}, matrices P1 
and P2 are positive definite and the global asymptotic stability of the PMSM control 
switched systems is ensured. 

The Matlab program shown in Figure 13 is used to calculate the dwell time. A dwell 
time T = 1.1 ms is obtained. 

This is used to demonstrate that in terms of the PMSM control switched systems, 
system stability is ensured if switching between systems is performed at time intervals at 
least equal to the dwell time of 1.1 ms. 

 
Figure 13. Matlab program for dwell time determination—variable structure 1. 

Using Matlab/Simulink, numerical simulations are presented in Figure 14, for the 
time evolution parameters of the PMSM control switched systems based on FOC-type 
strategy and switched systems with switching signal type 1, ωref = [800, 1200] rpm, and TL 
= 0.5 Nm. 
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Figure 14. Time evolution parameters for PMSM control system based on FOC-type strategy for 
PMSM variable structure with switching signal type 1, ωref = [800, 1200] rpm, and TL = 0.5 Nm. 

Furthermore, Figures 15–17 show the evolution of the states of the PMSM control 
switched systems (ω, iq, id) in the form of the phase plane for their corresponding combi-
nations. In addition, for two successive PMSM reference speed steps, Figures 18 and 19 
show the evolution in the state plane for the PMSM control switched systems. It can be 
noted that the steady-state conditions are achieved after a relatively fast transient regime 
and damped oscillations. 

 
Figure 15. Image of the phase plan for PMSM variable structure with switching signal type 1: iq 
current versus id current. 
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Figure 16. Image of the phase plan for PMSM variable structure with switching signal type 1: rotor 
speed versus id current. 

 
Figure 17. Image of the phase plan for PMSM variable structure with switching signal type 1: rotor 
speed versus iq current. 

 
Figure 18. Image of the state space for PMSM variable structure with switching signal type 1: rotor 
speed versus iq current versus id current (ωref = 800 rpm). 
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Figure 19. Image of the state space for PMSM variable structure with switching signal type 1: rotor 
speed versus iq current versus id current (ωref = [800, 1200] rpm). 

Next, it is considered that the variation of the PMSM parameters corresponds to that 
shown in Table 3. 

Table 3. PMSM variation parameters—variable structure 2. 

Parameter Value 1 Value 2 Value 3 Value 4 Unit 
Rs 2.875 3.2 4.4 5.6 Ω 

Ld and Lq 0.0085 0.01 0.014 0.016 H 
J 0.008 0.01 0.014 0.016 kg·m2 

Figure 20 presents the Simulink implementation for control switched systems of 
PMSM based on FOC-type strategy for variable structure with switching signal type 2. 
The Stateflow Matlab implementation detail for PMSM variable structure used for param-
eter selection from debug, analysis and time evolution subsystem from Figure 20 is pre-
sented in Figure 21. 

The evolution of the switching signal type 2 is presented in Figure 22. 
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Figure 20. Simulink implementation for PMSM control system based on FOC-type strategy for 
PMSM variable structure with switching signal type 2. 
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Figure 21. Stateflow Matlab implementation detail for PMSM variable structure used for parameters 
selection from debug, analysis and time evolution subsystem. 

 
Figure 22. Switching signal type 2. 

For the verification of Lyapunov–Metzler inequalities, Figure 23 shows the diagram 
of a program implemented in Matlab using the YALMIP toolbox. 
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Figure 23. Matlab program for matrices Ai and Pi determination—case 2. 

The matrices A1, A2, A3, and A4 are given by relations (42) and (43): 
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43 AA  (43)

Using the Matlab environment, the eigenvalues are calculated as follows: eig(A1) = 
{−426.1689, −209.2358, −42.316}, eig(A2) = {−411.3163, −200.1138, −29.5699}, eig(A3) = 
{−409.7148, −204.8635, −14.7075}, and eig(A4) = {−446.7605, −244.064, −9.8005}. As a result, 
A1, A2, A3, and A4 are Hurwitz matrices. 

Using the Matlab environment and YALMIP toolbox, the matrices P1, P2, P3, and P4 
containing the solution to the system are obtained as follows: 
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6897.0193.00496.0
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0458.00367.0051.0

21 PP  (44)
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4136.00986.00287.0

0986.00769.00271.0

0287.00271.00462.0

;

5965.0155.00459.0

155.01036.00379.0

0459.00379.00589.0

43 PP  (45)

Since eig(P1) = {0.0311, 0.0730, 0.6860}, eig(P2) = {0.0326, 0.0795, 0.7539}, eig(P3) = {0.0326, 
0.0801, 0.6463}, and eig(P4) = {0.0278, 0.0656, 0.4434}, matrices Pi are positive definite and 
the global asymptotic stability of the PMSM control switched systems is ensured. 

Moreover, for this variable structure with switching signal 2, the Matlab program 
shown in Figure 24 is also used to calculate the dwell time. 

The dwell time T = 1.1 ms. This have been used to demonstrate that, in terms of the 
PMSM control switched systems (variable structure type 2), system stability is ensured if 
switching between systems is performed at time intervals at least equal to the dwell time 
of 1.1 ms. 

 
Figure 24. Matlab program for dwell time determination—variable structure 2. 
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The time evolution for PMSM control system based on FOC-type strategy for PMSM 
variable structure with switching signal type 2, ωref = [800, 1200] rpm, and TL = 0.5 Nm is 
presented in Figure 25. 

 
Figure 25. Time evolution for PMSM control system based on FOC-type strategy for PMSM with 
variable structure and switching signal type 2, ωref = [800 1200] rpm, and TL = 0.5 Nm. 

Figures 26, 27, 28, 29, 30 and 31 show the evolution of the states of the PMSM control 
switched systems with variable structure and switching signal type 2 (ω, iq, id) in the form 
of the phase plane for ωref = 800 rpm and ωref = [800, 1200] rpm, respectively. 

For two successive reference speed steps of PMSM ωref = [800, 1200] rpm, Figures 32 
and 33 show the evolution in the state plane for the PMSM control switched systems with 
variable structure and switching signal type 2. 

It can be noted that the steady-state conditions are achieved after a relatively fast 
transient regime and damped oscillations. 

 
Figure 26. Image of the phase plan for PMSM variable structure with switching signal type 2: iq 
current versus id current (ωref = 800 rpm). 
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Figure 27. Image of the phase plan for PMSM variable structure with switching signal type 2: iq 
current versus id current (ωref = [800, 1200] rpm). 

 
Figure 28. Image of the phase plan for PMSM variable structure with switching signal type 2: rotor 
speed versus id current (ωref = 800 rpm). 

 
Figure 29. Image of the phase plan for PMSM variable structure with switching signal type 2: rotor 
speed versus id current (ωref = [800, 1200] rpm). 
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Figure 30. Image of the phase plan for PMSM variable structure with switching signal type 2: rotor 
speed versus iq current (ωref = 800 rpm). 

 
Figure 31. Image of the phase plan for PMSM variable structure with switching signal type 2: rotor 
speed versus iq current (ωref = [800, 1200] rpm). 

 
Figure 32. Image of the state space for PMSM variable structure with switching signal type 2: rotor 
speed versus iq current versus id current (ωref = 800 rpm). 
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Figure 33. Image of the state space for PMSM variable structure with switching signal type 2: rotor 
speed versus iq current versus id current (ωref = [800, 1200] rpm). 

Moreover, as in the case of variable structure and switching signal type 1, compared 
to the evolution of the states for the PMSM control system where the parameters remain 
constant (case presented at the beginning of Section 4), slight additional oscillations are 
noted due to the switching between the various parametric structures of the PMSM, pre-
serving stability and overall performance without affecting the qualitative picture of the 
evolution of the system given by the state space. 

In synthesis in this section, three examples are considered: the model of a PMSM 
controlled with FOC, the model of a PMSM in which the parametric variations contribute 
to the definition of two PMSM models, and the model of a PMSM in which the parametric 
variations contribute to the definition of four PMSM models. After calculating the dwell 
time and checking the Lyapunov–Metzler inequalities, the conclusion of PMSM stability 
can be drawn using switched systems theory. On the other hand, just to confirm the results 
obtained using the FOC strategy, the state space portraits are presented for the qualitative 
analysis of the system’s behavior, confirming the stability and parametric robustness of 
the system. 

According to Example 2 in Section 3, it is proven once again that local stability does 
not imply global stability, in the sense that although each subsystem is stable, the evolu-
tion of the entire switched systems can be unstable. This means that although using the 
classic methods of stability analysis mentioned above, each subsystem is stable, but the 
mode of transition between these systems is not taken into consideration, thus implying 
that the switched systems could be unstable. This discrepancy in the analysis of the sta-
bility of the switched systems is resolved by specific means, namely by introducing the 
notion of dwell time and solving the Lyapunov–Metzler type inequalities. 

It can be concluded that, by using the switched systems theory in the presented ex-
ample of PMSM control, the FOC control strategy is a control strategy that ensures para-
metric robustness, in the sense that in case of significant variations of the parameters in 
the PMSM structure, the overall performance of the control system is preserved both qual-
itatively and quantitatively. 

5. Conclusions 
Usually, the parameters of a PMSM vary over time, and the study of the parametric 

robustness of the PMSM control systems becomes an important step in the chain of control 
system design. Using switched-systems theory, elements have been presented regarding 
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the demonstration of the stability of switched systems by solving Lyapunov–Metzler ine-
qualities, where the switching signal frequency is lower than the switching frequency 
given by the dwell time. An algorithm for calculating the dwell time has also been defined 
and presented. Numerical simulations performed in Simulink validate the fact that, for 
parametric variations of the PMSM structure, the PMSM control switched systems pre-
serve the qualitative performance in terms of its control. A series of Matlab programs 
based on the YALMIP toolbox for obtaining Pi matrices and dwell time are presented to 
demonstrate the stability and performance of the PMSM control switched systems. In this 
paper, the stability demonstration was achieved using elements of the switched systems 
theory, while the PMSM control structure was a predefined FOC structure. In future pa-
pers, we will propose the implementation of control laws whose synthesis is derived from 
specific elements of the switched-systems theory. Moreover, one of our directions of re-
search will involve the study of approximate controllability of fractional integrodifferen-
tial equations using resolvent operators [35]. 
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Nomenclature 
PMSM Permanent Magnet Synchronous Motor 
FOC Field Oriented Control 
DTC Direct Torque Control 
YALMIP A toolbox for modeling and optimization in MATLAB 
Rs Stator resistance of the PMSM 
Rd and Rq Stator resistances on d-q axis 
Ld and Lq Stator inductances on d-q axis 
ud and uq Stator voltages on d-q axis 
id and iq Stator currents on d-q axis 
TL Load torque 
J Combined inertia of PMSM rotor and load 
B Combined viscous friction of PMSM rotor and load 
λ0 Flux induced by the permanent magnets of the rotor in the stator phases 
np Pole pairs number 
ω PMSM rotor speed 
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