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Abstract: Force myography (FMG) detects hand gestures based on muscular contractions, featuring
as an alternative to surface electromyography. However, typical FMG systems rely on spatially-
distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept
study is to develop a method for identifying hand poses from the static and dynamic components
of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs
a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the
dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs
data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms
with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based
on the interrogation of a single fiber transducer.
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1. Introduction

The development of sensors for identifying hand gestures is crucial to establish reliable
and intuitive communication between humans and computers, as requested by several
areas related to control and automation engineering. Potential applications for these
devices encompass the operation of dexterous bionic prostheses [1], medical robots [2],
rehabilitation devices [3], and virtual reality environments [4].

Nowadays, different approaches are available for assessing hand poses. Examples
include glove-based sensors, exoskeletons, optical tracking, brain–computer interfaces
(BCI), and myographic methods such as surface electromyography (sEMG) and force
myography (FMG).

Although glove devices and exoskeletons monitor the angular displacements of hand
joints, these techniques constrain user movements by imposing mechanic load [5]. As to
non-invasive techniques, optical tracking relies on static cameras and usually degenerates
due to occlusion and illumination changes [6]. Besides, BCI requires expensive, bulky
instrumentation and demanding signal processing [7]. Consequently, myographic sensors
are eligible to detect hand motion or intentions in teleoperation and prostheses control,
providing accurate results with accessible costs [8,9].

The sEMG detects electrical stimuli produced by the forearm muscles using electrodes
attached to the skin surface. After extracting temporal and spectral features from sEMG
waveforms, a classifier addresses the collected data to the target postures through machine
learning algorithms [10]. Notwithstanding their successful applications, sEMG systems
are susceptible to electromagnetic noise and variations of skin impedance. Alternatively,
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the FMG assesses radial pressures exerted by forearm muscles employing piezoresistive
transducers to retrieve hand motions from the average force levels [11].

Currently, several authors have investigated FMG to identify hand poses. In recent
works, Asfour et al. employed an array of 16 force sensing resistors (FSR) to discriminate
16 grasps exerted with different force levels [12]. An improved principal component
analysis pipeline yielded an average accuracy of 86.4%. Nowak et al. used ten FSR to
classify transitions between six poses through the ridge regression with random Fourier
features algorithm, achieving >80% accuracy for the best cases [13]. Ultimately, Jiang et al.
developed an integrated device comprising eight FMG and sEMG electrodes to recognize
ten gestures. Linear discriminant analysis combining mechanical and electrical signals
resulted in a 91.6% accuracy [14].

Electronic devices such as piezoresistive, piezoelectric, and capacitive transducers
are vulnerable to electric noise and impedance changes caused by sweat and fat [15].
Therefore, optical fiber sensors are reliable alternatives to the widespread FSR, exhibiting
high sensitivity, lightness, flexibility, and immunity to electromagnetic interference [16]. For
instance, an integrated FMG system comprising two micro-bending transducers provided
>90% accuracy regarding the classification of nine static postures [17]. Moreover, this sensor
operated simultaneously with a functional electrical stimulation module for controlling a
robot glove, demonstrating its robustness to concurrent electrical impulses [18].

Apart from the available technologies, developments towards reducing the number of
measurement channels are attractive to simplify both force sensing apparatus and signal
interrogation system. In this context, exploring the dynamic behavior of FMG waveforms
is a promising approach once the temporal characteristics of muscular contractions vary
accordingly to the target posture and the exerted force level. Some groups investigated this
aspect in recent works. Hellara et al. combined strain, pressure, inertial, and sEMG sensors,
producing an ensemble of 23 dynamic signals to feed a random forest classifier; the overall
accuracy is >99% for ten postures [19]. Li et al. employed eight piezoelectric strain gauges to
analyze six gestures. Based on 13 time-domain features, the authors processed the acquired
signals with four classification algorithms and obtained >95% accuracy [20]. Furthermore,
Fujiwara et al. used optical fiber sensors to recognize the 26 alphabet letters written in the
air, achieving ∼90% accuracy with parallel correlators unified by a competitive layer [21].
Nevertheless, the current approaches rely on multiple transducers for recognizing intuitive
gestures, increasing the system complexity and imposing additional load on the upper limb.

Therefore, this work presents the proof-of-concept of an FMG system for identifying
hand poses based on a single optical fiber transducer. The time-varying intensity waveforms
proceed to a convolutional neural network that maps the hidden features into the target
postures. Experiments comprising eight classes yielded reliable results disregarding the
limited number of force transducers.

Departing from the current approaches based on arrays of FSR, the proposed method
uses a single fiber bending transducer to assess the FMG signals, reducing the mechanical
load on the forearm and simplifying the interrogation hardware and signal processing.
Furthermore, optical fiber sensors are intrinsically robust to electromagnetic noise and
changes in skin conditions. To the best of our knowledge, this is the first demonstration of
a single-channel FMG system based on optical interrogation.

Force Myography

Force myography is the mechanical counterpart of the sEMG. This technique assesses
radial pressures produced by the forearm muscles—in virtue of hand movements or
intentions—and correlates the force levels to the performed gesture. Moreover, the FMG
does not rely on a strict placement of transducers and requires simpler interrogation
hardware than the electrical approach [11].

Upon activation by the central nervous system, muscle tissues contract to develop
force and increase their strength. Force-velocity-length relations dictate the mechanics
involved in achieving the force levels required to grasp or sustain a pose [22]. Therefore,
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FMG transducers attached to the forearm through straps or orthoses detect the overall
response of embraced flexor and extensor muscles. Choosing the placement of sensors
allows for assessing specific groups of muscles, enhancing the identification of certain
postures. Nevertheless, dynamic FMG signals comprise transient and steady-state features:
the former accounts for activation and contraction peaks to attain the desired pose, whereas
the latter stabilizes the hand configuration [23].

Current FMG systems compute the average value of stationary forces and combine
the information from multiple transducers to discriminate postures. Alternatively, one may
explore the FMG transient characteristics to optimize the number of transducers necessary
for recognizing a gesture. Albeit FMG patterns depend on the initial and final hand pose—
training the classifier may be laborious for an inclusive set of postures,—assuming an
event-driven finite state (EDFS) control alleviates the calibration task by mapping a few
input gestures to a compendium of actions, which is applicable for commanding practical
prostheses [24,25].

2. Materials and Methods
2.1. Hardware Design

Figure 1 shows the system setup [17]. Light emitted by an Agilent HFBR-1414T
LED source (80 µW, 820 nm) excites a silica multimode optical fiber (MMF, step-index,
62.5/125 µm core/cladding diameters, straight tip terminations). An optomechanical trans-
ducer secured to the forearm by Velcro straps modulates the guided light. Then, an Agilent
HFBR-2416T photodetector (7 mV/µW, 820 nm) assesses the output intensity and delivers
the electrical signal to a double amplifier circuit (INA 122, total gain factor of 19,200),
followed by an analog low-pass filter (cutoff frequency of 100 Hz) for noise suppression.
Lastly, the electrical signal passes through a 16 bits analog-to-digital converter (ADS1115)
and feeds the digital port of the Raspberry Pi 3 microprocessor Model B (Broadcom Quad
Core BCM2837 chipset with 64 bits, 1.2 GHz clock, and 1 GB RAM).

Figure 1. Optical fiber sensor system for measuring FMG signals.

2.2. Force Transducer

The force transducer (Figure 2) comprises a periodical structure that deforms the
MMF and induces optical losses by microbending effect. The consecutive curvatures
cause the core-guiding modes to couple with the radiation modes, decreasing the output
light intensity [26]. Consequently, the optical signal varies proportionally to the dynamic
muscle contractions.

The transducer manufacturing begins with parts designed in the Inventor (Autodesk)
Software. Next, an Ultimaker 3 Extend 3D printer fabricates the components using acry-
lonitrile butadiene styrene (ABS) material. Lastly, a careful finishing procedure ensures a
smooth surface without sharp edges, providing comfort and safety to the user.
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The device contains two connectable pieces to fixate the fiber and create a deforming
structure with a period of 10 mm. The upper part has passers for inserting straps for
embracing the forearm. Once assembled, the force transducer has final dimensions of
60 mm×15 mm×15 mm.

Figure 2. Optical fiber transducer attached to the forearm through Velcro straps.

2.3. Experimental Procedure
2.3.1. Evaluated Postures

The experiments investigate eight intuitive hand poses (labeled with capital letters
in Figure 3) selected in agreement with previous works [17,27]. These gestures comprise
the flexion/extension and adduction/abduction of thumb and finger joins, as well as the
flexion/extension of the wrist. Four of the poses (A, B, C, and D) are similar to those
recognized by a popular, low-cost sEMG system (Myo Armband, Thalmic Labs) [28].

N is the relaxed hand position and works as a neutral reference to the classifier. Despite
not being included as a class, N indicates the transitions between gestures.

Posture A characterizes the closed fist. In opposite to A, B is the hand open with the
abduction of all fingers. C and D are the wrist flexion (wave in) and extension (wave out)
movements, respectively. Posture E adopts fingers flexed and the thumb abducted in the
carpometacarpal (CMC) joint. F has the flexion of all digits except the index. G comprises
an extension of the index and middle fingers. Lastly, H has all fingers joined and extended.

Figure 3. Postures adopted to test and validate the FMG sensor.

2.3.2. Measurement Protocol

This proof-of-concept study recruited two healthy participants with an average age of
24.40 ± 3.36 years old. The volunteers provided consent to participate, and the experiments
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followed the recommendations of the Ethics Committee. During the measurements, the
individuals sit comfortably by keeping their elbows supported and slightly flexed, with the
forearm suspended in the air in a neutral position. This procedure maintains the wrist with
neutral pronation to avoid unintentional movements.

The optical fiber transducer accommodates on the posterior side of the forearm over
the extensor digitorum communis (EDC) muscle. According to previous studies, vari-
ous fingers and wrist movements are detectable from the FMG signals produced by this
muscle [27]. A Velcro strap tightly adjusts the transducer to create a subtle preload without
injuring the user. As the sensor placement depends on muscle palpation, one may expect
variations in the FMG signals acquired for different individuals and measurement sessions.

After issuing a command visual, the volunteers executed sequences of predefined
postures; in the meanwhile, the microprocessor unit acquires and records the corresponding
optical signals. Each volunteer received previous instructions about the experimental
procedures, having to perform each pose during intervals of 5 s. Starting from posture N,
the volunteer performs the target gesture (A to H), then returns the hand to N. Therefore,
each FMG pattern comprises a rising transient followed by a stationary phase and a fall
transition. This step repeats 36 times per hand gesture, summarizing 288 FMG waveforms
per individual. Furthermore, the individuals must doff/don the strap and rest for ∼1 min
between experimental sessions to avoid fatigue and possible degeneration of force levels.

2.4. Classification of Hand Postures
2.4.1. Signal Processing

An analog-to-digital converter acquires the FMG signals at 200 Hz sampling rate
and transfers the data to the microcomputer through an I2C serial communication pro-
tocol. Digital data processing proceeds with routines programmed in Python to design
modular, scalable applications based on the Raspberry Pi single-board computer. After
removing the noise from the FMG patterns (using a low-pass fifth-order Butterworth digital
filter with a cutoff frequency of 100 Hz,) the routine normalizes the data and segments
it using a 5 s rectangular window before the classification. Figure 4a portrays the signal
processing pipeline.

2.4.2. Classification System

Classification proceeds with convolutional neural networks (CNN) implemented in
Python using Keras with TensorFlow backend [29]. The CNN comprises a one-dimensional
convolutional model that detects the particular characteristics of each FMG pattern in
the time domain. The convolutional layers contain filters to process the input signals
and generate feature maps. During the training step, the algorithm adjusts these filters
automatically to make them responsive to the relevant features [30].

The classifier (Figure 4b) has a convolutional layer with 64 filters and a convolutional
window of size 50, wherein the weights initiates with random values. After determining
the feature maps, a rectified linear unit (ReLU) activation function eliminates the negative
values [31]. Next, a max pooling layer designed with a reduction factor of 10 times (to make
the network more robust) eliminates redundant values and reduces the size of the input
layer of the dense network, improving the computing burden. To extract more features and
diminish the input, complementary convolutional layer and max pooling perform with
the same parameters as the previous one. Finally, after vectorizing the feature maps, the
data achieves the dense neural network comprising a competitive layer of 8 neurons with a
linear activation function.

The CNN training step adjusts the hyperparameters through supervised learning
using the gradient descendant algorithm. The Adam optimizer runs with a 0.001 learning
rate and clip value of 0.05. The loss function employs the mean squared error limited to
100 epochs to avoid overfitting.
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Figure 4. (a) Data processing pipeline and (b) architecture of the convolutional neural network.

The evaluation of classifier performance assumes the accuracy ACC and hit rate HR
as quantitative metrics,

ACC =
TP + TN

P + N
(1)

HR =
TP
P

(2)

where TP and TN are the true positive and true negative detections, respectively, P and N
are the total numbers of positives and negatives, respectively, [32]. Furthermore, since the
performance may vary depending on the training and validation sets, the tests followed a
10-fold cross-validation [33].

3. Results
3.1. Analysis of FMG Signals

Figure 5 summarizes the FMG signals measured for all volunteers. The voltage
waveforms are normalized and scaled for subsequent processing. The red dotted lines
indicate the reference force level, i.e., the neutral pose N. Albeit the amplitudes may
vary due to anatomical characteristics inherent to the volunteers, each posture produces
discernible temporal patterns.

Two types of muscle contractions occur during hand movements, namely, (i) con-
centric and (ii) isometric contractions [22]. The former governs the dynamics involved in
shortening muscle fibers, responsible for moving articulations during the transients of FMG
patterns. The latter maintains the hand posture and establishes stationary force levels.

Concerning the clenched fist (pose A), fingers joints bend by contraction of the flexor
digitorum superficilis (FDS) and flexor digitorum profundus (FDP) muscles, increasing
their diameters as the antagonistic extensors stretch. The normalized voltage is higher for
this movement because the strap enclosing the belly of the aforementioned muscles presses
the microbending transducer against the forearm, modulating the optical signal. A similar
pattern emerges for pose F; in this case, the magnitude of radial pressures diminishes due
to the extension of the index finger, relaxing part of the muscles ensemble. Alternatively,
posture E differs by thumb abduction, and the force level increase originates from the
activation of the abductor pollicis longus (APL) muscle.

As to the wrist flexion (pose C), despite the contraction of the flexor carpi radialis (FCR),
the force magnitude is lower than posture A because of fingers extension, abbreviating the
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contribution of FDS and FDP muscles. The transient part exhibits a peak followed by an
exponential decay; this behavior depends on how fast the transitions between postures
occur. Furthermore, this observation corroborates the higher activation of muscle fibers
during concentric contractions than the isometric ones. Similar events occur in poses A, E,
and F, as expected.

Conversely, posture B produces voltage values lower than the reference line. This
gesture comprises the extension and abduction of all digits. Upon activation of the extensor
digitorum communis (EDC) and relaxation of antagonistic flexors, overall radial pressures
decrease once the belly of the FDS and FDP muscles suffers a radial contraction, reducing
the mechanical load over the microbending transducer. This pattern repeats for postures
D and H, wherein differences in stationary levels result from wrist extension and fingers
adduction, respectively. For instance, gesture D produces peaks during both initial and final
transients, probably due to the contribution of the extensor carpi radialis (ECR) muscle.

Ultimately, although the differences between gestures G and F are limited to the
extension of the middle finger and abduction of the index one, these postures present
discrepant FMG patterns. This result suggests that isometric contractions for sustaining the
index finger abducted predominate over the activation of flexor muscles.

0

0.5

1

N
o
rm

al
iz

ed
 v

o
lt

ag
e

A

0

0.1

0.2

0.3

B

0

0.2

0.4

0.6

C

0

0.1

0.2

0.3

N
o
rm

al
iz

ed
 v

o
lt

ag
e

D

0

0.5

1

E

0

0.2

0.4

0.6

F

0

0.1

0.2

0.3

N
o
rm

al
iz

ed
 v

o
lt

ag
e

G

0

0.1

0.2

0.3

H

Figure 5. Normalized FMG signals of the eight postures measured for all volunteers during 5 s.

3.2. Identification of Hand Poses

Following the characterization of FMG signals, the collected waveforms and their
corresponding labels proceeded to the CNN training and validation accordingly to the
procedures exposed in previous sections. The confusion matrix (Figure 6) shows the
nominal gestures versus the classifier predictions regarding the average of volunteers,
yielding an overall accuracy of (93.98 ± 1.54)%.

Postures A, C, E, and F provided the best performance, achieving a hit rate ≥0.97%.
Conversely, gesture G obtained the poorest recognition with HR = 85%. Most misclassi-
fications belong to postures B, D, G, and H: these signals exhibit comparable waveforms
with negative variations in the voltage level. Furthermore, unintentional movements or
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muscular contractions also affect the behavior of FMG stimuli, which explains the eventual
confusion between antagonistic classes—poses A and B, for example.

The results suggest a successful classification of different gestures regardless of the
unique measurement channel. The temporal characteristics of the FMG signals complete the
lacking information from spatially-distributed forearm muscles, as obtained by arrays of
FSR. Nevertheless, monitoring a single position with the optical fiber transducer generates
similar waveforms evidenced in Figure 5; this aspect may compromise the identification of
gestures depending on their complexity and likenesses.

Figure 6. Confusion matrix summarizing the results for all volunteers.

3.3. Discussion

The proposed methodology identified eight gestures using a single optical fiber trans-
ducer. Typical FMG systems operating with static force levels require arrays of pressure
sensors to collect the spatial response from forearm muscles and discern between the
possible hand poses. For example, 32 FSR assessed with a support vector machine classifier
provide an accuracy of >99% for 17 classes [34]. Moreover, the interrogation of 16 FSR
through linear discriminant analysis yields an impressive accuracy of 96.7% for 48 hand
gestures [35]. Multiple measurement channels enrich the classifiers with unique features,
minimizing the ambiguities expected for overlaid groups of muscles. Nevertheless, elimi-
nating excessive sensors is crucial for improving portability and reducing hardware costs.

As to the dynamic methods, Table 1 summarizes the characteristics of current FMG
systems. It is worth noting that each work assumes a particular experimental protocol,
i.e., immediate comparisons would lead to biased conclusions. Using a combination
of pressure/strain transducers, inertial measurement units (IMU), and sEMG electrodes
yielded the best performance concerning number of classes (ten) and accuracy (99.5%) [19].
However, such an approach requires processing 23 measurement channels to retrieve
the gesture—for instance, ordinary static FMG signals assessed by arrays of FSR exceed
the performance of the dynamic approach [34]. Nevertheless, the proposed optical fiber
system achieves an acceptable accuracy based on a single acquisition channel, exceeding
the available technologies in terms of simplicity and comfort to the user (by alleviating the
mechanical load imposed on the forearm).



Automation 2022, 3 630

Table 1. Comparison of hand posture classification systems based on dynamic FMG signals.

Ref Transducers Classifier Accuracy (Gestures)

[19]
15 (strain/pressure
sensors, 9-axis IMU,

electrodes)
Random forest 99.5% (10)

[20] 8 (piezoelectric
sensors) k-nearest neighbor 95.5% (6)

[36] 1 (6-axis IMU) Correlator with
competitive layer 96.6% (4)

This work 1 (optical fiber) CNN 94.0% (8)

Concerning practical measurements, the experimentalist must consider possible varia-
tions in the FMG signatures caused by the forearm orientation and the magnitude of exerted
forces during grasp events [37]. Variations in the FMG waveforms will probably confound
the CNN and lead to equivocated predictions. Furthermore, using a single measurement
channel makes the system less robust to extraneous effects due to the lack of comparative
data. In this case, adding a complimentary optical or electronic transducer to implement a
data fusion technique may improve the sensor response [38].

Another aspect is the time required for buffering the FMG signals. A 5 s window
may frustrate applications demanding real-time response, such as virtual reality and
teleoperation. One may abbreviate the buffer size and increase the acquisition rate to
amend this limitation; though, refining the classifier accordingly to the duration of the
signals is mandatory.

Lastly, the number of classes retrieved by the proposed method is not impressive
compared with the available FMG (and EMG–assisted) systems [12–14]. Given the layered
configuration of the forearm muscles and the single fiber transducers, part of the additional
gestures may produce ambiguous FMG signatures. Identifying the individual motion of
the fingers based on the forearm contractions is hard to accomplish with concentrated
sensors [34]. However, applications such as prostheses control are feasible through a
limited set of gestures by implementing an event-driven finite state machine approach [24].
Instead of performing laborious training for a collection of classes, one may map a limited
set of gestures into a comprehensive dictionary of actions to drive the manipulator, making
the bionic prosthesis more intuitive and less exhaustive to the operator [25]. Yet, integrating
the FMG sensor with other technologies (sEMG, mechanomyography, optical tracking,
etc.) through collaborative or competitive data fusion is another possibility to enhance the
system reliability regarding a modular approach [25,39].

Further developments will focus on enhancing the robustness and miniaturizing the
device for applications outside the lab. Moreover, comprehensive experiments with a larger
population and following a strict protocol are expected to allow assessment of the practical
accuracy and of the repeatability/reproducibility of this method.

4. Conclusions

This proof-of-concept study pursued developing, implementing, and testing a force
myography system using optical fiber sensors with a single transducer. The project aimed
for a low-cost device without compromising its sensitivity, comfort to the user, mobility,
and robustness. Based on the transient characteristics of the FMG waveforms, the system
achieved an average accuracy of (93.98 ± 1.54)%. Although the transducer essentially mon-
itors the extensor muscles, it was possible to determine flexion and extension movements
besides combinations of these, making the sensor suitable for controlling orthoses and
prostheses by gestural commands.
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