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Abstract: In order to achieve an accurate airdrop in the actual environment, the influence of complex
interferences, such as wind field and the terrain of the environment, must be taken into account.
Aiming at this problem, a combined trajectory planning strategy of a parafoil system subjected to
intricate conditions is proposed in this paper. This method divides the parafoil airdrop area into an
obstacle area and a landing area, then, considering the terrain environment surface, a model for the
parafoil system in the wind field is built in the obstacle area. The Gauss pseudo-spectral method
is used to transform the complex terrain environment constraint into a series of nonlinear optimal
control problems with complex constraints. Finally, the trajectory of the landing area is designed by
means of multiphase homing, and the target parameters are solved by the improved marine predator
algorithm. The simulation results show that the proposed method has better realizability than a
single homing strategy, and the optimization results of the improved marine predator algorithm have
higher accuracy.

Keywords: parafoil system; trajectory planning; intricate constraints; Gauss pseudo-spectral method;
multiphase homing; marine predator algorithm

1. Introduction

The parafoil system is a kind of flexible aircraft with good gliding, controllability,
and stability. Unlike the traditional parachute system, which can only move with the
wind and is not controlled [1], the parafoil system can maintain the airfoil and provide
lift and forward force by relying on the air chamber formed by ram air after parachute
opening [2]. It can also change the attitude of the parafoil in the air by pulling down
the control rope, thereby precisely controlling the heading of the whole system. With
the continuous enhancement of China’s comprehensive national strength, parafoils have
played an essential role in aerospace, disaster relief, fixed-point airdrops, and other fields
with their unique structure and significant advantages of in-flight stability [3] carrying
capacity, and excellent aerodynamic characteristic’s irreplaceable role [4].

The homing strategies of the parafoil system in the actual airdrop environment are
roughly divided into two types: the optimal-control homing strategy considering the
constraints of a complex environment and the multiphase homing strategy without con-
sidering the limitations on obstacles. Chen et al. [5] proposed an optimal segmented-path
planning method for parafoil based on the gradient descent method, which transforms the
multi-objective optimization problems, e.g., accurate landing against the wind, low-control-
energy consumption, and obstacle avoidance into weighted single-objective-optimization
problems. Luo et al. [6] and Figueroa et al. [7] transformed the optimal control trajectory
planning into a nonlinear programming problem by using the pseudo-spectral method and
then solved it by using the sequential quadratic programming algorithm. Aiming at the
problem that the target trajectory planned by the traditional particle model is challenging to
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meet the system dynamics constraints in a complex environment, SUN [8] introduced the
six-degrees-of-freedom dynamics model of the parafoil system into the trajectory planning
of parafoil homing and designed a third-order trajectory optimization strategy based on
segment-point planning, discrete-point initial planning, and discrete-point self reconstruc-
tion by improving the Gauss pseudo-spectrum method. Cardoso [9] divided the homing
trajectory of the parafoil system into three segments and optimized it with an improved
genetic algorithm; Tao [10,11] used a chaotic particle swarm optimization algorithm and
quantum genetic algorithm to optimize the homing trajectory of the parafoil system; Mes-
sai [12] took the minimum energy consumption as the objective function, time-consuming
and turning radius as the input variables, established the optimization model of five-
segment homing trajectory, and optimized the parameters of each segment by using the
Gauss pseudo-spectral method.

The research of the above scholars focused on the homing strategy of the parafoil
system. In the real airdrop environment, there is no obstacles in a small range around the
target point. The combined homing approach enables the parafoil system to land on the
target point more accurately. Based on this idea, Cho [13] roughly divided the parafoil
airdrop environment into the obstacle and landing areas. When the parafoil system is in
the obstacle area, the fast-search random-tree algorithm is used to perform path search and
obstacle avoidance and then enter the landing area. After that, the trajectory is designed
through the multiphase homing strategy, and the target parameters are solved using the
genetic algorithm. Its research results can meet the needs of parafoil airdrop in complex
environments. Nonetheless, there are also some limitations, such as the fact the influence
of the wind field is not considered during the homing process of the parafoil, and the
traditional genetic algorithm used in the landing area is easy to fall into local optimization.

In this paper, the idea of dividing the complex airdrop area into obstacle and landing
areas was adopted. The wind-field disturbance and the feasible area after obstacle avoid-
ance were considered in the obstacle area. In the obstacle area, the Gauss pseudo-spectral
method was used to optimize the parafoil homing trajectory with the control quantity
as the optimization goal. In the landing area, the multiphase homing method was used,
and the marine predator algorithm with higher convergence was applied to optimize the
trajectory. The simulation results showed that the proposed method has good adaptability
and effectiveness in homing trajectory planning for parafoil systems.

The rest of this paper is organized as follows: Section 2 formulates the homing tra-
jectory planning problem; Section 3 describes the Gauss pseudo-spectral method and the
marine predator algorithm used for optimization; Section 4 provides the simulation results
to illustrate the effectiveness of the method; and Section 5 concludes this paper.

2. Problem Formulation
2.1. Parafoil System Particle Model

The parafoil system is usually composed of an umbrella body and load. If the umbrella
body and the load are regarded as a rigidly connected whole, a 6-DOF (degrees of freedom)
rigid-body model can be established. By further analyzing the relative motion between the
parafoil and the payload, the dynamic models of the parafoil system with 7-DOF, 8-DOF,
and higher degrees of freedom can be established. However, the higher the degree of
freedom of the model, the higher the computational complexity [14]. Therefore, when
studying the homing trajectory of the whole parafoil system, it is not necessary to consider
the relationship between the parafoil body and the load. The entire system can be regarded
as a particle, and the parafoil particle model can be used to replace the complex high-
degree-of-freedom model to realize trajectory planning.

For the parafoil system, the change of bilateral downward deflection has little effect on
its vertical velocity and glide ratio. The change of unilateral downward deflection impacts
its vertical velocity, glide ratio, and roll angle. Therefore, the control of unilateral downward
deflection is usually limited to the range of small and medium deflection (0–50%) [15]. As a
result, the parafoil system’s stable-flight speed and glide ratio can be regarded as a constant
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under any control and within a certain lower deflection range [16]. In order to simplify the
model, assumptions can be made as follows [17–19]:

• When the parafoil system is in the stable-descent stage, it can be regarded as a particle,
and the vertical and horizontal velocities of the system remain unchanged;

• There is no delay in the influence of the parafoil in terms of control inputs;
• The wind field is known, and the influence of wind speed and direction can be

transformed into the position offset of the initial point.

In this paper, the plane geodetic system was selected as the coordinate system, the
coordinate origin was the target point, and the motion equation of the parafoil system can
be expressed as: 

.
x = vs cos ϕ + vw,x.
y = vs sin ϕ + vw,y.
ϕ = u
.
z = vz

, (1)

where (x, y) is the horizontal position of the parafoil system, z is the vertical height, the
unit of position and height is m; vs is the horizontal velocity of the parafoil system, vz is
the vertical velocity of the parafoil system, vw,x and vw,y are the components of wind speed
on the x and y axes, respectively, the unit of speed is m/s; ϕ is the turning angle, the unit of
angle is rad;

.
ϕ is the turning angular acceleration, the unit is rad/s.

2.2. Wind-Field Model

The wind field mainly includes constant wind, gust, and flocculation wind [20]. In
this paper, when the parafoil system was in the obstacle area, due to the harsh-terrain
environment and constraints, such as mountains, it was easy to be disturbed by the wind
field with sudden and severe speed change. Therefore, the gust effect was considered as
the main influence of the wind field on the parafoil system, and the NASA classic gust
model was selected [21], as shown in Formula (2).

vwind = vmax
2
(
1− cos t

100 π
)

0 ≤ t ≤ 100 s
vwind = vmax 100 s < t ≤ 200 s ,
vwind = vmax

2
(
1− cos t−300

100 π
)

200 s ≤ t ≤ 300 s
(2)

where vwind is the wind speed, and the maximum wind speed is set as vmax = 4 m/s,
the direction is the positive direction of the x axis. t is time. When 0 ≤ t ≤ 100 s and
200 s ≤ t ≤ 300 s, the parafoil system is affected by two kinds of gusts. However, when
100 s < t ≤ 200 s, the parafoil system is affected by constant wind.

When the parafoil system enters the landing area, the terrain is relatively flat, and the
constantly insignificant wind affects the flight trajectory of the parafoil system. At this time,
the constant-wind impact is selected as the main impact of the wind field on the parafoil.

2.3. Complex-Terrain Model

When the parafoil system passes through the obstacle area, it encounters terrain
environments, such as peak areas and no-fly areas. At this time, it is necessary to avoid these
threatening environments. In this paper, the mountain was designed as a series of concentric
circles with

(
xp, yp

)
as the center, and the terrain environment can be expressed as:

‖
(
x− xp, y− yp

)
‖2 < Rp, p = 1, 2, · · · , (3)

z = h0 sin
(

π

δ

(
Rp −

√(
x− xp

)2
+
(
y− yp

)2
))

, (4)

where Rp is the maximum mountain radius, h0 denotes the height of the mountain, the unit
of the mountain radius and height of the mountain is m, δ is the smooth coefficient of the
mountain, and p denotes the serial number of the mountain.
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2.4. Trajectory Planning Problems in a Complex Environment

In the actual airdrop environment, the parafoil system often encounters obstacles, such
as high mountains and tall obstacles, but there is an open area in a certain range in the final
landing stage [22]. Therefore, the homing environment of the parafoil can be artificially
divided into two areas: the obstacle area and the landing area. Figure 1 is the schematic
diagram of the homing trajectory planning of a parafoil system in a complex environment.

Figure 1. Schematic of a combined parafoil system for homing trajectory planning in a complex
environment.

In Figure 1, the origin of the geodetic coordinate system is the G airdrop target landing
point, and the circular area with the target point is the center and Rth as the radius is the
landing area without obstacles. There are many high-mountain-obstacle areas between
the launch point and the landing area. Therefore, reasonable trajectory planning must
be adopted so that the parafoil system can smoothly pass through the obstacle area and
enter the landing area under the influence of the gust, and finally land accurately on the
target point.

2.5. Obstacle Constraints
2.5.1. Initial Value Constraint

If the initial time t0 is known, the initial state can be expressed as:
x(t0) = x0
y(t0) = y0
z(t0) = z0
ϕ(t0) = ϕ0

. (5)

2.5.2. Terminal Constraint

The target point of the obstacle area is the starting point of the landing area, and the
terminal time te is fixed. The position of the parafoil system after obstacle avoidance is
regarded as the terminal point of the obstacle area, and its position deflection is treated as
the terminal constraint of the obstacle area. In this way, the parafoil system can land on the
target point with high precision. 

te = z0/vz
x(te) = xe
y(te) = ye
z(te) = ze

. (6)
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2.5.3. Control Constraints

The maximum control quantity umax corresponds to the minimum turning radius. In
this paper, the horizontal velocity is vs = 13.8 m/s and the minimum radius is 100 m, then
the maximum control value is umax = 0.138.

|u| ≤ umax. (7)

2.5.4. Real-Time Path Constraint

According to Formulas (3) and (4), the real-time constraint of terrain avoidance trajec-
tory meets the following formula:

‖
(
x(t)− xp, y(t)− yp

)
‖2 ≥ Rp −

δ

π
arcsin

z(t)
hp

. (8)

2.6. Optimization Objective in the Obstacle Area

In the obstacle area, the parafoil system needs to avoid obstacles under the action of
the wind field, so it is mainly considered to minimize the consumption of control quantity,
which is expressed as:

J =
∫ te

t0

u2dt. (9)

Therefore, the trajectory optimization problem of the parafoil system in the obstacle
area can be transformed into a kind of nonlinear optimal control problem with complex
constraints [23] and then solved by the Gauss pseudo-spectrum method.

2.7. Trajectory Planning in the Landing Area

After the parafoil system successfully passes through the obstacle area, it enters the
landing area. At this time, the initial state of the landing area is the end state of the obstacle
area. Considering that there are almost no obstacles in the landing area, the parafoil system
trajectory can be designed using the multiphase homing strategy, as shown in Figure 2, so as
to improve the accuracy of its final landing and reduce the amount of control consumption.

Figure 2. Schematic diagram of trajectory planning in landing area.

As shown in Figure 2, point A is the initial position of the parafoil system in the landing
area and is also the end position of the parafoil system after the parafoil system completes
obstacle avoidance in the obstacle area. Its state is shown in Formula (4). The multiphase
homing trajectory planning in this paper is similar to the traditional three-stage homing
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trajectory. The whole multiphase homing trajectory is roughly divided into three sections:
the target-approach segment BC for the parafoil system to perform the gliding motion, the
energy-control segment DE for the hovering and cutting heights, and the landing segment
FG for the headwind alignment. Among them, CD and EF are transition sections, and
the corresponding radius of the arc trajectory is the minimum turning radius Rmin of the
parafoil system, and the center angle corresponding to the arc meets the constraint of
0 < β1, β2, β4 < π.

The key to the optimization of the whole segment homing part is to determine the
parameters Rep and θep, where Rep is the radius corresponding to the circular trajectory
of the energy control section and θep is the angle included between the connecting line
between the entry point D and the target point G and the x axis. In order to ensure the
flight stability of the parafoil system in the energy-control section and considering the
characteristics of the airdrop environment, the turning radius Rep cannot be greater than
the radius Rth of the landing area, so the range is set as (R1, R2), where R1 and R2 are the
upper and lower limits of the circular trajectory radius of the energy control section, and
R2 = Rth, and the value range of θep is (−π, π).

In order to ensure that the parafoil system achieves the smallest distance between
the landing point and the target point in the landing area, and to meet the requirements
of flared landing and avoid a collision with obstacles, the segmented trajectory objective
function is set as:

J =
∣∣∣∣Rmin(β1 + β2 + β4) + Repβ4 + ‖ BC ‖+

√(
Rep − 2Rmin

)
Rep − f z0

∣∣∣∣, (10)

where Rmin(β1 + β2 + β4) is total length of transition arcs AB, CD, and EF. Repβ3 de-
notes the length of energy-control section DE, ‖ BC ‖ is the length of the BC section,√(

Rep − 2Rmin
)

Rep is the length of the FG section, f is the glide ratio without the power
plant, and f z0 is the horizontal flight distance corresponding to the altitude when the
parafoil system enters the landing area.

At the same time, in order to ensure that the range of motion of the parafoil system is
limited to the landing area and is limited by the minimum turning radius, the radius of the
landing area must also meet the following requirements: Rth ≥ 2Rmin.

In this paper, the coordinate of the parafoil system at point A is set as (xa, ya, za), α0 is
its initial flight direction angle, then point A on the horizontal plane can be expressed as:[

xa
ya

]
=

[
xe
ye

]
. (11)

O1 point coordinate is written as:[
xO1
yO1

]
=

[
xa
ya

]
+ Rmin

[
cos α1
sin α1

]
. (12)

O2 point coordinate is expressed as:[
xO2

yO2

]
=
(

Rep − Rmin
)[ cos θep

sin θep

]
. (13)

∠BCx is the angle between BC and the x axis, which can be expressed as:

∠BCx =

{
sign(yBC)·π2 , xBC = 0
1−sign

2 ·sign(yBC)·π + arctan yBC
xBC

, xBC 6= 0
. (14)
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The length of the BC section is arranged as:

‖ BC ‖ = ‖ O1O2 ‖ =
√

x2
O1O2

+ y2
O1O2

. (15)

Define the symbolic variable s and set s = −1 when turning clockwise and s = 1
when turning counterclockwise. Therefore, the transition angles β1, β2, β3 and β4 can be
expressed as: 

β1 = s · (∠BCx− α0)
β2 = s · (α2 −∠BCx)
β3 = s ·

(
−s · α3 − θep

)
β4 = α3 +

π
2

. (16)

In order to ensure that the landing point will not deviate too far from the target point,
and also consider the problems of energy consumption and flight safety, set Rep ∈ [R1, R2]
and θep ∈ [−π, π].

3. Optimization Methods
3.1. Gauss Pseudo-Spectral Method

Due to the optimized result of the Gauss pseudo-spectral method, the global optimal-
control quantity of the system can be calculated. In this section, the principle of the Gauss
pseudo-spectral method is summarized below.

In the Gauss pseudo-spectral method, the state and control variables are discretized at
a series of Legendre–Gauss points (LG points), and the LG points are distributed in [−1, 1].
Therefore, the real time [t0, te] needs to be transformed to [−1, 1]. The transformation form
is as follows:

τ =
2t

te − t0
− te + t0

te − t0
. (17)

Then, configure N points (LG points) on the open interval (−1, 1), which is defined
as [τ0, τ1, · · · , τk, · · · , τN ](k = 1, 2, · · · , N). The points are the zero point of the N-order
Legendre polynomial. The N-order Legendre polynomial can be expressed as:

HN(τ) =
1

2N N!
· d

N

dτk

[(
τ2 − 1

)N
]

, N = 0, 1, · · · . (18)

In this paper, considering that the proposed method also involves initial and final
value constraints, there are two more points. Define τ0 and τe = τN+1 = 1 as the initial
and final times, respectively. We then have [τ0, τ1, · · · , τl , · · · , τN+1]. Finally, there are
N + 2 points.

After discretization, the state values at these LG points are regarded as their true state
values. Then, x(τ) can be obtained by Lagrange interpolation polynomial fitting.

x(τ) ≈ X(τ) = ∑N
i=0 Li(τ)Xi. (19)

Li(τ) =
N

∏
j=0, j 6=i

τ − τj

τi − τj
, i = 0, 1, · · · , N. (20)

Similarly, the control variable is discretized at N points (LG points) in (−1,1), and then
u(τ) can be obtained by Lagrange interpolation polynomial fitting.

u(τ) ≈ U(τ) = ∑N
m=1 Lm(τ)Um, (21)

Lm(τ) =
N

∏
j=0, j 6=m

τ − τj

τm − τj
, m = 0, 1, · · · , N, (22)

where Li and Lm denote Lagrange interpolation functions.
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Since x(τ) is only the fitting corresponding to first N + 1 nodes, it lacks the terminal
state, while u(τ) lacks the initial and terminal states. Then, the terminal constraint of the
system can be expressed as:

Xe = X0 +
te − t0

2

∫ 1

−1
f (x(τ), u(τ), τ)dτ. (23)

After discretizing, we obtain:

Xe = X0 +
te − t0

2 ∑N
k=1 ωk f (Xk, Uk, τk, t0, te), (24)

where ωk denotes the integral weight factor.
Then, the initial and terminal control quantities can be expressed as:

u(τ0) ≈ U(τ0) = ∑N
m=0 Lm(τ0)Um. (25)

u(τe) ≈ U(τe) = ∑N+1
m=0 Lm(τe)Um. (26)

After the derivative of Equation (19), we obtain:

.
x(τ) =

.
X(τ) = ∑N

i=0

.
Li(τ)Xi = ∑N

i=0 Dki(τk)Xi, (27)

where Dki is a differential matrix derived from Lagrange polynomials at point τk.

Dki =
.
Li(τk) =

N

∑
l=1

∑N
j=0,j 6=i

(
τk − τj

)
∑N

j=0,j 6=i
(
τi − τj

) ,k = 1, 2, · · · , N; i = 0, 1, · · · , N. (28)

Meanwhile, after the discretization of the equation of motion, it can be expressed as:

.
x(τ) =

te − t0

2
f (Xk, Uk, τk, t0, te). (29)

Using the same method, the real-time path constraint can be discretized at point τk:

C(xn, Un, τn, τ0, te) ≤ 0. (30)

Then, the objective function also needs to be dispersed at point τk:

J = Φ(X0, Xe, t0, te) +
te − t0

2 ∑K
n=1 ωnL(Xn, Un, τn, t0, te), (31)

where ωn denotes the integral weight factor.
After the above transformation, a series of nonlinear parameter optimization problems

can be solved by a sequential quadratic programming algorithm [24]. The optimized flight
trajectory is set as the connecting line between some points in the optimization [25]. First, a
path planned by a small number of nodes is quickly obtained through the optimization
algorithm, and then more nodes are inserted through the interpolation of the trajectory to
obtain a higher-precision-flight trajectory.

The position (xe, ye, ze) of the parafoil system after obstacle avoidance can be judged

whether it is in the landing area according to
√
(xe − xf)

2 + (ye − yf)
2 ≤ Rth. Since the

parafoil system may still be in the obstacle area after obstacle avoidance, if the parafoil
system starts the multiphase homing strategy at this time, it may collide with the obstacles.
Therefore, the segmented homing strategy is designed to be started only when the parafoil
is in the landing area. Additionally, the Gauss pseudo-spectral method can determine the
endpoint of the parafoil system in the obstacle area and produce it in the landing area.
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3.2. Improved Marine Predator Algorithm

When the parafoil system enters the landing area, according to the relationship be-
tween the horizontal distance l from the starting point of the landing area to the target point,
the remaining height h after obstacle avoidance and the glide ratio f , l < h× f is divided
into feasible areas and l > h × f is divided into unfeasible areas. For the unpowered
parafoil system in this paper, Formula (32) needs to be met in order to accurately reach
the destination:

h ≥ Rth
f

. (32)

Using the geometric relationship of Formulas (11)–(16), the multiphase homing trajec-
tory planning problem of the parafoil system in the landing area can be transformed into
a parameter optimization problem. However, the objective function J of the landing area
cannot be explicitly expressed, and there are few parameters to be optimized so that the
improved marine predator algorithm can be used for optimization.

The marine predator algorithm (MPA) is a new meta heuristic algorithm to simulate
marine hunting behavior proposed by Faramarzi et al. in 2020 [26]. The algorithm is
inspired by the movement mode of marine predator and prey. The optimization process is
divided into three stages, in which the predators and prey update their positions according
to the Levy motion or Brownian motion [27]. At the same time, prey also acts as predator
identity, which makes the algorithm more dynamic. Additionally, its unique marine
memory storage stage and eddy formation and Fish Aggregating Devices (FADs) effect
can further improve the quality of the updated population. In comparison to particle
swarm optimization, differential evolution, and other classical algorithms, it has a faster
convergence speed and convergence accuracy.

Although the basic MPA algorithm has significant advantages in optimization prob-
lems, there are still problems whereby the swarm intelligence algorithm can easily fall
into local optimization and a slow convergence speed, which still need to be improved
to improve its optimization performance. In order to better improve the optimization
accuracy and convergence speed of MPA, this paper combined chaotic opposition initial-
ization with a grouping dimension learning strategy, introduced a t-distribution mutation
operator, and proposed a multi-strategy improved MPA, which can significantly improve
the optimization accuracy and convergence speed at the same time.

3.2.1. Chaotic Opposition Learning Strategy

Chaotic mapping is a nonlinear theory that has nonlinearity, universality, ergodicity,
and randomness [28]. It can traverse all states without repetition in a certain range accord-
ing to its own characteristics. It can help generate new solutions and increase population
diversity in intelligent algorithm optimizations [29]. Therefore, it is widely used. The
iterative speed of tent map is fast, and the chaotic sequence is evenly distributed between
[0, 1]. Its expression is as follows:

λt+1 =

{
λt/α, λt ∈ [0, α)

(1− λt)/(1− α), λt ∈ (α, 1]
, t = 0, 1, 2, · · · , T , (33)

where λt is the number of chaos generated in the ith iteration, and T is the maximum
number of iterations; α is a constant between [0, 1].

In the process of initializing the population by the swarm intelligence algorithm [30],
some randomly generated individuals are often distributed in the invalid area and edge
area of entering and leaving the optimal solution, which reduces the search efficiency of
the population. Using the opposition-based learning (OBL) strategy, introducing a random
solution and its opposite solution in population initialization can improve the quality of
the initial population better than introducing two independent random solutions.
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In this paper, by combining tent chaotic mapping with OBL, a new tent opposition-
based learning (TOBL) mechanism was proposed. The mathematical model of TOBL is
expressed as:

Xi,j = lbj + ubj − λi ⊗ Xi,j , i = 1, · · · , n, (34)

where Xi,j is the j dimensional component of the opposite position of the ith prey. The lower
and upper bounds of the individual positions are lb and ub, respectively. The notation ⊗
shows entry-wise multiplications.

The TOBL strategy is equivalent to taking the sum of the upper and lower bounds
of the objective function as the center, using the uniform change of tent to dynamically
compress the distribution range of the original initial population, and simultaneously
trying to make the population uniform.

3.2.2. Adaptive t-Distribution

T-distribution is also called student’s distribution; the shape of its distribution function
curve is closely related to its degree of freedom [31]. In the basic MPA, after the prey
updated its position, it was necessary to detect and update the position of the top predator
and store it in the marine memory. Next, we considered the influence of fads and further
updated the position of the prey.

In order to ensure more effective memory storage, an adaptive t-distribution operator
was introduced to mutate the position of prey before simulating the influence of FADs. If
the mutated position was better, it replaced the original position. Its mathematical model is
expressed as:

X′i = Xi + Xi·t(Iter), (35)

where X′i is the position of the ith prey after mutation, and t(Iter) is the t-distribution with
the current number of iterations as the degree of freedom.

3.2.3. Grouping Dimension Learning Strategy

In the iterative process of the algorithm, some dimensions of some prey positions
may have already reached the optimal dimension. Due to the influence of individual
dimensions, the fitness of these prey positions becomes worse [32]. In order to survive in
the ocean, the prey (or predator) with a poor location needs to learn the predation ability
from the prey (or predator) with a good location. Based on this idea, a grouping dimension
learning strategy was proposed. The prey affected by FADs was divided into two groups
according to the order of fitness. The group with good fitness is called the elite group, and
the group with poor fitness is called the learning group.

Because the dimensions of the elite group have their advantages and disadvantages,
the position dimension of the elite group is taken as the average value, and each prey in
the learning group learns from the average dimension of the elite group. In this strategy,
each dimension of each prey in the learning group was compared to the average dimension
value of the elite group. According to the priority crossing principle of the large absolute
difference, the first H1 corresponding dimensions with large absolute differences were
crossed one by one. If the fitness of the prey after the crossing was better, the corresponding
dimensions were crossed, and vise versa. Its mathematical model is expressed as:

∆Xk
L,i =

∣∣∣Xk
L,i − Xk

javg

∣∣∣, d (36)

XL,i =

{
Xk,cross

L,i , f
(

Xk,cross
L,i

)
is better than f (XL,i)

XL,i otherwise
, (37)

where XL,i is the ith prey position of the learning group, Xk,cross
L,i denotes the ith prey

position after crossing the kth dimension of the average dimension value of the elite group,
∆Xk

L,i is the absolute difference between the kth dimension of the ith prey of the learning
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group and the kth dimension of the average dimension of the elite group, and Xk
javg denotes

the kth dimension of the average value of the elite group.
The larger the value of H1, the more dimensions crossed. For individuals in the

learning group, they are close to the average value of the elite group to a great extent,
reducing the differences between the individuals in the learning group. At this time,
although the average fitness of the population decreased, the convergence speed was
accelerated. However, reducing individual differences will bring the risk of falling into
local optimization. Even if the convergence accuracy is improved, in comparison to the
original algorithm, there is still a certain probability of reducing the optimization accuracy
of the improved algorithm. The smaller the value of H1, the less the number of crosses, and
the individual difference is small, in comparison to before crossing. Although the individual
diversity is maintained, the intersection of fewer dimensions dramatically weakens the
ability of the modified algorithm to jump out of the local optimum, and there is also the risk
of falling into the local optimum. Moreover, there is minimal crossover, and individuals
cannot learn well, which reduces the convergence speed. Therefore, the selection of H1
should be considered in a compromise. In this paper, H1 was selected to be equal to half of
the number of individual dimensions.

Because the elite group was relatively close to the global best, it was not suitable for
the disturbance variation of all dimensions, which leads to the elite wandering near the
optimal solution and affects the convergence accuracy. Therefore, make the prey of the elite
group learn from each other and learn from the adjacent prey on the premise of retaining
their own dominant dimension. The strategy crossover principle is the same as the prey
crossover principle of the learning group, except that the crossover object is replaced by the
previous prey adjacent to the prey from the average dimension value of the elite group, and
each prey in the elite group is set to take the first H2 adjacent corresponding dimensions
with a large absolute difference to cross one by one. In the same way as the H1 selection
principle, H2 is equal to half of the number of individual dimensions.

3.3. Algorithm Flow

1. Initialization: set the initial point coordinates of the parafoil system (x0, y0, z0), head-
ing angle α0, target-point position (xf, yf, zf), target-point heading αf, and other information;

2. Determine whether the position of the parafoil system is within the airdrop area. If
not, it ends. Otherwise, proceed to step 3;

3. Determine whether the position of the parafoil system has entered the landing area. If
the parafoil system is in the obstacle area, proceed to step 4. Otherwise, proceed to
step 9;

4. The optimization problem information is extracted, the pseudo spectrum is discretized,
and the results are dimensionless;

5. The discrete parafoil multi-constraint nonlinear programming problem is solved
under the current interval grid and interpolation order setting;

6. If the error meets the requirements, execute step 7. Otherwise, proceed to step 4;
7. Obtain the optimized trajectory of the obstacle area and increase the control quantity to

make the parafoil continue to fly for a period of time, so as to carry out the multiphase
homing strategy;

8. Judge whether the parafoil system position enters the landing area. If the parafoil
system is in the landing area, execute step 9; otherwise proceed to step 6;

9. Conduct trajectory planning in the landing area. Take the sample information entering
the landing area as the starting point of the multiphase homing trajectory planning in
the landing area and call the optimization algorithm to solve the trajectory parameters
in the landing area. Now, the trajectory planning of the parafoil system in a complex
environment has been completed.
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4. Simulation and Analysis

In order to verify the effectiveness of the homing strategy used in this paper, firstly,
the multiphase homing strategy planned by the improved marine predator algorithm was
compared to other algorithms. The gust interference was considered, and the mountain
obstacle constraint was introduced to simulate the proposed combined trajectory planning
algorithm, and then the results were compared to the homing strategy of the direct Gauss
pseudo-spectrum method.

The states of the parafoil system were set as follows: initial launch point
(xe, ye, ze) = (500, 650, 600) (m), target point (xf, yf, zf) = (0, 0, 0) (m), minimum allowable
turning radius Rmin = 100 (m), gliding ratio f = 3, horizontal speed vs = 13.8 (m/s),
vertical velocity vz = 4.6 (m/s), initial angle αe = −π/4, and the wind direction near
the target point was set in the positive direction along the x axis. Its end angle needed to
meet the conditions of upwind alignment, thus αf = π or αf = −π. According to these
initial conditions, the improved marine predator algorithm, particle swarm optimization
algorithm based on logistics chaotic mapping (LPSO), whale optimization algorithm based
on chaotic mapping (CWOA), and gray wolf optimizer (GWO) were used as optimization
tools to optimize the homing trajectory of the parafoil system in the landing area.

It can be observed from the results in Figure 3 and Table 1 that MSIMPA has a faster
iteration speed than the other algorithms, and its final convergence value is second only to
the convergence value of LPSO, but the radius optimized by LPSO has a negative value;
that is, LPSO may have the result of optimization failure. After comparing the values
optimized by several algorithms for the planning of the parafoil system, MSIMPA has
a higher accuracy of trajectory results. In the above algorithms, the optimized parafoil
system data can realize the segmented homing of parafoil, except for the fact that there are
occasional optimization errors in LPSO, resulting in the failure of the segmented homing
strategy. Among them, the data optimized by MSIMPA is substituted into the multiphase
homing strategy, and the homing trajectory of the parafoil system is shown in Figure 4.

Figure 3. The best fitness iteration curve.

Table 1. Optimization results.

LPSO CWOA MSIMPA GWO

Optimized radius (m) −89.313 272.899 281.859 293.672
Optimization angle (rad) 1.180 0.889 0.831 0.750

Fitness convergence value 1.565 × 10−6 0.226 1.491 × 10−5 0.003
Landing error (m) - 0.634 0.179 0.612
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Figure 4. Multiphase homing trajectory planning results: (a) plane trajectory; (b) 3D trajectory.

In order to verify the effectiveness of in the combined homing strategy designed in this
paper, the initial position of the parafoil system was set as (x0, y0, z0) = (400, 3200, 1200) m,
the target point was set as (xf, yf, zf) = (0, 0, 0) m, the initial angle was set as α0 = −π/3,
the landing-area radius was set as Rth = 800 m, the end angle after obstacle avoidance was
set as αe = −π/4, and the final angle should meet the conditions of upwind alignment,
thus αf = π or αf = −π. The wind direction near the target point was set to be positive
along the x axis; moreover, the location of the center point of the mountain model in this
paper is shown in Table 2. At the same time, in order to make the direct homing strategy
better compare with the combined homing strategy in this paper, its initial conditions
and end conditions were the same as those of the combined homing strategy. Finally, the
simulation was conducted according to the above set conditions, and the result of the
homing trajectory are shown in Figure 5.

Table 2. Mountain model parameters.

The Ordinal
Number Coordinates (m) Height of the

Mountain (m)
Mountain Radius

(m)

1 (300, 2300) 1500 400
2 (1500, 1500) 1550 400
3 (2000, 2500) 1500 400
4 (0, 2000) 1480 400
5 (500, 1500) 1500 400
6 (1000, 3000) 1490 400
7 (1500, 0) 1495 400
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Figure 5. Result of trajectory planning of the parafoil system: (a) trajectories in the plane;
(b) 3D trajectories.

From the red line in Figure 5, we can observe that the parafoil is first disturbed by
sudden wind, then the heading angle is adjusted to avoid the mountain peak. Finally, it
can complete the obstacle avoidance task, reach the landing area, and continues to fly for a
period of time, then switch to the subsection homing mode to achieve a windward landing,
and its landing point is highly refined. It can be observed that the overall trajectory of
the parafoil system is relatively smooth, and the downward trend is relatively gentle. As
can be seen from the blue line in the figure, although the parafoil system adopting the
direct homing strategy finally reached the target position, it did not completely avoid the
obstacles. It can be seen from the black rectangle that the parafoil system passed by the
mountain near the landing area.

The control quantities of the two strategies were compared, as shown in Figure 6.
It can be seen that the control quantity transformation of the combined homing strategy
is relatively gentle, and the control quantity curves are relatively smooth as a whole.
Moreover, the parafoil system passes through the obstacle area in more than 80 s, then the
control quantity is slowly increased to about 0.138, and then the segmented homing control
is conducted. In contrast, the single Gauss pseudo-spectral homing strategy makes the
parafoil system stay in the obstacle area for a long time and be more affected by the sudden
wind, so there are more oscillations in its control quantity, which means that the parafoil
frequently adjusts the control quantity and heading angle in the homing process.

Figure 6. Comparison results of control quantities of the parafoil system.
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The comparison results of the two trajectory plans are shown in Table 3. It can be seen
that the trajectory planned by the single Gauss pseudo-spectral homing strategy under the
initial conditions of this paper consumes much energy and may not fully realize the obstacle
avoidance function. When approaching the landing area, it may collide with the mountain
peak. From the actual project point of views, the control is very difficult, and the whole
homing process is challenging to realize. The combined homing strategy is adopted in this
paper, because the parafoil enters the landing area after successfully avoiding obstacles,
there are few obstacles, and it is close to the target point. At this time, the parafoil system’s
accurate and gentle landing should be taken as the primary consideration. Therefore, the
multiphase homing strategy selected at this time has a segmented constant value, and the
control operation is much simpler than the optimal homing, so the control management is
relatively small and the simulation time is relatively short. The whole homing process is
also easy to realize in practical engineering.

Table 3. Comparison of trajectory planning algorithm index results.

Landing-Position Error (m) Control Management Simulation Time (s)

Combined homing strategy 0.492 10.198 9.861
Single Gauss pseudo-spectrum

homing strategy 0 34.346 113.639

5. Conclusions

In this paper, a combined homing trajectory optimization method was proposed
to solve the homing trajectory planning problem of the parafoil system with multiple
constraints in a complex environment. To be specific, we divided the parafoil airdrop area
into obstacle and landing areas based on the actual airdrop situation. In the obstacle area,
the Gauss pseudo-spectrum method with better obstacle avoidance and homing ability
was used to realize the obstacle avoidance task of the parafoil system under the influence
of sudden wind. For the landing area, a multiphase homing strategy was applied, and the
improved marine predator algorithm with better convergence and more stable optimization
results was used to optimize the multiphase homing trajectory. Finally, various cases of
homing trajectory planning of the parafoil system in complex environments were simulated.
The results show that the homing strategy in this paper can meet the requirements of
obstacle avoidance and high accuracy of upwind landing under gusts, and the overall
trajectory is relatively smooth. The control management of the combined homing strategy
is almost one-third of that of the single Gauss pseudo-spectral homing strategy. Moreover,
the simulation time is almost one-eleventh of that of the single Gauss pseudo-spectral
homing strategy, which highlights the advantages of the combined homing strategy.

However, the studies in this paper did not consider the gust transformation near
the landing point, which may affect the trajectory planning in the landing area and cause
difficulties in the trajectory tracking control of the parafoil system. In addition, the mountain
and parafoil system models used in this paper were relatively simple, but the actual
parachute and mountain obstacles should be more complex. For future work, on the
one hand, gust interference will be considered in the landing area. On the other hand,
more complex parafoil models will be applied for trajectory planning under complex
mountain obstacles.
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