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Abstract: Visual simultaneous localization and mapping (VSLAM) is an essential technique used
in areas such as robotics and augmented reality for pose estimation and 3D mapping. Research on
VSLAM using both monocular and stereo cameras has grown significantly over the last two decades.
There is, therefore, a need for emphasis on a comprehensive review of the evolving architecture of
such algorithms in the literature. Although VSLAM algorithm pipelines share similar mathematical
backbones, their implementations are individualized and the ad hoc nature of the interfacing between
different modules of VSLAM pipelines complicates code reuseability and maintenance. This paper
presents a software model for core components of VSLAM implementations and interfaces that
govern data flow between them while also attempting to preserve the elements that offer perfor-
mance improvements over the evolution of VSLAM architectures. The framework presented in this
paper employs principles from model-driven engineering (MDE), which are used extensively in the
development of large and complicated software systems. The presented VSLAM framework will
assist researchers in improving the performance of individual modules of VSLAM while not having
to spend time on system integration of those modules into VSLAM pipelines.

Keywords: visual simultaneous localization and mapping (VSLAM); software architecture for VS-
LAM; components of VSLAM systems

1. Introduction

Visual simultaneous localization and mapping (VSLAM) is a technique used to es-
timate camera motion and to generate 3D maps of environments using vision-based
sensors. VSLAM is an essential building block in several robotic, automotive, and aug-
mented/mixed reality (AR/MR) applications [1]. In the presence of sufficient illumination
and visually distinctive environments, VSLAM can be used to track the 6 degrees-of-
freedom (DOF) pose of the camera as well as to generate globally consistent 3D maps and
camera trajectories with minimal drift over large-scale motion [2]. Therefore, VSLAM can
also be viewed as a combination of visual odometry and loop closure [3]. Most VSLAM
implementations share common components such as filtering, feature detection, and image
alignment in the front-end for generating sensor-agnostic representations of the input
data. The back-end usually consists of keyframe management, optimization, and map
improvement for estimating motion and structure with global consistency and minimal
error [4]. There still remain open challenges in VSLAM implementations such as resource
allocation, distributed mapping, and optimizing map storage [4]. The research on improv-
ing the state-of-the-art in VSLAM is still ongoing, and several different approaches and
implementations of VSLAM are being continuously proposed [5–8]. The newly proposed
VSLAM approaches, conforming to their experimental software nature, are also vulnerable
to the same issues that arise commonly in complex software engineering systems. This
necessitates developing a better understanding of the core components and interfaces
within VSLAM systems captured by an overarching software architecture for VSLAM.
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The ability to create a generalized software model from commonly occurring compo-
nents in any robotic application can speed up the overall application development process
by improving code reusability and by reducing the time required for system design, devel-
opment, integration, and maintenance [9]. Therefore, a software architecture for VSLAM
that not only satisfies the original performance requirements but also offers long-term
maintainability, reliability, stability, and robustness could significantly assist researchers
while also promoting a commonality of language and a flexibility in composition. A frame-
work for VSLAM could be highly beneficial in the long-term if it were designed with the
requirements for robust perception under consideration [4], as well.

This paper aims to present an overview of VSLAM algorithms and, from this overview,
to propose a model of VSLAM using components and defining interfaces with specific
message types for assisting in the design, development, and testing of individual mod-
ules of VSLAM. Such an approach offers three key advantages: (i) better transparency in
troubleshooting the software system, (ii) the ability to independently modify individual
components, (iii) improved efficiency in system integration, and (iv) a better conceptual
model of the system in general. The survey on VSLAM algorithms from 2010 to 2016 by
Taketomi et al. [3] and the review of the SLAM literature up to 2016 by Cadena et al. [4]
explain the high-level framework employed by state-of-the-art SLAM algorithms up until
2016. However, their works more generally review SLAM and do not provide detailed dis-
cussion on vision-based SLAM modules. Fraundorfer and Scaramuzza [10] systematically
explained visual odometry algorithms developed between 1980 and 2011 but did not cover
techniques that employ loop closures for global optimization. To the best of our knowledge,
the current literature only reviews VSLAM algorithms up until 2016. In this work, we
include more recent advances while also introducing a standardized comparison. Most
notably, we introduce a novel framework to address algorithm reusability and architecture
modularity to assist in the development of new VSLAM approaches. Therefore, the main
contributions of this paper include (i) an analysis of past trends in design and performance
of VSLAM algorithms; (ii) a comprehensive review of open source libraries and pack-
ages used in their implementations; and (iii) a general overview of VSLAM algorithms
developed between 2000 and 2019; and finally, leveraging these other contributions, (iv) a
component-based model of VSLAM modules.

The rest of this paper is organized into the following sections: Section 2 summarizes
the approaches that have been used to implement various VSLAM algorithms. Section 3
develops an accumulated list of modules commonly found in VSLAM implementations
for both feature-based and direct approaches. Section 4 proposes a model for VSLAM
based on its evolving architecture from the literature. Section 5 lists the tools, libraries, and
packages used in VSLAM module implementations. Section 6 provides an overview of the
performance of various implementations of VSLAM against standard benchmark datasets
for VSLAM. Finally, Section 7 presents the conclusion.

2. Overview of Approaches in VSLAM

The majority of currently existing visual SLAM algorithms primarily consist of two
stages: the front-end, which handles transforming sensor data into a representation in
feature space and establishing constraints in robot motion and sensor measurements, and
the back-end, which consumes the constraints generated by the front-end and performs an
optimization to maximize the maximum a posteriori estimate of the unknown poses and
landmarks. Representation of the back-end as a factor graph has been de facto standard
for formulating the core graph-based structure of SLAM problems due to its intuitive and
generalized nature.

2.1. Front-End Modules for VSLAM

Often, the data received from perception sensors is large, dense, and too complex to
be represented directly in the core graph of constraints. Due to this reason, it is common to
derive constraints from salient portions of the sensor data such as features and patches with
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high image gradients. Depending on which approach is chosen, feature-based and direct
approaches stem out. Specific implementation of the front-end also varies based on the type
of sensor configuration used such as monocular, stereo, RGB-D, etc. or some combination
of them. Most of the modules of VSLAM can be used with these sensor configurations
interchangeably. The majority of VSLAM algorithms have been developed using feature-
based [10] and direct [11,12] approaches. Hybrid approaches that combine the selected
benefits from both direct and feature-based approaches have also been proposed and are
described below.

2.1.1. Feature-Based

Feature-based VSLAM methods track keypoint correspondences over successive im-
age frames and perform a joint optimization of camera pose and 3D world point locations
using a framework known as bundle adjustment. These methods require rotation and
scale-invariant feature detection, effective matching, and algorithms such as Random
Sample Consensus (RANSAC) for robust outlier removal [10]. Similar to most VSLAM
approaches, feature-based methods also require modules such as pose-graph optimization,
local mapping, and global map optimization to achieve high performance overall [13,14].

Initialization: The initialization module refers to the initial local map and camera pose
generation, and the first setup of the global world frame for the algorithm. The front-
end usually performs the initialization by triangulating an initial set of keypoints using
two-view reconstruction algorithms such as the five-point algorithm [15], eight-point algo-
rithm [16], or objects with known geometry [14,17]. In feature-based monocular VSLAM,
two-view initialization becomes delayed since at least two keyframes are needed for local
mapping and tracking [5]. However, in stereo setups, a single stereo-pair can be used
to initialize SLAM by directly estimating parameters of the essential matrix, which is a
matrix that relates 2D image points corresponding to the same 3D landmark points in two
different images [14,18]. Approaches such as model selection between homography (for
planar scenes) and fundamental matrix (for general scenes) have also been proposed [5].
Although most approaches estimate local map and pose by estimating parameters of the
homography or the essential matrix between two keyframes by matching point correspon-
dences, recent line correspondence-based methods that assume a constant rotation model
over three successive keyframes have been explored [19].

Feature detection: Feature detection is used to generate keypoints from corners (Harris [20],
Shi-Tomasi [21], Moravec [22], Forstner [23], FAST [24], and KLT [21]), blobs (SIFT [25],
SURF [26], CENSUR [27], and ORB [28]) or line segments [29–33] for correspondence
matching. Robust visual odometry requires feature descriptors to exhibit localization accu-
racy, repeatability, computational efficiency, robustness, distinctiveness, and invariance [10].
Most feature detectors consider the local peaks and crests on the feature-response function,
usually after a non-maxima suppression, to be the detected features in the image [20,25].
Recently, both point and line features were combined for better performance overall [8,19].

Feature matching/tracking: Feature matching and tracking are necessary to find corre-
sponding feature points in successive images, known as correspondences [14]. The brute
force approach to feature matching employs a comparison of the pairwise sum of squared
distances or normalized cross correlation between the feature points detected in first and
second images. However, due to the quadratic computational complexity of such an
approach, other techniques have been explored utilizing data structures such as search
trees, bag-of-words, and hash tables for fast lookup of neighboring feature points in both
images [5,34]. In the presence of wide-baseline motion between the two images, corre-
sponding feature points are searched at their expected positions in the second image using
image motion and distortion models [21]. Such an approach predicts the expected location
of the feature point by assuming a motion model between the two images. Epipolar match-
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ing is also used to reduce the search space in the second image to only the points along the
epipolar lines corresponding to the feature points in the first image [35].

Keypoint outlier removal: Often, corresponding feature points are mismatched, and due
to a high number of such outliers in the set of correspondences, RANSAC is performed
over a camera motion model [10]. Usually a perspective-n-point (PnP) or efficient PnP
(EPnP) algorithm is used to generate a camera motion model upon which RANSAC [36] is
performed. The 5-point, 6-point, 7-point, and 8-point algorithms are widely used PnP varia-
tions in the literature. However, varying degrees of accuracy have also been achieved with
lower numbers of point correspondences. For line correspondences, Pumarola et al. [19]
explored EPnPL [37] for model fitting.

2.1.2. Direct

Direct methods avoid feature extraction and are designed to process image data
directly using numerical optimization techniques for minimizing photometric cost us-
ing most of the pixels in the image to obtain the initial estimates of the structure and
motion [11]. Usually, variants of image alignment techniques based on the famous Lucas–
Kanade algorithm [38] are used to iteratively estimate the parameters of camera motion
and 3D structure of the scene. Modules such as pose-graph optimization, loop closure, and
keyframe management are also used in direct methods to improve overall performance
and robustness [6,11].

Image alignment: Dense tracking using image alignment has been performed primarily
using variants of the optical flow algorithm proposed by Lucas and Kanade [38] to estimate
warping parameters between consecutive images [39]. The camera motion and depth map
are jointly optimized for a large number of pixels in the image with the cost function

arg min
p

∑
x
‖I1(x)−W(I2(x), p)‖2, (1)

where W(I, p) is the warp function applied to image I1 with parameters p for transforming
it close to the second image I2. Baker et al. [39] provide a detailed overview of four different
configurations of the Lucas–Kanade algorithm (forward additive, inverse additive, forward
compositional, and inverse compositional) based on the direction of warping between the
template and image as well as on whether the update rule is additive or compositional.

Optimizer: Dense tracking methods require minimization of the energy function consisting
of photometric residuals from all pixels based on brightness constancy [12]. A warping
model is selected with appropriate parametrization for optimization [11]. The parameters of
this warping transform are optimized with update steps based on steepest-descent, Newton,
Gauss–Newton, and Levenberg–Marquardt formulations [39]. The overall framework
of direct methods can be modelled as a maximum a posteriori (MAP) estimation [4].
The image alignment-based dense and semi-dense camera pose tracking optimization is
essentially a maximization over the negative log likelihood of the photometric error over
all pixels [40]. The negative log of the prior term therefore becomes the regularization
term in the energy that is optimized. In DTAM [7], a non-convex energy functional was
proposed with a photometric error data term and a regularization term that uses a spatial
smoothness prior in an inverse depth parameterization.

2.1.3. Hybrid Approaches

In semi-direct methods, camera motion is estimated using feature-based keypoints
tracked using optical flow. The mapping is performed using direct approach on keyframes
that are generated after large baseline motion of the camera from the last keyframe [40].
Semi-dense methods combine the computational efficiency of feature-based methods and
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the ability to work in featureless conditions of direct methods to estimate motion and
structure in real time [41].

2.1.4. Other Common Modules

The front-end in VSLAM is also responsible for the task of data association. In the
short term, the front-end associates measurements to variables in consecutive camera
frames. In the long term, the front-end is responsible for finding loop closures to generate
looping constraints on the graph of keyframes for back-end optimization [4].

Keyframe management: Keyframes are specific frames captured by the camera when large
disparities are observed. Keyframe-based techniques offer robustness in map generation
due to better 3D landmark triangulation [42]. The frequency at which keyframes are cho-
sen and discarded can be used to establish an adaptive usage of processing and memory
resources used by the algorithm. The technique of bundle adjustment (BA) is usually
performed on a subset (window) of keyframes for local mapping to reduce the computa-
tional complexity and to improve convergence of the optimization. Various strategies for
insertion and culling of keyframes based on factors such as the number of co-visible points
and disparity with the previous keyframe, and computational resource limits have been
used in the literature [5,43].

The keyframe pose-point constraints are usually stored in the form of a covisibility
graph with a threshold number of shared landmarks for efficient BA and pose-graph
optimization [44,45].

Relocalization and loop detection: VSLAM systems fail on occlusions and fast camera
movements when tracking cannot be performed. Techniques using place recognition and
data structures such as co-visibility graphs and spanning tree of keyframes are used to
detect previously observed landmarks and to either relocalize the camera or identify loop
constraints on the pose graph of the system [46]. The performance of relocalization im-
proves when place recognition techniques such as bag-of-words (DBoW2 [47]) are used [5].

Loop closure: Visual odometry systems lack global map consistency checks and are there-
fore prone to drift from the ground truth over time as motion estimation error accumu-
lates [10]. This can be corrected by detecting constraints from instances of the system
coming back to a previously observed location, also known as place recognition [48]. The
visual vocabulary for both local and global image descriptors can be used to generate
loop candidates [10]. Techniques using visual bag-of-words have been frequently used in
the past to implement loop closure detection [49]. The detected loop candidates are then
verified for geometric consistency using epipolar constraints against previously observed
keypoints [50].

3. Back-End Modules of VSLAM

Feature-based, direct, and hybrid VSLAM approaches all share the overall framework
since they take camera image frames as input and generate camera motion models and
3D models of the scene as the output. They, however, differ in some of the core modules
associated with local mapping and the optimization framework. This section provides
a description of the most commonly found internal modules in both feature-based and
direct approaches. Figure 1 also provides a general illustration of the feature-based VS-
LAM pipelines specifically and loosely generalizes the state-of-the-art pipelines from the
literature such as ORB-SLAM [5], PL-SLAM [8], and PTAM [14].

Visual odometry systems accumulate both rotational and translational drift errors
over time due to uncertainties in camera poses and 3D landmark positions. This issue is
resolved by optimizing the old map points and camera poses with newly found geometrical
constraints such as loop detection and multiple overlapping keyframes [42]. Several tech-
niques such as performing BA on keyframes after loop constraint detection, and alternating
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between pose-graph optimization and BA [5] have been proposed that perform global
bundle adjustment while also keeping the required computation within resource limits for
real-time operation [3].

Bundle adjustment: Bundle adjustment is the estimation of camera positions T, camera
orientations R, and 3D landmark positions X through a joint optimization on the repro-
jection error between the landmark projections onto the keyframes π(X) and matched
keypoints. The optimization on reprojection error is defined as follows:

arg min
Ri ,Ti ,Xj

n

∑
i

m

∑
j
‖zij − π(Xj, Ri, Ti)‖2, (2)

where n is the number of images, m is the number of point projections in the ith image and
j iterates over the observation of m landmark points visible in the ith image as zij.

The nonlinear nature of such an optimization problem requires the use of nonlinear
optimization algorithms such as Levenberg–Marquardt and Gauss–Newton. Local BA is
used to obtain local 3D landmark positions around the current keyframe or a window
of keyframes [13]. Full or global BAs can be performed on all keyframes, however, with
increased computational cost. For multiple types of features (points, edgelets, and lines),
cost functions are custom designed based on the reprojection constraints [8].

Factor graph optimization: The camera poses and their relative transforms are usually
represented as a probabilistic graph, where the camera poses and landmark positions
are the nodes and the probabilistic constraints between them are the edges [51]. Visual
odometry algorithms usually accumulate drift over time, which can be modelled as the
propagation of error in both poses and transforms through the pose graph [10]. Given
initial noisy estimates for the variables such as camera poses and landmark positions, a
factor graph can be used to calculate the maximum a posteriori (MAP) inference to optimize
the graph further for consistency and to remove drift. An error term generated from the
expected camera pose is summed up to a cost function over all edge constraints,

arg min
xi

−log(P(x0)∏
i

P(xi|Z)), (3)

which on expanding the logarithm expression and dropping the constant prior factor
becomes a sum of exponents as follows:

arg min
xi

∑
i

P(xi|zi), (4)

where an assumption of Gaussian distributions as P(xi|zi) = exp(h(xi) − zi)
2
Σ with a

nonlinear measurement function h(.) yields

arg min
xi

∑
i
(h(xi)− zi)

2
Σ. (5)

This shows that, under Gaussian assumption, MAP inference is equivalent to solving
a nonlinear least squares. At this point, a nonlinear optimizer such as the Gauss–Newton,
Levenberg–Marquardt, or Dogleg algorithms could be used to generate the MAP estimate
for the posterior P(X|Z) [51]. Such techniques have also been referred to as graph-based
SLAM, pose-graph SLAM, and smoothing in the literature.

Loop constraints in a factor graph provide important information for extended con-
sistency of the global map and for reduction of error in camera poses and their relative
transforms. Several approaches for loop constraint detection have been proposed in the
past using both local [52] and global [53,54] image feature descriptors.



Automation 2021, 2 54

Figure 1. The factor graph is the central back-end structure for the state-of-the-art visual simultaneous localization and
mapping (VSLAM) pipelines. This probabilistic graphical model stores probabilistic constraints of various kinds such as
relative landmark positions and odometry measurements between camera poses. A factor graph is a bi-partite graph where
the two types of nodes are variables (unknowns) and factors (constraints). Such a graphical model is used to perform
maximum a posteriori inferencing to extract P(X|Z).

4. Software Model for VSLAM Architecture

The principles of component-based software engineering help model a software sys-
tem in terms of components, connectors, and rules to define the model topology using those
components and connectors [9]. This section presents a novel architectural framework for
VSLAM that not only has the potential to promote code reusability and maintainability but
also can function to model existing state-of-the-art VSLAM systems. The following subsec-
tion defines VSLAM as consisting of both active components that perform computations on
the processor and passive components such as data structures and databases that primarily
store different kinds of information throughout the execution of the active components. We
believe such a delineation of VSLAM modules into active and passive components as well
as the interfaces between them can help make research on individual components of the
VSLAM pipeline independent of the other components and, therefore, allow researchers
to focus on improving particular components of VSLAM rather than on expending their
efforts on system integration.

4.1. Architecture

The objects and their connections shown in Figure 2 illustrate the proposed architecture
visually. This architecture consists of active component types and the interfaces between
them as specified below:

1. Feature detector: requires an image frame and descriptor type and provides image
coordinates of the detected feature points and feature descriptors;

2. Feature matcher: requires feature coordinates and descriptors from two images and
provides feature point correspondences between two images;

3. Local mapper: requires keypoint correspondences and camera intrinsics, and provides
local 3D map points;

4. Local pose estimator: requires feature point correspondences from two images and
provides a T ∈ SE(3) transform between camera image and last keyframe;

5. Keyframe manager: requires a new image frame and its feature points, and provides a
keyframe decision and keyframe update;

6. Loop detector: requires a last keyframe and a new image frame and provides a loop
closure constraint for a factor graph;

7. Nonlinear optimizer: requires a factor graph of measurement, motion, and loop constraints
and provides an optimized graph based on maximum a posteriori inferencing; and

8. Analyzer (for benchmarking purposes): requires the camera pose and 3D map points
and provides accuracy measurements tested against benchmarking datasets.
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The following passive components assist the active components in storing and retrieving
different types of information as specified:

1. Keyframe list: stores the keyframes collected by the keyframe manager based on
the keyframe generation and culling conditions and continuously optimized by the
factor-graph nonlinear optimizer component

2. Factor graph: stores a graph of all the constraints from odometry; landmark measure-
ments; loop closures; and other sensors such as Inertial Measurement Unit (IMU)
factors, kinematics factors, etc.

Figure 2. Architecture for VSLAM showing components (active and passive), interfaces, and data flow with appropriate
message types.

4.2. Data Flow

This paper defines the data flow through the architecture as consisting of the messages
that are exchanged at the interfaces between both the active and passive components.
Selection of the appropriate set of message types can have a significant impact on the
overall performance of the system. Based on the previous literature on VSLAM, we define
a specific set of message types to be an appropriate selection for transfer of data across
VSLAM components.

Keyframe messages: A keyframe message consists of the current image and the camera
pose associated with the image. Keyframes are generated, stored, retrieved, and deleted by
the keyframe manager component based on factors such as availability of wide-baseline im-
ages, limitations on computational resources, and detection of loop closures. The keyframe
messages are stored in the keyframe database in the form of a covisibility graph and span-
ning tree for fast access using both the global map optimizer and the keyframe manager
components. This definition gains inspiration from the survey by Younes et al. [42].

Keypoint messages: The keypoint message consists of detected feature point coordinates
of a correspondence pairs between two images. The filtered keypoint messages are used by
the keyframe manager to generate keyframes when a threshold number of keypoints are
detected in consecutive image frames. The keypoint messages are associated with the 3D
landmark measurements in the sensor frame.

Image messages: An image message consists of the normal RGB images generated by
a monocular camera with specified height and width parameters. Raw images are only
processed by the feature detector and loop detector components to create sensor agnostic
data for subsequent components to use. Image messages are not passed or stored anywhere
in raw format to conserve space and to maintain computational efficiency.
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Map point messages: The map point messages consist of the 3D coordinates of the map
points as generated by the local mapper. The map points are stored in the map database
and occasionally optimized by the factor graph optimizer.

Camera pose messages: The camera pose messages consist of the 6 DoF position and
orientation information needed to uniquely define the extrinsic parameters of the camera
for a given time instant. The initial camera pose is generated by the initializer component
and then later updated by the local mapper component.

4.3. Additional Modules

Resource monitor: The standard for robust perception as described by Cadena et al. in
their review paper on visual odometry considers resource awareness as one of the important
characteristics of any robust perception system. We therefore recommend an additional
component in the VSLAM pipeline termed “resource monitor”, which runs in the back-
ground and continuously monitors the CPU, GPU, memory, storage, and network usage
metrics and dynamically changes the quantitative parameters of the VSLAM modules to
vary the amount of processing time and space needed on-the-go accordingly.

Visualizer: To further enhance the productivity of researchers in VSLAM, we also recom-
mend that particular emphasis be applied in the development of a graphical user interface,
called the “visualizer” component, which extracts data from every interface between the
VSLAM components and offers clear and reliable visualization of the different messages
that flow through the VSLAM pipeline.

5. Algorithms, Tools, and Libraries

Since most of the VSLAM back-end problems can be formulated as optimization
problems, software libraries that offer fast and accurate numerical optimization are indis-
pensable to the current state-of-the-art in VSLAM implementations. In VSLAM pipelines,
modules involving bundle adjustment, pose-graph optimization, and direct image align-
ment require efficient and real-time optimization over cost functions with thousands of
parameters. This has only been achieved due to open-source implementations of software
packages for large optimization problems including linear, nonlinear, constrained, and
unconstrained ones.

Georgia Tech Smoothing and Mapping (GTSAM) is a smoothing and mapping (SAM)
library for robotics and vision in C++ built using Bayesian networks and factor graphs.
The General Graph Optimization (g2o) package offers a powerful back-end for solving
optimization problems where constraints can be formulated as nodes and edges, such as in
graph-based SLAM and bundle adjustment [51]. Ceres is a high-performance C++ library
for solving large optimization problems such as nonlinear least squares with bounds and
general unconstrained optimization [55]. The Incremental Smoothing and Mapping (iSAM
and iSAM2) libraries are sparse nonlinear optimization libraries implemented in C++ that
calculate incremental updates using efficient matrix factorization [56].

6. Benchmarking and Datasets

In this section, we discuss several datasets that have been used for evaluating visual
SLAM systems [57]. The following subsections of this paper describe these datasets and
compare the performance of VSLAM implementations that have been evaluated on each
dataset by the respective authors of the VSLAM implementations.

KITTI Odometry: The KITTI Odometry dataset [57] consists of 22 stereo sequences taken
from four Flea4 cameras, 3D laser scans taken from a Velodyne HDL-64E, and GPS-RTK
readings taken on their self-driving platform over a length of 39.2 km in outdoor conditions.
The sensor fusion and localization system based on OXTS RT3003 is used to define the
ground truth for benchmarking. The KITTI dataset has been used for evaluation by
ORB-SLAM [13], DSO [58], LDSO [59], GDVO [60], and Stereo LSD-VO [61], as shown in
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Table 1. Since ORB-SLAM2 is the most complete state-of-the-art VSLAM pipeline in feature-
based methods (includes almost all the modules of VSLAM as proposed in the model), it
achieves the best performances on this dataset. Stereo DSO [62] and Stereo LSD [61] can
be observed in Table 1 to be a close seconds in terms of relative and absolute translational
errors, respectively.

Table 1. Absolute trajectory error (RMSE) on the KITTI Odometry Benchmark Dataset for state-of-the-art VSLAM implementations.

ATE/RMSE T_abs T_rel

(ATE/RMSE) ORB-SLAM Mono DSO LDSO ORB-SLAM2 St. LSD GDVO Stereo DSO ORB-SLAM2 St LSD-VO

Seq 00 5.33 126.7 9.322 1.3 1 4.9 0.84 0.83 1.09
Seq 01 - 165.03 11.68 10.4 9 5.2 1.43 1.38 2.13
Seq 02 21.28 138.7 31.98 5.7 2.6 6.1 0.78 0.81 1.09
Seq 03 1.51 4.77 2.85 0.6 1.2 0.3 0.92 0.71 1.16
Seq 04 1.62 1.08 1.22 0.2 0.2 0.2 0.65 0.45 0.42
Seq 05 4.85 49.85 5.1 0.8 1.5 1.8 0.68 0.64 0.9
Seq 06 12.34 113.57 13.55 0.8 1.3 1.5 0.67 0.82 1.28
Seq 07 2.26 27.99 2.96 0.5 0.5 0.8 0.83 0.78 1.25
Seq 08 46.48 120.17 129.02 3.6 3.9 2.4 0.98 1.07 1.24
Seq 09 6.62 74.29 21.64 3.2 5.6 2.2 0.98 0.82 1.22
Seq 10 8.68 16.32 17.36 1 1.5 1.1 0.49 0.58 0.75

European Robotics Challenge (EuRoC): The EuRoC dataset [63] consists of 11 sequences
captured from the on-board stereo camera and IMU of a quadrotor in varying motion
and illumination conditions. The external motion capture system and 3D scans of the
environment are provided as the ground truth for evaluation of the SLAM systems. The
EuRoC dataset has been used in evaluating ORB-SLAM2 [13], LSD-SLAM [61], SVO [17],
DSO [58], and PL-SLAM [8] as shown in Table 2. This is one of the most challenging
datasets for any VSLAM pipeline as the motion consists of rapid translations and rota-
tions, as observed from a micro-aerial vehicle. ORB-SLAM2 can again be observed to offer
one of the best performances compared to other state-of-the-art VSLAM pipelines in Table 2.

Table 2. Translational error (RMSE) on the European Robotics Challenge (EuRoC) Micro-Aerial Vehicle (MAV) Dataset for
state-of-the-art VSLAM implementations.

Trans (RMSE) T_abs T_rel

Seq. St ORB-SLAM2 St LSD-SLAM St SVO MonoVO ORB-SLAM Mono DSO MonoVO LSD P-SLAM L-SLAM PL-SLAM

V1_01 0.035 0.066 0.04 0.04 0.12 1.24 0.0583 0.0464 0.0423
V1_02 0.02 0.074 0.04 - 0.11 1.11 0.0608 - 0.0459
V1_03 0.048 0.089 0.07 - 0.93 - 0.1008 - 0.689
V2_01 0.037 - 0.05 0.02 0.04 - 0.0784 0.0974 0.0609
V2_02 0.035 - 0.09 0.07 0.13 - 0.0767 - 0.0565
V2_03 - - 0.79 - 1.16 - 0.1511 - 0.1261

MH_01 0.035 - 0.04 0.03 0.05 0.18 0.0811 0.0588 0.0416
MH_02 0.018 - 0.05 0.02 0.05 0.56 0.1041 0.0566 0.0522
MH_03 0.028 - 0.06 0.02 0.18 2.69 0.0588 0.0371 0.0399
MH_04 0.119 - 0.17 0.2 0.24 2.13 - 0.109 0.0641
MH_05 0.06 - 0.12 0.19 0.11 0.85 0.1208 0.0811 0.0697

TUM RGB-D: The TUM RGB-D dataset [64] consists of color and depth sequences cap-
tured from a Microsoft Kinect in two different environments at 30 Hz. The ground truth is
defined by the time-synchronized 6 DoF poses provided by an external motion capture
system at 100 Hz. The TUM RGB-D dataset has been used for evaluation by PL-SLAM [8],
ORB-SLAM [5], LSD-SLAM [6], Semidense-VO [41], and PL-SVO [65], as shown in Table 3.
The PTAM [14] and ORB-SLAM [5] pipelines deliver the best performances on this dataset
out of the solely vision-based SLAM pipelines given in Table 3.
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Table 3. Absolute trajectory error on the TUM RGB-D dataset.

AKfT (RMSE) LSD-SLAM PL-SLAM ORB-SLAM PTAM

f1_xyz 9 1.46 1.38 1.15
f2_xyz 2.15 1.49 0.54 0.2
floor 38.07 9.42 8.71 -

kidnap - 60.11 4.99 2.63
office 38.53 5.33 4.05 -

NstrTexFar 18.31 37.6 - 34.74
NstrTexNear 7.54 1.58 2.88 2.74

StrTexFar 7.95 1.25 0.98 0.93
StrTexNear - 7.47 1.5451 1.04
deskPerson 31.73 6.34 5.95 -
sitHalfsph 7.73 9.03 0.08 0.83
WalkXyz 5.87 9.05 1.48 -
WalkXyz 12.44 - 1.64 -

WalkHalfsph - - 2.09 -

Other datasets: The ICL-NUIM dataset [66] consists of RGB-D sequences, ground truth
camera poses, and 3D surface models for four different trajectories generated in a synthetic
environment. This is the first dataset to provide a 3D surface ground truth for assessing
reconstruction accuracy in SLAM systems. The ICL-NUIM dataset has been used for the
evaluation of SVO, ORB-SLAM, DSO, and LSD-SLAM by Forster et al. [17] and of PL-SVO
by Gomez-Ojeda et al. [65]. The New College dataset [67] consists of 30 GB of data collected
as 5 DoF odometry, omnidirectional, and stereo camera sequences captured by a robotic
vehicle driving through college campus. The New College dataset has been used for
evaluation of RSLAM [68] and ORB-SLAM [5]. Other notable datasets used for evaluation
of the VSLAM systems include RobotCar dataset [69], TrakMark [70], SLAMBench2 [71],
and the dataset proposed by Martull et al. [72].

7. Conclusions

Numerous approaches to VSLAM including filter-based, feature-based, direct, semi-
direct, and semi-dense methods have been developed and tested in the past. Exploration
of VSLAM has fueled research in several different areas of computer vision such as feature
detection, place recognition, numerical optimization methods, and visual geometry. The
landscape of VSLAM pipelines continues to grow, with new approaches being continuously
proposed. A standardized model of VSLAM pipelines is required now more than ever
before. Appropriate delineation of module boundaries and definition of the interfaces
between them can help improve conceptual understanding, can optimize performance, and
can offer high code reuse by bringing consistency in implementation techniques. Several
aspects for robust 3D perception using monocular and stereo visual cameras have not
been addressed sufficiently enough for high reliability, efficiency, and performance. This
paper reviews VSLAM implementations through the lens of a consistent model, compares
their performances as presented in the literature, and provides a concise summary of open
source libraries that have been used to develop VSLAM systems.
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