
Article

Optimal Control Implementation with Terminal
Penalty Using Metaheuristic Algorithms

Viorel Minzu

Control and Electrical Engineering Department, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
viorel.minzu@ugal.ro

Received: 14 September 2020; Accepted: 10 October 2020; Published: 15 October 2020
����������
�������

Abstract: Optimal control problems can be solved by a metaheuristic based algorithm (MbA) that
yields an open-loop solution. The receding horizon control mechanism can integrate an MbA to
produce a closed-loop solution. When the performance index includes a term depending on the final
state (terminal penalty), the prediction’s time possibly surpasses a sampling period. This paper aims
to avoid predicting the terminal penalty. The sequence of the best solution’s state variables becomes a
reference trajectory; this one is used by a tracking structure that includes the real process, a process
model (PM) and a tracking controller (TC). The reference trajectory must be followed up as much as
possible by the real trajectory. The TC makes a one-step-ahead prediction and calculates the control
inputs through a minimization procedure. Therefore the terminal penalty’s calculation is avoided.
An example of a tracking structure is presented. The TC may also use an MbA for its minimization
procedure. The implementation is presented in two versions: using a simulated annealing algorithm
and an evolutionary algorithm. The simulations have proved that the proposed approach is realistic.
The tracking structure does or does not work well, depending on the PM’s accuracy in reproducing
the real process.

Keywords: optimal control problem; metaheuristic algorithm; tracking controller;
simulated annealing; evolutionary algorithm; process model

1. Introduction

In process engineering, many applications involve the optimal control of a dynamic system.
Sometimes the structural properties of a dynamic system and the nature of the optimal control problem
lead to theoretical control laws that are relatively easy to implement without significant computational
complexity. On the other hand, there are situations in which the optimal evolution of the system
requires important computational effort within a time interval. That is why metaheuristic-based
algorithms (MbAs) (see [1–3]) have been used for over two decades in control engineering (see [4–6]).

The closed-loop control structure able to integrate an MbA is the receding horizon control (RHC)
mechanism (see [7–9]). The controller of this structure makes optimal predictions using a process
model (PM). Model predictive control is a particular case of RHC (see [10]). The integration of MbA
and RHC are systematically described in [7,9,11]. The prediction horizon depends on the nature of the
optimal control problem (OCP)’s performance index. A big computational complexity occurs when
the performance index includes a Mayer-type term that measures the quality of the trajectory in its
final extremity. This term is usually called terminal penalty. In this case, the final time of prediction
and control horizons are identical. Unfortunately, in the first sampling periods, the prediction horizon
covers all or near all control horizon. Therefore, the prediction’s calculation takes a long time that
possibly does not enter inside a sampling period.

This paper proposes an alternative control structure to avoid the big computational complexity of
predicting the terminal penalty. The new approach also aims to give a closed-loop solution to the OPC

Automation 2020, 1, 48–65; doi:10.3390/automation1010004 www.mdpi.com/journal/automation

http://www.mdpi.com/journal/automation
http://www.mdpi.com
https://orcid.org/0000-0003-2619-8169
http://dx.doi.org/10.3390/automation1010004
http://www.mdpi.com/journal/automation
https://www.mdpi.com/2673-4052/1/1/4?type=check_update&version=2

Automation 2020, 1 49

in question. We suppose that an MbA has already been developed for solving this OCP. An execution
series will produce the best solution for the addressed problem. The sequence of the best solution state
variables is called the reference trajectory in our approach.

The control structure proposed in this paper also includes a model of the real process (PM) and
has, as data input, the reference trajectory produced by the MbA. The closed-loop structure has the
following main objective: the reference trajectory must be followed up as much as possible by the
sequence of its state variables (the real trajectory). That is why we may consider the closed-loop as a
tracking structure.

Section 3 states the tracking problem as the new problem that has to be solved by the tracking
structure. Neither the OCP in question nor the specific MbA is involved in this statement. The reference
trajectory contains intrinsically both. The new control structure has a tracking controller that aims
to approach the reference and real trajectories. The tracking controller will use only one-step-ahead
predictions to minimize the distance between trajectories as much as possible. Hence, the computational
complexity will be much diminished.

For its minimization task, the tracking controller may use, in turn, a metaheuristic based algorithm,
denoted by MA in the sequel. Let us note that the MA is different from MbA. Section 4 gives an example
of how to solve a benchmark OCP using a tracking structure. The tracking controller’s implementation
is presented in two versions: the first includes a simulated annealing algorithm and the second an
evolutionary algorithm.

The tests have proved that the tracking structure is a pragmatic approach to solve the OCP in
question when we already have a reference trajectory (eventually yielded by an MbA). The price to pay
is the fact that the performance index is approximated with an error of a few percent. The key factor is
the accuracy of the PM in reproducing the real process. Before a real-time implementation with a real
process, the tracking structure’s designer can simulate it and analyze the degradation of the process’
quasi-optimal behavior.

2. Closed-Loop Structure for Optimal Control

2.1. Optimal Control Problem: Hypotheses

Let us consider an OCP regarding an invariant nonlinear dynamic system with differential and
algebraic equations as a PM:

.
X = f (X(t), U(t)) (1)

X = [x1, · · · , xn]
T; U = [u1, · · · , um]

T; X(t) ∈ Rn; U(t) ∈ Rm

The control horizon is [t0, tN], with discrete moments ti = t0 + i·T, I = 0, . . . , N, where T is the
sampling period, and t0 is the initial moment (t0 = 0). If the initial value X0 = X(t0) and the sequence of
control inputs

U0 = U(t0), U1 = U(t1), . . . , UN−1 = U(tN−1)

are known, then the sequence of the state variables

X1, . . . , XN−1, XN,

can be calculated using the PM.
Solving an OCP implies calculation of the control sequence that maximizes or minimizes the

performance index J(t0, tN, X(t0), U) on the control horizon, starting from X(t0).
Besides the initial conditions, there are also a certain number of algebraic and differential

constraints imposed to control inputs and state variables.
In this work, we have adopted some working hypotheses that cover a lot of the processes involved

in many OCPs.
Working hypotheses:

Automation 2020, 1 50

• The field f = [f1, · · · , fn]
T has all the smoothness properties (continuity and differentiability)

needed by the sequel’s calculation.
• The dynamic system described by (1) corresponds to slow nonlinear systems, such as chemical

batch processes. The controller needs a sampling time, T, large enough to calculate the current
optimal control input (denoted U(k) in the sequel).

• For this kind of process, the initial state X(t0) can be known. When masses, volumes,
and concentrations compose the initial state, this is a realistic hypothesis because it can
be regenerated.

• The constraints refer only to the control inputs: U(t) ∈ Ω ⊂ Rm, where Ω is an open set.

2.2. Closed-Loop Control Structure

In the majority of papers that address an OCP and use a specific MbA, the solution is limited
to the calculation of control input values that optimize the performance index using the concerned
metaheuristic. Emphasis is placed on the metaheuristic structure and its parameter tuning that involves
good effectiveness. For a closed-loop control structure with a real process (not a process model) the
sequence of optimal control inputs mentioned before is useless. The closed-loop implementation is a
connected problem, important, and not easy to treat.

The receding horizon control (RHC) structure is a well-known method to achieve a closed-loop
control structure that can be a solution for this kind of problem. We have already proposed a systematic
design procedure in [7] that uses RHC as a closed-loop structure. This one includes the MbA adapted
to play the role of the controller.

Because the theoretical framework of the RHC is already well known, we recall hereafter only the
elements that define the RHC strategy:

• The controller calculates the next control input value by looking ahead for a number of steps
regarding a given performance index. The control input is only implemented by one step.

• The controller predicts over the number of steps taken into account using a dynamic process
model (PM).

• The implementation result is checked, and a new decision is made by taking updated information
into account and looking ahead for the same number of steps.

• The prediction horizon “recedes” at each sampling period but keeps the final extremity
(we considered here the most difficult situation when the objective function has a terminal
penalty term). Hence, its length decreases by one unit at each sampling period.

The receding horizon controller is, roughly speaking, the MbA, slightly modified to be integrated
into the closed-loop. It makes a prediction of the evolution of the process over the so-called
prediction horizon.

2.3. Correspondence between Performance Index and Prediction Horizon

Usually, the performance index can be expressed for the sake of simplicity by its continuous
general form as

J = min
u

I; I =

t f∫
t0

L(x(t), u(t), t)dt + M(t f , x f).

The first part is a Lagrange-type term that measures the quality along the trajectory of the dynamic
system. The second part is a Mayer-type term that measures the quality of the trajectory in its final
extremity. The Mayer-type term will be called terminal penalty in the sequel. The structure of the
performance index is decisive for the strategy of RHC related to the prediction horizon.

The prediction horizon can have different positions inside the control horizon [0, H] (see [11]).
Figure 1 shows the situation when the prediction horizon includes the final moment H of the control

Automation 2020, 1 51

horizon. Accordingly, the prediction horizon’s length is variable, having the value h = H − k, where k
is the current sampling time. Because k evolves from 0 to H−1, it holds

h = H, . . . , 1.

Automation 2020, 1, FOR PEER REVIEW 4

horizon. Accordingly, the prediction horizon’s length is variable, having the value h = H − k, where k
is the current sampling time. Because k evolves from 0 to H−1, it holds

h = H, …, 1.

Figure 1. The prediction and control horizons with terminal penalty.

Generally, this scheme is compulsory when the performance index includes a terminal penalty
because this must be calculated, and consequently, the prediction horizon must include the final
states. It meets the elements that define the receding horizon control (RHC) strategy.

The prediction horizon “recedes” at each sampling period but keeps the final extremity. Hence,
its length decreases by one unit at each sampling period. Unfortunately, in the first sampling periods,
the prediction horizon covers all or near all control horizon. Therefore, the prediction’s calculation
takes a long time that possibly does not enter inside a sampling period. A favorable situation would
be when there would be an estimation of the terminal penalty. However, generally speaking, there is
no such estimation for each process. That is why we propose another approach in this paper, which
avoids calculating the terminal penalty.

3. Tracking of the Quasi-Optimal Trajectories

This paper proposes a method to implement a closed-loop control structure devoted to the
situation in which an MbA has already been developed, aiming to solve an optimal control problem
having a terminal penalty. For example, the OCP described in Section 4 has been solved using an
evolutionary algorithm, denoted EA1. The later one, which is a stochastic algorithm, yields a single
solution after a single execution. Therefore, it generates a single realization of a stochastic process.
The designer of EA1 has made the appropriate choices to ensure the convergence of the stochastic
process. A solution yielded by EA1 is a sequence of control inputs that optimizes the performance
index and allows simulation of the open-loop system’s evolution over the control horizon. Practically,
one must carry out EA1 many times (e.g., 30–40) to obtain quasi-optimal solutions. After a simulation
series, the best quasi-optimal solution is available. Four elements can express this one:

• the initial state: 0X

• the sequence of quasi-optimal control inputs: *
1

*
1

*
0 ,,, −NUUU 

• the sequence of quasi-optimal state variables:

**
1

*
10 ,,,, NN XXXX − (2)

• the value of the objective function: *J

The simulated state evolution having the best performance index will be called in the sequel
reference trajectory.

Remark 1:

- The solution found by EA1 is an open-loop solution. Its control input sequence is useless for a
control structure that includes a real process. It cannot be used directly by a control structure.
Generally speaking, the MbA has to be slightly modified and integrated into the controller of an
eventual closed-loop (see [7,9,11]).

- If the OCP under consideration has a terminal penalty, there is an additional difficulty to
integrate the MbA into the controller: the prediction horizon must include the final time for each

k k+1 H 0

prediction horizon

time

Figure 1. The prediction and control horizons with terminal penalty.

Generally, this scheme is compulsory when the performance index includes a terminal penalty
because this must be calculated, and consequently, the prediction horizon must include the final states.
It meets the elements that define the receding horizon control (RHC) strategy.

The prediction horizon “recedes” at each sampling period but keeps the final extremity. Hence,
its length decreases by one unit at each sampling period. Unfortunately, in the first sampling periods,
the prediction horizon covers all or near all control horizon. Therefore, the prediction’s calculation
takes a long time that possibly does not enter inside a sampling period. A favorable situation would be
when there would be an estimation of the terminal penalty. However, generally speaking, there is no
such estimation for each process. That is why we propose another approach in this paper, which avoids
calculating the terminal penalty.

3. Tracking of the Quasi-Optimal Trajectories

This paper proposes a method to implement a closed-loop control structure devoted to the
situation in which an MbA has already been developed, aiming to solve an optimal control problem
having a terminal penalty. For example, the OCP described in Section 4 has been solved using an
evolutionary algorithm, denoted EA1. The later one, which is a stochastic algorithm, yields a single
solution after a single execution. Therefore, it generates a single realization of a stochastic process.
The designer of EA1 has made the appropriate choices to ensure the convergence of the stochastic
process. A solution yielded by EA1 is a sequence of control inputs that optimizes the performance
index and allows simulation of the open-loop system’s evolution over the control horizon. Practically,
one must carry out EA1 many times (e.g., 30–40) to obtain quasi-optimal solutions. After a simulation
series, the best quasi-optimal solution is available. Four elements can express this one:

• the initial state: X0
• the sequence of quasi-optimal control inputs: U∗0, U∗1, · · · , U∗N−1
• the sequence of quasi-optimal state variables:

X0, X∗1, · · · , X∗N−1, X∗N (2)

• the value of the objective function: J∗

The simulated state evolution having the best performance index will be called in the sequel
reference trajectory.

Remark 1:

- The solution found by EA1 is an open-loop solution. Its control input sequence is useless for a
control structure that includes a real process. It cannot be used directly by a control structure.
Generally speaking, the MbA has to be slightly modified and integrated into the controller of an
eventual closed-loop (see [7,9,11]).

Automation 2020, 1 52

- If the OCP under consideration has a terminal penalty, there is an additional difficulty to integrate
the MbA into the controller: the prediction horizon must include the final time for each sampling
period. This fact involves a big computational complexity. The prediction’s calculation takes a
long time that possibly does not enter inside a sampling period. Therefore, the control structure
could not be implemented.

- This paper proposes a new method to achieve the closed-loop control structure, and also the
calculation of the terminal penalty is avoided.

Figure 2 presents the proposed control structure, which includes a tracking controller appellation
that will be justified in the sequel. The reference trajectory is used by the tracking controller to yield
the control inputs for the real process. These control inputs will determine a quasi-optimal behavior
of the process (in closed-loop) if the tracking controller will reproduce the reference trajectory to a
certain extent.

Automation 2020, 1, FOR PEER REVIEW 5

sampling period. This fact involves a big computational complexity. The prediction’s calculation
takes a long time that possibly does not enter inside a sampling period. Therefore, the control
structure could not be implemented.

- This paper proposes a new method to achieve the closed-loop control structure, and also the
calculation of the terminal penalty is avoided.

Figure 2 presents the proposed control structure, which includes a tracking controller
appellation that will be justified in the sequel. The reference trajectory is used by the tracking
controller to yield the control inputs for the real process. These control inputs will determine a quasi-
optimal behavior of the process (in closed-loop) if the tracking controller will reproduce the reference
trajectory to a certain extent.

Figure 2. Quasi-optimal control structure.

This time the quasi-optimal controller does not incorporate the MbA itself, as in other closed-
loop solutions. It uses only the state trajectory (2) of its best evolution (in open-loop), over a specific
control horizon starting from a particular initial state.

The performance index J(t0, tN, X(tN)) is a Mayer-type term called the terminal penalty in the
sequel (e.g., J = x1(tN)·x5(tN)). The lack of a Lagrange-type term is not aiming to reduce the difficulty of
the treated OCP. For a closed-loop control structure, which uses an MbA, the terminal penalty is more
difficult to treat, because it needs an estimation of the final state, which is, generally speaking,
unavailable (see [7]). On the other hand, the solution proposed in this paper is devoted to this kind
of OCP, having only a terminal penalty. That is the case, for example, of chemical batch processes.

3.1. Tracking Problem

In this section, we propose a statement for a new problem that will allow us to show what it does
mean to reproduce the state trajectory (2) to a certain extent. Let us note that, because of the terminal
penalty, our desideratum concerns only the final state of the process. It is suitable that the latter one
is nearly identical to *

NX . Consequently, the OCP’s performance index J will be almost equal to *J .
However, this objective is not reachable in most applications. It may need an N-step ahead prediction
that is a huge, time-consuming process. In this case, the best we can do is maintain the entire state
trajectory in the reference trajectory’s neighborhood, as close as possible. The controller will use only
one-step-ahead predictions. That is why we may call the control structure from Figure 1 a tracking
structure. The input data are a reference trajectory that must be followed up as much as possible by
the sequence of its state variables. This pursuit is generated by the tracking controller (TC) that acts

Process Model

Process

Tracking
Controller

Uk Xk' Xk+1 reference trajectory
Y0, Y1,…, YN

Xk'

Uk

Figure 2. Quasi-optimal control structure.

This time the quasi-optimal controller does not incorporate the MbA itself, as in other closed-loop
solutions. It uses only the state trajectory (2) of its best evolution (in open-loop), over a specific control
horizon starting from a particular initial state.

The performance index J(t0, tN, X(tN)) is a Mayer-type term called the terminal penalty in the
sequel (e.g., J = x1(tN)·x5(tN)). The lack of a Lagrange-type term is not aiming to reduce the difficulty
of the treated OCP. For a closed-loop control structure, which uses an MbA, the terminal penalty is
more difficult to treat, because it needs an estimation of the final state, which is, generally speaking,
unavailable (see [7]). On the other hand, the solution proposed in this paper is devoted to this kind of
OCP, having only a terminal penalty. That is the case, for example, of chemical batch processes.

3.1. Tracking Problem

In this section, we propose a statement for a new problem that will allow us to show what it does
mean to reproduce the state trajectory (2) to a certain extent. Let us note that, because of the terminal
penalty, our desideratum concerns only the final state of the process. It is suitable that the latter one
is nearly identical to X∗N. Consequently, the OCP’s performance index J will be almost equal to J∗.
However, this objective is not reachable in most applications. It may need an N-step ahead prediction
that is a huge, time-consuming process. In this case, the best we can do is maintain the entire state
trajectory in the reference trajectory’s neighborhood, as close as possible. The controller will use only
one-step-ahead predictions. That is why we may call the control structure from Figure 1 a tracking
structure. The input data are a reference trajectory that must be followed up as much as possible by the
sequence of its state variables. This pursuit is generated by the tracking controller (TC) that acts in a

Automation 2020, 1 53

manner adapted to this purpose. The control inputs’ values are optimally determined for all sampling
periods, as explained below.

To avoid confusion, we will denote the reference trajectory (2) by

Y0, Y1, . . . ,YN−1, YN (3)

Figure 3 shows symbolically how the tracking structure would work. The variables have the
following significance:

• Uk, 0 ≤ k ≤ N − 1, is a constant vector Uk ∈ Ω representing the control inputs’ values for the
sampling period [k, k+1].

• Xk, 1 ≤ k ≤ N, is the state vector at the moment k estimated by the TC, using the known PM
(the state vector at the end of evolution on the sampling period [k−1, k]).

• X′k, 1 ≤ k ≤ N, is the real state vector “received” from the process at the moment k. In a real
implementation, X′k is measured and/or estimated.

• X0 is the process’ initial state (X0 is Y0 slightly perturbed).

Automation 2020, 1, FOR PEER REVIEW 6

in a manner adapted to this purpose. The control inputs’ values are optimally determined for all
sampling periods, as explained below.

To avoid confusion, we will denote the reference trajectory (2) by

Y0, Y1,…,YN−1, YN (3)

Figure 3 shows symbolically how the tracking structure would work. The variables have the
following significance:

Figure 3. Tracking of the reference trajectory.

• kU , 10 −≤≤ Nk , is a constant vector Ω∈kU representing the control inputs’ values for the
sampling period [k, k+1].

• kX , Nk ≤≤1 , is the state vector at the moment k estimated by the TC, using the known PM (the
state vector at the end of evolution on the sampling period [k−1, k]).

• '
kX , Nk ≤≤1 , is the real state vector “received” from the process at the moment k. In a real

implementation, '
kX is measured and/or estimated.

• 0X is the process’ initial state (X0 is Y0 slightly perturbed).

The tracking process is defined by several aspects listed below:

1. At the moment k, the TC “reads” '
kX and considers it the initial state for the current sampling

period, [k, k+1].
2. The TC calculates kU and 1+kX . According to the PM, the control input kU determines the

following transfer:

1
'

+⎯⎯→⎯ k
U

k XX k

3. The TC calculates the constant vector kU through an optimization procedure such that

11minarg ++
Ω∈

−= kk
U

k YXU (4)

4. The real process evolves according to the control input kU and determines the following
transfer:

'
1

'
+⎯⎯→⎯ k

U
k XX k

Aspects #2 and #3 define, actually, the one-step-ahead prediction, which the TC has to make to
approach the reference trajectory.

Considering the control structure’s objective, the TC has to solve the tracking problem (TP)
stated as below:

Figure 3. Tracking of the reference trajectory.

The tracking process is defined by several aspects listed below:

1. At the moment k, the TC “reads” X′k and considers it the initial state for the current sampling
period, [k, k+1].

2. The TC calculates Uk and Xk+1. According to the PM, the control input Uk determines the
following transfer:

X′k
Uk
→ Xk+1

3. The TC calculates the constant vector Uk through an optimization procedure such that

Uk = argmin
U∈Ω
‖Xk+1 −Yk+1‖ (4)

4. The real process evolves according to the control input Uk and determines the following transfer:

X′k
Uk
→ X′k+1

Aspects #2 and #3 define, actually, the one-step-ahead prediction, which the TC has to make to
approach the reference trajectory.

Automation 2020, 1 54

Considering the control structure’s objective, the TC has to solve the tracking problem (TP) stated
as below:

TP : If the reference trajectory (3) and the initial state X0 are settled,
one has to determine the sequence of control input′s values

U0, U1, · · · , UN−1

that meet the optimum criteria (4), for 0 ≤ k ≤ N − 1.

(5)

Some remarks can be made:

A. Solving the TP means that the reference trajectory was only followed up “as much as possible”
using one-step-ahead prediction. Let note by dk the minimum distance predicted at step k−1:

dk = min
U∈Ω
‖Xk −Yk‖.

B. Of course, the best tracking process requires an N−k step-ahead prediction because this one
involves the final state XN, which the terminal penalty depends on. In other words, the true
objective would be to minimize only the distance ‖XN −YN‖ (which is not the same thing as to
minimize ‖Xk −Yk‖, k = 0, 1, . . . , N−1). However, in this way, we are coming back to a receding
prediction horizon. Sometimes, this is unacceptable due to big computational complexity
and a relatively small sampling period. The controller would not have enough time to make
the computation.

C. On the other hand, the one-step-ahead prediction may be satisfactory from the complexity’s
perspective. The computation can be done inside one sampling period.

D. When the N step-ahead-prediction cannot be carried out inside one sampling period, the best
we can do is to resort to the one-step-ahead prediction. This strategy allows the possibility to
implement the quasi-optimal control structure satisfactorily.

3.2. Tracking Controller

A solution of the TP is the sequence of the control inputs’ values (5). The TC constructs such a
solution during the control horizon [0, N] using the following input data:

• the PM, usually given by Equation (1);
• the reference trajectory (3);
• the initial state X0;
• the real state vector X′k, 1 ≤ k ≤ N; these values are received, in real-time, from the process.

We can make some remarks concerning the tracking strategy presented before.

(I). Neither the OCP nor the MbA (used to generate the reference trajectory) are involved in the TP
statement. The reference trajectory intrinsically contains both.

(II). Action #3 from Section 3.1 can be, in principle, very efficient, when Xk+1 = Yk+1. This particular
case depends on the controllability of the system. Even if this property is satisfied, the access
process can involve more sampling periods, and accordingly, the calculation would take more
time. Moreover, only in particular cases, the controllability can be proved.

(III). Actions #3 and #2 will approach Xk and Yk as much as possible while the constraint U(t) ∈ Ω is met.
Therefore the two trajectories are near in the moment k. On the other hand, Yk+1 can be accessed
from Yk in only one step, using the control value U∗k (see reference trajectory). According to the
PM, it holds:

X′k
Uk
→ Xk+1; Yk

U∗k
→ Yk+1

Therefore, there is an increased chance of having a small distance between the next pair of state
variables, Xk+1 and Yk+1. The calculus of the input Uk, using Equation (4), transforms the tracking
process into a greedy-type algorithm.

Automation 2020, 1 55

(IV). The key factor that makes the state trajectory to be close to the reference trajectory is PM’s accuracy
in reproducing the dynamic of the real process.

At the moment k, the process is in the state X′
k
, and the TC search for the constant control input Uk

that minimizes the performance index

dk+1 = min
Uk∈Ω
‖Xk+1 −Yk+1‖. (6)

In this way, we have another local optimal control problem, whose performance index is the
minimization of the Euclidean distance from Xk+1 to Yk+1. Action #2 of the tracking process shows
that the minimization (6) makes sense.

We now propose a particular implementation of the TC that yields an approximated solution
for the tracking problem. An effective way to determine the vector Uk ∈ Rm that minimizes the
performance index (6) is to use a metaheuristic-based algorithm, denoted by MA in the sequel. Let us
note that the MbA used a priori to generate the reference trajectory is different from MA.

The call of this algorithm may be represented by the following instruction:

[Uk, Xk+1, dk+1]←MA(X′k, Yk+1).

The MA has a fitness function that includes the numerical integration of the PM over the sampling
period [k, k+ 1]. We give hereafter the outline of the TC, which is called for every single sampling period.

Outline of Tracking Controller

1. Get the current value of the state vector X′k.
2. [Uk, Xk+1, dk+1]←MA(X′k, Yk+1)

3. Send the control input Uk towards the process.
4. Return

In this paper, two MAs will be exemplified: the well-known simulated annealing algorithm (SAA),
which is very simple to implement because it uses a single solution within its iterative searching
process, and the evolutionary algorithm (EA) that works with a population of solutions.

The simulation tests have proved (see Section 4) that the tracking process, as described before,
has practical relevance.

3.3. Quality of the Proposed Solution

This strategy does not guarantee that dN would be small enough, such that the terminal penalty
would have an acceptable value. The control structure designer may require that dN is inferior to
a pre-established value. Equivalently, the relative error of the performance index εr is less than a
maximum value:

εr = 100 ·
(J ∗ −J)

J∗
[%]; εr ≤ εmax (7)

Constraint (7) can be verified by simulation of the closed-loop presented in Figure 1 (at least in our
research’s actual theoretical stage). This simulation needs a real process model (RPM) that is different
from the PM. The former is obtained by adding unmodeled dynamics and noises to the PM. The RPM
construction is a difficult task in itself, which the designer has to solve before making the simulation.
If the TP’s solution is satisfactory under the adopted hypotheses, the control structure designer may
pass to the closed-loop implementation with a real process.

Remark (I) from Section 3.2 recalls that the OCP’s quasi-optimal solution results from an MbA,
which has behind a convergent stochastic process. When choosing the specific MbA as an optimization
tool, its convergence has already been studied.

In the presented TP, we are not faced with a convergence problem, first of all, because the TC
works with two finite series of states: X0, X1, · · · , XN and X′0, X′1, · · · , X′N. The two series are finite

Automation 2020, 1 56

because the control horizon is finite. On the other hand, the real process can perturb the tracking
process significantly through its state variables. The perturbation must be realistically modeled and
included in the TP statement to obtain a framework which could generate theoretical results.

4. Example of Using a Quasi-Optimal Trajectory

This section’s main objective is to illustrate how a specific OCP can be solved through the
intermediary of the quasi-optimal trajectory generated by an MbA. Moreover, we are not aiming to
solve a specific OCP and compare our solution with other authors’ approaches, but rather to exemplify
the newly proposed method on a benchmark problem.

We have considered a well-known problem described in many articles among those we recall
here [12]. The OCP is called Park-Ramirez bioreactor and concerns a nonlinear dynamic system.
This problem is stated in the Appendix A of this article. One can see that it holds:

n = 5; m = 1; T = 1h; N = 15; Ω = [0, 2];

In the framework devoted to solving OCPs through metaheuristics, we have implemented and
used an evolutionary algorithm that solves this problem. We will call it EA1 in the sequel. The EA1 has
produced a quasi-optimal solution whose state trajectory is given by (A7). Some details concerning
EA1 and the reference trajectory are given in Appendix B. Now, we want to implement a tracking
structure using this reference trajectory. The initial state of the process in the closed-loop structure is
given by (A8).

The implementation of the TC and the simulation of the closed-loop were carried out using the
MATLAB language and system. To simulate the real process evolution, we have used the special
functions devoted to integrating differential equations.

4.1. TC’s Implementation Using Simulated Annealing Algorithm

This section presents the TC’s implementation and the closed-loop simulation using the well-known
simulated annealing algorithm (SAA). Let us consider SAA as a function that is symbolically called
as bellow:

[Uk, Xk+1, dk+1]← SAA(X′k, Yk+1).

The searching process refers to Uk that has to minimize the performance index. It is naturally
coded as a real vector having the components of the control input. SAA evaluates Uk calling an
objective function (scripts: SAh1, eval_SA; see the folder TC_SA) that calculates the performance index
(6). This function performs two actions:

- the numerical integration of the process over the interval [k, k+1] to calculate the next state Xk+1
using the current Uk;

- the computation of the distance dk+1.

Only a candidate solution meeting the constraint (8) is accepted before applying the Metropolis
Rule, which will set the iterative process’ current solution:

Uk ∈ Ω (8)

SAA has two ways to stop the solution’s improvement. The first one is the convergence of the
searching process, which can be declared when two conditions are met:

- the objective function had no improvement since a certain iterations number, and
- the annealing temperature is less than a minimum value.

The second corresponds to the situation when the convergence cannot be ascertained after a
pre-established large number of iterations.

Automation 2020, 1 57

The first simulation series’ objective was to evaluate the TC’s behavior when the initial state is
different from that considered in the OCP statement (see “influenceX01.m” inside the folder TC_SA).
In our example, the initial state is X00 (see (A3)). X0 is obtained from X00 to which a normally distributed
noise is added:

X0 = X00 + noise; with noise = normrnd(Mean, StDev) (9)

The noise is generated by a function normrnd (the same name as the MATLAB function) that
generates a vector of random numbers chosen from a normal distribution with mean “Mean” and
standard deviation “StDev”. For the real process, we have considered an RPM identical to PM.

Table 1 presents the simulation’s results for six noises having different mean values. These values
are quite big compared to the variables’ values x1 and x2, for example, on the interval k = 0, · · · , 13.

Table 1. Results of the first simulation series (TC (tracking controller) with SAA, RPM (real process
model) ≡ PM (process model)).

Noise Relative Tracking Error [%] Performance Index

Mean StDev min avg max Rerr(N) J* J εr[%]

1 0.02 0.01 0.41 2.01 4.24 0.41 32.28 32.89 −1.88
2 0.05 0.01 0.08 3.46 7.56 0.08 32.28 32.39 −0.34
3 0.08 0.01 0.51 5.77 12.66 0.51 32.28 31.46 2.54
4 0.1 0.01 0.76 6.73 14.52 0.76 32.28 31.05 3.81
5 0.12 0.01 1.32 8.67 18.22 1.32 32.28 30.10 6.75
6 0.15 0.01 2.01 10.64 22.04 2.01 32.28 28.97 10.25

It is important to see what the tracking’s precision is. The absolute error at the moment k can be
calculated using the following formula:

Err(k) = ‖Yk −Xk‖,

where ‖X‖ is the Euclidean norm. The relative error at the moment k can be expressed as follows:

Rerr(k) =
‖Yk −Xk‖

‖Yk‖
. (10)

The columns of Table 1 give the following values, respectively: the minimum, average,
and maximum relative tracking error, the relative error in the final state (Rerr(N)), the reference
and current performance index. In lines #1 and #2, the performance index determined by TC with
SA has superior values to J*. The explanation is related to the reference trajectory’s quasi-optimal
character, namely the value J* is not the optimum.

Figure 4 presents comparatively the state evolution in the reference case and the closed-loop
control system with TC using SAA. The medium value of the noise is Mean = 0.1, which is very big
for our process especially for the variables x1 and x2. The relative error of the final state, which is
more important for the terminal penalty, is only 0.76%. This fact is reflected in the relative error of the
performance index, εr = 3.81%.

Automation 2020, 1 58

Automation 2020, 1, FOR PEER REVIEW 11

(a) (b)

Figure 4. Comparative state evolution: closed-loop versus reference trajectory (TC with SAA
(simulated annealing algorithm)). (a) Comparative evolution of x1, x2 and x3. (b) Comparative
evolution of x4 and x5.

The control input’s value is depicted in Figure 5 in the two cases. It is interesting to see that the
control input given by the TC has relatively the same pattern. Figure 6 shows the evolution of the
relative tracking error over the control horizon. Let us note that the tracking error is already near 5%
initially, which is a big value.

To simulate the real process, we have considered that the RPM is equivalent to the PM to which
a normally distributed noise is added. The latter one is a random variable having a normal
distribution like in Equation (9). In this way, the state variables kX and '

kX , Nk ≤≤1 , are different:

'
kX = kX +noise. (11)

We have implemented a similar program as before, to simulate the closed-loop functioning with
TC and RPM. The only difference is that the state variables are adjusted using Equations (9) and (11)
(see TC_SA_h1_MEAN0_04.m). The values characterizing the normal noise are Mean = 0.04 and
StDev = 0.01. The resulting simulation program has a stochastic character; therefore, we cannot
conclude after a single execution. We have to repeat the execution more times to give consistency to
statistical parameters in such a situation.

Figure 5. Evolution of the control input (TC with SAA).

Figure 4. Comparative state evolution: closed-loop versus reference trajectory (TC with SAA (simulated
annealing algorithm)). (a) Comparative evolution of x1, x2 and x3. (b) Comparative evolution of x4

and x5.

The control input’s value is depicted in Figure 5 in the two cases. It is interesting to see that the
control input given by the TC has relatively the same pattern. Figure 6 shows the evolution of the
relative tracking error over the control horizon. Let us note that the tracking error is already near 5%
initially, which is a big value.

Automation 2020, 1, FOR PEER REVIEW 11

(a) (b)

Figure 4. Comparative state evolution: closed-loop versus reference trajectory (TC with SAA
(simulated annealing algorithm)). (a) Comparative evolution of x1, x2 and x3. (b) Comparative
evolution of x4 and x5.

The control input’s value is depicted in Figure 5 in the two cases. It is interesting to see that the
control input given by the TC has relatively the same pattern. Figure 6 shows the evolution of the
relative tracking error over the control horizon. Let us note that the tracking error is already near 5%
initially, which is a big value.

To simulate the real process, we have considered that the RPM is equivalent to the PM to which
a normally distributed noise is added. The latter one is a random variable having a normal
distribution like in Equation (9). In this way, the state variables kX and '

kX , Nk ≤≤1 , are different:

'
kX = kX +noise. (11)

We have implemented a similar program as before, to simulate the closed-loop functioning with
TC and RPM. The only difference is that the state variables are adjusted using Equations (9) and (11)
(see TC_SA_h1_MEAN0_04.m). The values characterizing the normal noise are Mean = 0.04 and
StDev = 0.01. The resulting simulation program has a stochastic character; therefore, we cannot
conclude after a single execution. We have to repeat the execution more times to give consistency to
statistical parameters in such a situation.

Figure 5. Evolution of the control input (TC with SAA). Figure 5. Evolution of the control input (TC with SAA).Automation 2020, 1, FOR PEER REVIEW 12

Figure 6. Evolution of the tracking error (TC with SAA).

That is why the second simulation series will repeat 30 times the closed-loop simulation
program.

Table 2 gives some statistical parameters characterizing the 30 executions of the closed-loop
simulation program. For the relative error of the performance index (rε , see Equation (7)), the
minimum, average, maximum values, and the standard deviation are indicated. The relative tracking
error in the final state, Rerr(N), is computed according to the Equation (10). Table 2 shows its
minimum, average, and maximum value over the simulation series. The particular simulation among
the 30, whose performance index is the closest to the average, can be considered typical execution. Its
performance index is 29.96, which means the relative error has an acceptable value of 7.1%.

Table 2. Results of the second simulation series (TC with SA, RPM, Mean = 0.04, StDev = 0.01).

εr Rerr(N) [%] Typical Execution

min avg max σ min avg max X1N X5N J
Rerr(N)

[%]
εr

0.044 0.073 0.099 0.013 2.29 2.68 3.19 2.171 13.801 29.96 2.55 0.071

Remark 1: We can make a peculiar simulation of the closed-loop, taking 0X = 00X , and RPM
≡ PM (without noise). Obviously, the theoretical solution is trivial: the sequence of control input
values calculated by the TC is just *

1
*
1

*
0 ,,, −NUUU  , and the sequence of the process’ states is just Y0,

Y1,…, YN−1, YN. This solution is found on the condition that the MA used for local optimization (SAA
in our case) works very well and finds NkYX kk ,,1, =≡ . Setting these conditions, the simulation
(see TC_SA_X00_NONOISE.m) has proved that our SAA’s implementation works very well.
Generally speaking, this is a method to test the correctness of the MA’s implementation.

4.2. TC’s Implementation Using an Evolutionary Algorithm

The TC’s implementation can use another MA. In this section, we use an evolutionary algorithm
called EA2 that is different from EA1.

NB: EA1 and EA2 are two distinct implementations of the evolutionary metaheuristic. EA1
searches the optimal solution of the OCP described in Appendix A, while EA2 solves the TP
presented before. There are two different elements that characterize the two OCPs:

• the performance index is (A5) for EA1, and (6) for EA2;
• the control horizon is []N,,0  for EA1, and]1,[+kk , 10 −≤≤ Nk for EA2. EA1 is executed

one time to solve its problem, while EA2 is called for every sample period to solve local
optimization problems.

Figure 6. Evolution of the tracking error (TC with SAA).

Automation 2020, 1 59

To simulate the real process, we have considered that the RPM is equivalent to the PM to which a
normally distributed noise is added. The latter one is a random variable having a normal distribution
like in Equation (9). In this way, the state variables Xk and X′k,1 ≤ k ≤ N, are different:

X′k= Xk + noise. (11)

We have implemented a similar program as before, to simulate the closed-loop functioning with
TC and RPM. The only difference is that the state variables are adjusted using Equations (9) and (11)
(see TC_SA_h1_MEAN0_04.m). The values characterizing the normal noise are Mean = 0.04 and StDev
= 0.01. The resulting simulation program has a stochastic character; therefore, we cannot conclude
after a single execution. We have to repeat the execution more times to give consistency to statistical
parameters in such a situation.

That is why the second simulation series will repeat 30 times the closed-loop simulation program.
Table 2 gives some statistical parameters characterizing the 30 executions of the closed-loop

simulation program. For the relative error of the performance index (εr, see Equation (7)), the minimum,
average, maximum values, and the standard deviation are indicated. The relative tracking error in
the final state, Rerr(N), is computed according to the Equation (10). Table 2 shows its minimum,
average, and maximum value over the simulation series. The particular simulation among the
30, whose performance index is the closest to the average, can be considered typical execution.
Its performance index is 29.96, which means the relative error has an acceptable value of 7.1%.

Table 2. Results of the second simulation series (TC with SA, RPM, Mean = 0.04, StDev = 0.01).

εr Rerr(N) [%] Typical Execution

min avg max σ min avg max X1
N X5

N J Rerr(N) [%] εr

0.044 0.073 0.099 0.013 2.29 2.68 3.19 2.171 13.801 29.96 2.55 0.071

Remark 1: We can make a peculiar simulation of the closed-loop, taking X0 = X00, and RPM ≡ PM
(without noise). Obviously, the theoretical solution is trivial: the sequence of control input values
calculated by the TC is just U∗0, U∗1, · · · , U∗N−1, and the sequence of the process’ states is just Y0, Y1,
. . . , YN−1, YN. This solution is found on the condition that the MA used for local optimization
(SAA in our case) works very well and finds Xk ≡ Yk, k = 1, · · · , N. Setting these conditions,
the simulation (see TC_SA_X00_NONOISE.m) has proved that our SAA’s implementation works very
well. Generally speaking, this is a method to test the correctness of the MA’s implementation.

4.2. TC’s Implementation Using an Evolutionary Algorithm

The TC’s implementation can use another MA. In this section, we use an evolutionary algorithm
called EA2 that is different from EA1.

NB: EA1 and EA2 are two distinct implementations of the evolutionary metaheuristic. EA1 searches
the optimal solution of the OCP described in Appendix A, while EA2 solves the TP presented before.
There are two different elements that characterize the two OCPs:

• the performance index is (A5) for EA1, and (6) for EA2;
• the control horizon is [0, · · · , N] for EA1, and [k, k + 1], 0 ≤ k ≤ N − 1 for EA2. EA1 is executed

one time to solve its problem, while EA2 is called for every sample period to solve local
optimization problems.

These basic elements further involve many other implementation differences, such as solution
encoding and genetic operators. Let us consider EA2 as a function that is symbolically called as below:

[Uk, Xk+1, dk+1]← EA2(X′k, Yk+1).

Automation 2020, 1 60

The optimization process refers to Uk that has to minimize the same performance index (6). It is
naturally coded as a real vector having the components of the control input. In our case Uk is a scalar.
EA2 evaluates Uk using an objective function (implemented inside the program TC_EA_h1_NOISE.m;
see the folder TC_EA2) that calculates the performance index (6). This function performs two actions:
the numerical integration of the process using the current Uk and the computation of the distance dk+1.

The constraint (8) is implemented when the initial population is generated and any time the
solution’s value is modified (e.g., inside the mutation operator).

EA2 stops the solution’s search after a certain number of generations (40 in our implementation)
while the population evolves. This number is tuned according the preliminary tests of the program.

For our peculiar TP, every chromosome of the solution’s population encodes the value of Uk. So,
the length of the solution vector is h = 1 (control horizon). EA2 having the parameters given by Table 3
uses a direct encoding with real (non-binary) values. It has the usual characteristics listed below:

• The population of each generation has µ individuals.
• The offspring population has λ individuals (λ < µ).
• NGen is the number of generations in which the population is evolving.
• The selection strategy is based on Stochastic Universal Sampling using the rank of individuals,

which is scaled linearly using selection pressure.
• No crossover operator, because each chromosome encodes a single control input value (whatever

the value m is). In our peculiar TP, the solution vector has a single component, i.e., a scalar.
• The mutation operator uses global variance adaptation ([1,2]) of the mutation step. The adaptation

is made according to the “1/5 success rule”.
• The replacement strategy: the offspring replace the λ worst parents of the generation.

Table 3. The main parameters of EA2.

EA2
λ µ NGen h s

20 30 40 1 1.8

We have simulated the closed-loop system using a program whose MA is EA2. A sketch of the
simulation program is given in Table 4.

Table 4. Simulation program’s pseudo-code list.

Outline of TC_EA_h1_NOISE

Nt← 15;

Set other program’s parameters

k← 0;

while k ≤ Nt− 1

1. Get the current value of the state vector X′k.

2. [Uk, Xk+1, dk+1]← EA2(X′k, Yk+1)

3. Send the control input Uk towards the process.

4. X′k+1 ← Xk+1 + noise ;

5. k← k + 1

end while

Display data and graphics

Nt denotes the length of the control horizon as a sampling period number. Instructions #1 and
#3 suggest the connection with the real process, in real-time. The state variable is read or estimated,

Automation 2020, 1 61

and the control input is sent toward the process. In our simulation, instruction #3 means that Uk is
memorized for further simulations.

The RPM has been implemented, like in the previous section, using a normally distributed noise.
For example, we have chosen Mean = 0.04 and StDev = 0.01. The single running’s results of this
program are presented in Table 5.

Table 5. Simulation’s results for the closed-loop (TC with EA2, RPM).

Noise Rerr [%] Performance Index

Mean StDev min avg max Rerr(N) J* J εr[%]

0.04 0.01 1.68 11.35 29.740 2.36 32.28 30.82 0.045

Remark 2: Although the results from Table 5 are a bit better than those from Table 2, one can
assert that the two TC (using SAA or EA2) lead practically toward similar results.

The discrete control input yielded by the TC is depicted in Figure 7. The evolution’s pattern is
similar to a large extent to that one presented in Figure 5.

Automation 2020, 1, FOR PEER REVIEW 14

Display data and graphics

Nt denotes the length of the control horizon as a sampling period number. Instructions #1 and
#3 suggest the connection with the real process, in real-time. The state variable is read or estimated,
and the control input is sent toward the process. In our simulation, instruction #3 means that kU is
memorized for further simulations.

The RPM has been implemented, like in the previous section, using a normally distributed noise.
For example, we have chosen Mean = 0.04 and StDev = 0.01. The single running’s results of this
program are presented in Table 5.

Table 5. Simulation’s results for the closed-loop (TC with EA2, RPM).

Noise Rerr [%] Performance Index
Mean StDev min avg max Rerr(N) J* J rε [%]
0.04 0.01 1.68 11.35 29.740 2.36 32.28 30.82 0.045

Remark 2: Although the results from Table 5 are a bit better than those from Table 2, one can
assert that the two TC (using SAA or EA2) lead practically toward similar results.

The discrete control input yielded by the TC is depicted in Figure 7. The evolution’s pattern is
similar to a large extent to that one presented in Figure 5.

Figure 7. Evolution of the control input (TC with EA2).

Figure 8 presents the comparative evolution of the state variable x1, x3, and x5 in the two cases:
the reference trajectory and the closed-loop system with TC using EA2. The values of x1 and x3 are
multiplied by 3, to render distinguishable the 4 curves.

Remark 3: The state evolutions from Figures 4 and 8 have the same look, a fact that is
comprehensible because the two algorithms (SAA and EA2) correctly execute their local optimization
task and do not leave their mark on the system evolution.

Figure 7. Evolution of the control input (TC with EA2).

Figure 8 presents the comparative evolution of the state variable x1, x3, and x5 in the two cases:
the reference trajectory and the closed-loop system with TC using EA2. The values of x1 and x3 are
multiplied by 3, to render distinguishable the 4 curves.Automation 2020, 1, FOR PEER REVIEW 15

Figure 8. Comparative evolution of x1, x3, and x5.

We have also simulated the closed-loop system for different mean values and using lots of 30
executions. The results are presented in Table 6, where lines correspond to the means of different
noises. For each mean’s value, a lot of 30 program executions were carried out. The data from the last
four columns describes only the typical execution of the lot. In lines #2 and #3, the performance index
determined by TC with EA2 has superior values to J*. The explanation is the same as that given for
lines #1 and #2 of Table 1.

Table 6. Results of simulation series (TC with EA2, RPM).

 Noise Rerr(N) [%] Typical Execution
 Mean StDev min avg max Rerr(N) J* J rε [%]
1 no noise 0 0 0 0 32.28 32.28 0
2 0.01 0.01 0.56 1.29 1.89 1.274 32.28 33.88 −0.049
3 0.02 0.01 0.98 1.45 2.37 1.598 32.28 33.40 −0.036
4 0.03 0.01 1.51 1.84 2.22 1.63 32.28 32.07 0.006
5 0.04 0.01 2.13 2.59 3.06 2.52 32.28 30.34 0.059
6 0.05 0.01 3.14 3.56 4.16 3.52 32.28 28.99 0.102

Line #1 corresponds to the peculiar simulation of the closed-loop, when 0X = 00X , and RPM
≡ PM (without noise, see TC_EA_h1_NONOISE.m). This simulation is the test that we mentioned
in the previous section. It proves that our EA’s implementation works very well, because the
sequence of the process’ states is just Y0, Y1,…,YN−1, YN and the sequence of control input values is just

*
1

*
1

*
0 ,,, −NUUU  .

5. Discussion

This work proposes a new closed-loop control structure to solve an OCP with a terminal penalty.
Section 4 gives an example of how to solve a benchmark OCP using a tracking structure. Emphasis
is not placed on the problem but on how to implement the TC. The proposed method is a possible
answer to the question: How can we pass from the paper solution computed by an MbA to a closed-
loop solution including a real process?

The TC’s minimization task involves the employment of an optimization procedure according
to Equation (4). We have proposed to use a MA (SAA or EA2) and we have carried out simulations
with both algorithms. Why have we presented the two versions?

Figure 8. Comparative evolution of x1, x3, and x5.

Automation 2020, 1 62

Remark 3: The state evolutions from Figures 4 and 8 have the same look, a fact that is
comprehensible because the two algorithms (SAA and EA2) correctly execute their local optimization
task and do not leave their mark on the system evolution.

We have also simulated the closed-loop system for different mean values and using lots of
30 executions. The results are presented in Table 6, where lines correspond to the means of different
noises. For each mean’s value, a lot of 30 program executions were carried out. The data from the last
four columns describes only the typical execution of the lot. In lines #2 and #3, the performance index
determined by TC with EA2 has superior values to J*. The explanation is the same as that given for
lines #1 and #2 of Table 1.

Table 6. Results of simulation series (TC with EA2, RPM).

Noise Rerr(N) [%] Typical Execution

Mean StDev min avg max Rerr(N) J* J εr[%]

1 no noise 0 0 0 0 32.28 32.28 0
2 0.01 0.01 0.56 1.29 1.89 1.274 32.28 33.88 −0.049
3 0.02 0.01 0.98 1.45 2.37 1.598 32.28 33.40 −0.036
4 0.03 0.01 1.51 1.84 2.22 1.63 32.28 32.07 0.006
5 0.04 0.01 2.13 2.59 3.06 2.52 32.28 30.34 0.059
6 0.05 0.01 3.14 3.56 4.16 3.52 32.28 28.99 0.102

Line #1 corresponds to the peculiar simulation of the closed-loop, when X0 = X00, and RPM ≡ PM
(without noise, see TC_EA_h1_NONOISE.m). This simulation is the test that we mentioned in the
previous section. It proves that our EA’s implementation works very well, because the sequence
of the process’ states is just Y0, Y1, . . . ,YN−1, YN and the sequence of control input values is just
U∗0, U∗1, · · · , U∗N−1.

5. Discussion

This work proposes a new closed-loop control structure to solve an OCP with a terminal penalty.
Section 4 gives an example of how to solve a benchmark OCP using a tracking structure. Emphasis is
not placed on the problem but on how to implement the TC. The proposed method is a possible answer
to the question: How can we pass from the paper solution computed by an MbA to a closed-loop
solution including a real process?

The TC’s minimization task involves the employment of an optimization procedure according to
Equation (4). We have proposed to use a MA (SAA or EA2) and we have carried out simulations with
both algorithms. Why have we presented the two versions?

The first reason is to emphasize that any choice for the optimization procedure is good, while it
fulfils the minimization task. Actually, not only an MA may be used. Any other minimization method
(deterministic or not) may be employed. Remark 2 and Remark 3 from Section 4.2 underline this idea.
If the optimization procedure works well, it will find the best control input U(k) inside a sampling
period, whatever the computational complexity would be. In our case, the two MAs execute their task
correctly and do not leave their mark on the system evolution. One can eventually notice a difference
at the computational complexity level. This difference may be accepted between certain limits.

The second reason is related to Remark 2 as well. The two TCs (using SAA or EA2) lead practically
toward similar results. This happens because the RPMs are very much alike in the two simulations:
a normal noise having identical parameters added to the PM. In other words, the two RPMs are similar.
However, this similarity has its limits because the results from Table 5 are a bit better than those from
Table 2. The explanation resides in the noise’s stochastic character: the noise’s stochastic realizations
are not identical.

Therefore one can state that similar RPMs will produce similar results; the TC has no influence
(if it works well, that is, it fulfils its minimization task).

Automation 2020, 1 63

What happens when the RPMs are different? In our work, the difference among the real processes
is modelled through additive noises. When the RPMs are not similar, the systems’ evolutions are
different despite the same reference trajectory. The evidence is the data from Table 6. Every line is
devoted to a simulation lot with specific noise parameters. The increase of the noise mean implies the
decrease of the performance index. The final state’s relative tracking error increases as well. Hence,
we can notice a degradation of quasi-optimal behavior in comparison with the reference trajectory.

In this paper, we have made a study through simulations of the proposed control structure.
The designer of the real-time system has to decide whether this approach would give good results
or not. How can the designer take this decision? The key factor is the PM that must replicate, to a
large extent, the real process. The construction of a PM must be done following the desired dynamic
accuracy. The PM may be enriched with perturbation models or unmodeled dynamics to emulate the
real process as accurately as possible. However, this can be a difficult technical task.

With a realistic PM, the tracking structure simulation can help the real-time control system designer
take the right decision. Anyhow, a certain degradation of the quasi-optimal behavior will be noticed.
The closed-loop does or does not work well, depending on whether the performance index value
is acceptable.

The future work on this topic may be focused on some theoretical directions regarding the distance
between the real and reference trajectory. The following property results from Remark 1 (Section 4.1):

X′k = Xk⇒ (∃) Uk ∈ Ω s.t. Xk+1 = Yk+1

Due to the robustness of the structural properties (e.g., the controllability), it is likely to have the
following property:

(∃)ε > 0 s.t. ‖X′k −Xk‖ < ε⇒ (∃) Uk ∈ Ω s.t. Xk+1 = Yk+1

This property could be useful to TC’s algorithm in correlation with the accuracy of the PM.
Another direction for future research is to find a theoretical method to minimize the performance

index (6) for the local optimal control problem stated in Section 3.2.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The Elements of the Optimal Control Problem

Process Model .
x1 = g1·(x2 − x1) − (u/x5)·x1;
.
x2 = g2·x3 − (u/x5)·x2;
.
x3 = g3·x3 − (u/x5)·x3;
.
x4 = −7.3·g3·x3 + (u/x5)·(20− x4);
.
x5 = u;
g1 = 4.75·g3/(0.12 + g3);
g2 = [x4/(0.1 + x4)]·e−5.0·x4

g3 = 21.87·x4/[(x4 + 0.4)·(x4 + 62.5)];

(A1)

Constraints
Control horizon:

0 ≤ t ≤ 15 h; t0 = 0; tf = 15. (A2)

Initial conditions:
X00 = [0. 0. 1. 5. 1.]T. (A3)

Automation 2020, 1 64

Bound constraints:
0 ≤ U(t) ≤ 2, with 0 ≤ t ≤ tf. (A4)

Performance index
max
u(t)

J(x(t f)), with J(x(t f)) = x1(t f) · x5(t f) (A5)

The maximum performance index
J* = 32.2829 (A6)

Reference trajectory:

Automation 2020, 1, FOR PEER REVIEW 17

Appendix A

The Elements of the Optimal Control Problem

Process Model

1x = g1·(x2−x1) − (u/x5)·x1;

2x = g2·x3 − (u/x5)·x2;

3x = g3·x3 − (u/x5)·x3;

4x = −7.3·g3·x3 + (u/x5)·(20 − x4);

5x = u;

g1 = 4.75·g3/(0.12 + g3);

g2 = [x4/(0.1 + x4)]· 40.5 xe ⋅−

g3 = 21.87·x4/[(x4 + 0.4)·(x4 + 62.5)];

(A1)

Constraints
Control horizon:

0 ≤ t ≤ 15 h; t0 = 0; tf = 15. (12)

Initial conditions:

X00 = [0. 0. 1. 5. 1.]T. (13)

Bound constraints:

0 ≤ U(t) ≤ 2, with 0 ≤ t ≤ tf. (14)

Performance index

() ())()()(with,)(max 51
)(

ffff
tu

txtxtxJtxJ ⋅= (A5)

The maximum performance index

J* = 32.2829 (A6)

Refer
x1 x2 x3 x4 x5

Y0 0.0000 0.0000 1.0000 5.0000 1.0000
Y1 0.0000 0.0000 1.1562 4.9645 1.1675

…………………………………………………...
Y13 1.1236 1.5166 2.6335 0.1133 11.6344
Y14 1.7626 2.1767 2.6408 0.1069 12.5220
Y15 2.3478 2.6983 2.6432 0.1450 13.7504

(A7)

The pertu

0X = 00X + normrnd(0.08, 0.01, 1, 5). (A8)

Appendix B

Evolutionary Algorithm EA1

The particular OCP described in Appendix A has been solved using the evolutionary algorithm
EA1. Every chromosome of the solution’s population encodes the control profile that is a series of

(A7)

The perturbed initial state of the process is:

X0= X00 + normrnd(0.08, 0.01, 1, 5). (A8)

Appendix B

Evolutionary Algorithm EA1

The particular OCP described in Appendix A has been solved using the evolutionary algorithm
EA1. Every chromosome of the solution’s population encodes the control profile that is a series of
values U0, U1, · · · , UN−1. So, the length of the solution vector is h = 15 (the control horizon). EA1 uses
a direct encoding with real (non-binary) values and has the usual characteristics listed below:

• The population of each generation has µ individuals;
• The offspring population has λ individuals (λ < µ);
• NGen is the number of generations in which the population is evolving;
• The selection strategy is based on Stochastic Universal Sampling using the rank of individuals,

which is scaled linearly using selection pressure (s);
• A usual one-point crossover operator;
• The mutation operator uses global variance adaptation ([1,2]) of the mutation step. The adaptation

is made according to the “1/5 success rule”;
• The replacement strategy: the offspring replace the λ worst parents of the generation.

Table A1. The main parameters of EA1.

EA1
λ µ NGen h s

30 35 70 15 1.8

The EA1 is implemented by the script “EA_h15_A5.m” (see folder EA1 and ReadMe.txt).
This program is executed 30 times in order to calculate some statistical parameters. The best
solution’s state evolution is the reference trajectory used in this paper to implement the closed-loop
control structure.

Automation 2020, 1 65

References

1. Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence—A Methodological
Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016.

2. Patrick, S. (Ed.) Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-319-45401-6.
3. Talbi, E.G. Metaheuristics-from Design to Implementation; Wiley: Hoboken, NJ, USA, 2009;

ISBN 978-0-470-27858-1.
4. Faber, R.; Jockenhövelb, T.; Tsatsaronis, G. Dynamic optimization with simulated annealing.

Comput. Chem. Eng. 2005, 29, 273–290. [CrossRef]
5. Onwubolu, G.; Babu, B.V. New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg,

Germany, 2004.
6. Valadi, J.; Siarry, P. (Eds.) Applications of Metaheuristics in Process Engineering; Springer: Berlin/Heidelberg,

Germany, 2014; ISBN 978-3-319-06507-6.
7. Minzu, V.; Serbencu, A. Systematic Procedure for Optimal Controller Implementation using Metaheuristic

Algorithms. Intell. Autom. Soft Comput. 2020, 26, 663–677. [CrossRef]
8. Mayne, Q.D.; Michalska, H. Receding horizon control of nonlinear systems. IEEE Trans. Autom. Control.

1990, 35, 814–824. [CrossRef]
9. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for real-time implementations in

dynamic environments. IFAC Proc. Vol. 2005, 38, 156–161. [CrossRef]
10. Chiang, P.-K.; Willems, P. Combine evolutionary optimization with model predictive control in real-time

flood control of a river system. Water Resour. Manag. 2015, 29, 2527–2542. [CrossRef]
11. Hu, X.B.; Chen, W.H. Genetic algorithm based on receding horizon control for arrival sequencing and

scheduling. Eng. Appl. Artif. Intell. 2005, 18, 633–642. [CrossRef]
12. Balsa-Canto, E.; Banga, J.R.; Aloso, A.; Vassiliadis, V. Dynamic optimization of chemical and biochemical

processes using restricted second-order information. Comput. Chem. Eng. 2001, 25, 539–546. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compchemeng.2004.08.020
http://dx.doi.org/10.32604/iasc.2020.010101
http://dx.doi.org/10.1109/9.57020
http://dx.doi.org/10.3182/20050703-6-CZ-1902.01104
http://dx.doi.org/10.1007/s11269-015-0955-5
http://dx.doi.org/10.1016/j.engappai.2004.11.012
http://dx.doi.org/10.1016/S0098-1354(01)00633-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Closed-Loop Structure for Optimal Control
	Optimal Control Problem: Hypotheses
	Closed-Loop Control Structure
	Correspondence between Performance Index and Prediction Horizon

	Tracking of the Quasi-Optimal Trajectories
	Tracking Problem
	Tracking Controller
	Quality of the Proposed Solution

	Example of Using a Quasi-Optimal Trajectory
	TC’s Implementation Using Simulated Annealing Algorithm
	TC’s Implementation Using an Evolutionary Algorithm

	Discussion
	
	
	References

