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Abstract: We studied the hydrazide compounds of the α-azidoacetyl group, which showed specific
click reactivity by the intramolecular hydrogen bonding between the azido group and the N-H of the
hydrazide moiety. In the competitive click reactions with a general alkyl azide, both traceless and
non-traceless Staudinger-Bertozzi ligation occurred azide-site-selectively by the acceleration effect
of the hydrogen bonding. However, the product obtained from the traceless reaction was further
transformed into heterocyclic compounds. In addition, in an attempt at a synthesis of naphthalimide-
possessing azidoacetyl hydrazide, nitrogen-nitrogen bond cleavage of the azidoacetyl hydrazides
occurred to give the reduced amine product. These unexpected results could help design molecules
for the successful Staudinger-Bertozzi ligation of the hydrazide compounds and develop a new
nitrogen-nitrogen bond cleavage method.

Keywords: organic azides; staudinger ligation; nitrogen-nitrogen bond cleavage; hydrogen-bonding
interaction; click chemistry

1. Introduction

Click chemistry, which conjugates two molecules concisely, has been utilized in
broad scientific areas such as chemical biology and polymer material chemistry [1–4].
Beyond this established one-on-one conjugation chemistry, a strategy integrating multiple
functional compounds onto one scaffold molecule has received much attention recently
(Figure 1a) [5,6]. Among the multi-click modular hub strategy, organic azides’ high reac-
tivity, sufficient stability, and small steric influence to play an important role [7–10]. In
addition, the azido group is easily introducible onto the substrate at the late stage of the
synthesis, for example, by late-stage global SN2 azidation. For these reasons, multi-azides,
which possess multiple azido groups, have sparked interest in readily preparable click
scaffolds of integration.

On the other hand, the drawback of the remaining multi-azides is on the site-selectivity
of click conjugation. Significantly, the similar reactivities among alkyl azides create diffi-
culty on site-specificity without the help of steric bulkiness. Nevertheless, the presence
of sterically bulky substituents suppresses the click reactivity itself and influences the
solubility, as well as the performance, of the materials. To improve the site-specificity, we
have studied the multi-azide scaffold strategy, which is free from steric bulkiness-based
discrimination (Figure 1b) [11–13]. By utilizing the high acidity of C-H at the carbonyl
α-positions, we have established azide-site-selective conversion reactions from azido to
diazo and oxime groups for multicomponent click conjugation [11,12]. In addition, we
recently developed a new azide-site-selective conjugation strategy utilizing the intramolec-
ular hydrogen bonding interactions between amide N-H [14,15] and the azido groups
of α-azido secondary amides (α-AzSAs) [13]. As the hydrogen bonding between amide
N-H changes the electron density of the azido group and stabilizes the phosphazide inter-
mediates, electrophilic reactions, such as the Staudinger reaction (ligation) [16–20], were
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accelerated. In contrast, the nucleophilic conjugation reaction, using propargyl cations that
we developed [21,22], was suppressed. With these methods, multiple compounds were
successfully and site-selectively integrated onto the di- and tri-azide click scaffolds.

Organics 2022, 3, FOR PEER REVIEW 2 
 

 

between amide N-H changes the electron density of the azido group and stabilizes the 
phosphazide intermediates, electrophilic reactions, such as the Staudinger reaction 
(ligation) [16–20], were accelerated. In contrast, the nucleophilic conjugation reaction, 
using propargyl cations that we developed [21,22], was suppressed. With these methods, 
multiple compounds were successfully and site-selectively integrated onto the di- and tri-
azide click scaffolds. 

 
Figure 1. (a) Multi-click modular hub strategy (b) The designs of distinguishable alkyl azides. 

As mentioned above, the reactivity change caused by hydrogen bonding is one of the 
preferable methods for site-selective click conjugation because it does not require bulky 
substituents. Thus, to develop the multi-azide scaffold chemistry based on the hydrogen 
bonding strategy, we next focused on the hydrazides to extend the α-AzSA chemistry [13]. 
Hydrazides consist of nitrogen-nitrogen bonds in the amide structures, and the bonding 
can be cleaved under various conditions (reductive conditions in most cases) [23,24]. 
These chemical bond cleavages could potentially be applied post-removal of the 
conjugates to release drugs in vivo and remove unnecessary residues after the target 
protein labeling to reduce contamination for precise analysis [25]. Thus, we envisioned 
that α-azidoacyl hydrazides could be promising scaffolds, allowing distinguishable click 
conjugation of multi-azides by intramolecular hydrogen bonding between NH and the 
azido group and bond cleavage to remove the functions. Herein, we report our attempts 
at using the azidoacetohydrazides for site-selective click conjugation and the discovered 
side reaction of the nitrogen-nitrogen bond cleavage of the azidoacetohydrazides. 

2. Results 
First, to examine the characteristics, we commenced our research with the synthesis 

of the azidoacetohydrazide molecule to be tested. The target compound was synthesized 
from chloroacetyl chloride 1a, and chloroacylation of hydrazide followed by SN2 azidation 
gave the desired compound 3 in one pot (Scheme 1). Surprisingly, the yield of azidoacetyl 
hydrazide 3 was quite low, although this precursor 2 was preparable in good yield. Even 
though the synthesis was performed in two pots ((1) acylation; (2) azidation), the product 
yield was not improved. In particular, the yield of the azidation step was poor. 

Figure 1. (a) Multi-click modular hub strategy (b) The designs of distinguishable alkyl azides.

As mentioned above, the reactivity change caused by hydrogen bonding is one of the
preferable methods for site-selective click conjugation because it does not require bulky
substituents. Thus, to develop the multi-azide scaffold chemistry based on the hydrogen
bonding strategy, we next focused on the hydrazides to extend the α-AzSA chemistry [13].
Hydrazides consist of nitrogen-nitrogen bonds in the amide structures, and the bonding
can be cleaved under various conditions (reductive conditions in most cases) [23,24]. These
chemical bond cleavages could potentially be applied post-removal of the conjugates to
release drugs in vivo and remove unnecessary residues after the target protein labeling
to reduce contamination for precise analysis [25]. Thus, we envisioned that α-azidoacyl
hydrazides could be promising scaffolds, allowing distinguishable click conjugation of
multi-azides by intramolecular hydrogen bonding between NH and the azido group and
bond cleavage to remove the functions. Herein, we report our attempts at using the
azidoacetohydrazides for site-selective click conjugation and the discovered side reaction
of the nitrogen-nitrogen bond cleavage of the azidoacetohydrazides.

2. Results

First, to examine the characteristics, we commenced our research with the synthesis
of the azidoacetohydrazide molecule to be tested. The target compound was synthesized
from chloroacetyl chloride 1a, and chloroacylation of hydrazide followed by SN2 azidation
gave the desired compound 3 in one pot (Scheme 1). Surprisingly, the yield of azidoacetyl
hydrazide 3 was quite low, although this precursor 2 was preparable in good yield. Even
though the synthesis was performed in two pots ((1) acylation; (2) azidation), the product
yield was not improved. In particular, the yield of the azidation step was poor.
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ligation) [16–20]. In the case of phosphine 9, ligation product 10 was successfully obtained 
in an excellent yield without further cyclization (Scheme 3a). Compared to the structural 
differences between 4 and 9, the phosphine oxide moiety at the ortho-position of 
benzamide in 10 should prevent the further nucleophilic attack of the amine onto the 
carbonyl group. Thus, Staudinger ligation successfully afforded the ligation product in 
contrast to the traceless Staudinger ligation. This result also indicates the difficulty of the 
traceless Staudinger ligation of acetohydrazides due to the further intramolecular 
cyclization by the amino nitrogen atoms. With this successful result of non-traceless 
Staudinger ligation, the competitive ligation reaction using 9 also preferred 3, which 

Scheme 1. Synthesis of 2-azido-N’-phenylacetohydrazide 3.

Besides the low yield, with the azidoacetohydrazide 3 in hand, we moved to inves-
tigate the traceless Staudinger ligation [26–28]. However, with the phosphine reagent 4,
the desired ligation product benzamide 5 was not obtained, but the cyclized compound
1,2,4-triazin-6-one 6 was, in low yield (Scheme 2a). This slightly unstable compound would
be delivered from the desired 5 through the intramolecular condensation with the amine
moiety of the hydrazide. In the case of α-AzSA, the intramolecular hydrogen bonding
between amide N-H and the azido group increases the reactivity in the Staudinger re-
action [13]. The reaction selectivity by the intramolecular hydrogen bonding was also
observed in the traceless Staudinger ligation of the azidoacetohydrazide in a competitive
reaction. With a general alkyl azide of 3-phenylpropyl azide 7, the traceless ligation reaction
selectively proceeded with 4 showing hydrogen bonding, and 7 was only recovered as an
unreacted starting material (Scheme 2b).
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To evaluate the reactivity of the azidoacetohydrazide against Staudinger ligation, we
also tested the classical non-traceless Staudinger ligation reaction (Staudinger-Bertozzi
ligation) [16–20]. In the case of phosphine 9, ligation product 10 was successfully obtained
in an excellent yield without further cyclization (Scheme 3a). Compared to the structural
differences between 4 and 9, the phosphine oxide moiety at the ortho-position of benza-
mide in 10 should prevent the further nucleophilic attack of the amine onto the carbonyl
group. Thus, Staudinger ligation successfully afforded the ligation product in contrast to
the traceless Staudinger ligation. This result also indicates the difficulty of the traceless
Staudinger ligation of acetohydrazides due to the further intramolecular cyclization by the
amino nitrogen atoms. With this successful result of non-traceless Staudinger ligation, the
competitive ligation reaction using 9 also preferred 3, which shows a hydrogen interaction
in contrast to 7 (Scheme 3b). As a result, ligation product 10 was obtained in moderate
selectivity, and 7 was the only recovered starting material.
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Scheme 3. Non-traceless Staudinger ligation of azidoacetohydrazide 3. (a) Ligation with phosphine
9.; (b) Competitive reaction. a Isolated yield. b Yields determined by 1H NMR.

To further research the characteristics of the α-azidoacetyl hydrazides, we moved
the synthesis of the model diazide scaffold toward the site-selective click conjugation
for the integrated chemical probes (Scheme 4). Starting from the commercially available
12, imidation with alkylazido tether 13, followed by SNAr hydrazination, gave 14 in
good yields. With 14, the one-pot construction of azidoacetyl hydrazide moiety in the
diazide scaffold 15 by transamidation [29] was examined with the in situ prepared methyl
azidoacetate, at room temperature. However, hydrazide 15 was not obtained. Instead,
nitrogen-nitrogen bond-cleaved amine 16 was obtained in a high yield. To investigate this
phenomenon, we detoured through the synthesis of chloroacetyl hydrazide 17. In contrast
to phenyl compound 2, the azidation reaction of 17 did not proceed at room temperature.
After heating, amine 16 was obtained in a good yield, the same as the transamidation route.
These results suggest that the structure of azidoacetyl hydrazide itself would be unstable.
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contrast, the synthetic approach from hydrazone 19 [30], which could produce 
azicoacetohydrazone 20, did not work due to the similar decomposition through bond 
cleavage. This result indicates that the α-effect of the neighboring nitrogen atom, which 
increases the nucleophilicity of the amide nitrogen atoms [31,32], plays a key role rather 
than its basicity. With these results, the plausible N-N bond cleavage mechanism of 
azidoacetohydrazide 15 to give amine 16 is shown in Scheme 5b. As a result of the α-effect 
of the nitrogen atom moiety, which could be stronger than that of the oxygen atom [33], 
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At the same time, 1,2,3,4-tetrazin-5(6H)-one 25 or 1,2,3,4-tetrazin-5-ol 26 of its tautomer, 
which has not been reported yet, could also be generated and might be unstable enough 
to decompose quickly. As aminoacetyl hydrazides have been reported to have been 
obtained in good to excellent yields [34], bond cleavage by Lossen rearrangement [35], 
which the electron-donating group at carbonyl α-position accelerates, could be excluded 
from the possible mechanism. 
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3. Discussion

Because of the insolubility of the aryl position derivatives of 3, it was difficult to
examine and compare the reactivity. For this reason, to compare the stability, we synthesized
azidoacetyl hydroxamate 18. Although 18 also has an electron-rich oxygen atom, 18 was
successfully obtained in good yield as a stable compound (Scheme 5a). In contrast, the
synthetic approach from hydrazone 19 [30], which could produce azicoacetohydrazone 20,
did not work due to the similar decomposition through bond cleavage. This result indicates
that the α-effect of the neighboring nitrogen atom, which increases the nucleophilicity
of the amide nitrogen atoms [31,32], plays a key role rather than its basicity. With these
results, the plausible N-N bond cleavage mechanism of azidoacetohydrazide 15 to give
amine 16 is shown in Scheme 5b. As a result of the α-effect of the nitrogen atom moiety,
which could be stronger than that of the oxygen atom [33], intramolecular cyclization of the
amido nitrogen to the terminal nitrogen atom of the azido group would occur to form six-
membered ring heterocycle 23, or 24 through 22. Then, the ammonium moiety of 24 would
be eliminated to afford the obtained amine 16. At the same time, 1,2,3,4-tetrazin-5(6H)-one
25 or 1,2,3,4-tetrazin-5-ol 26 of its tautomer, which has not been reported yet, could also be
generated and might be unstable enough to decompose quickly. As aminoacetyl hydrazides
have been reported to have been obtained in good to excellent yields [34], bond cleavage
by Lossen rearrangement [35], which the electron-donating group at carbonyl α-position
accelerates, could be excluded from the possible mechanism.
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the potentially associated product.

This phenomenon could be a reason for the low yield of phenyl hydrazide 3. The
base-promoted cyclization to tetrazines has been reported with alkyl azides and azaoxyallyl
cations from α-bromo hydroxamates in the fluorous solvent [36], particularly hexafluo-
roisopropyl alcohol (HFIP), providing specific reactivity [37,38]. However, as demonstrated
in Scheme 5a, the reported cyclization or the possible bond scission did not occur in the
hydroxamate in a non-fluorous general solvent. In contrast, with the hydrazides, the
nitrogen-nitrogen bond cleavage proceeded even in a non-fluorous solvent. It should be
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noted that the general α-azido secondary or tertiary amides we have examined previously
did not show this decomposition reaction [11–13]. The α-Azido secondary or tertiary
amides were obtained in excellent yields and were stable enough to handle. As the nu-
cleophilicity of the amide nitrogen is increased due to the neighboring electron-donative
amino group [30,31], the α-azidoacetohydrazide molecules would allow this reaction.

Organic azides have also been known for carbon-carbon bond migrative cleavage [7–10,39].
The conversion reaction we found could be worth developing as a new aspect of organic azides
for the nitrogen-nitrogen bond cleavage method at ambient temperatures, under non-reductive
or non-oxidative reaction conditions. However, the possible generation of 25/26, a potentially
detonation-possible low molecular weight compound with a low Smith ratio (C+O)/n = 0.75),
possessing four continuous nitrogen atoms, is also suggested and should be approached
with care.

4. Conclusions

In summary, we studied the hydrazide compounds of the α-azidoacetyl group, show-
ing the specific click reactivity by the intramolecular hydrogen bonding. In the compet-
itive reactions, with 3-phenylpropyl azide of a general alkyl azide, both Staudinger and
traceless Staudinger ligation resulted in selective ligation by the acceleration effect of
the hydrogen bonding. However, the product obtained from the traceless reaction was
further transformed into heterocyclic compounds, causing a low yield. In addition, the
naphthalimide-possessing azidoacetyl hydrazide decomposed through nitrogen-nitrogen
bond cleavage to give the amine product. These results could help to realize the issue
of Staudinger ligation of the α-azidoacyl hydrazide compounds and provide its solution
for successful ligation. In addition, the bond cleavage of α-azidoacyl hydrazide could
give a new nitrogen-nitrogen bond cleavage method under simple amidation conditions
or by stepwise amidation/azidation sequence. However, at the same time, the potential
generation of the possibly hazardous side product of unstable tetrazine in this reaction is
also plausible. We hope our report can help design the azido click scaffold, develop new
chemical bond scission methods, and avoid unexpected potential hazards.

5. Materials and Methods
5.1. General Information including Important Notices

Caution!: Organic azides, especially multiple azido compounds, are potentially haz-
ardous and explosive. Although we have never experienced severe incidents in our study,
all manipulations of them should be carefully conducted, in a hood with a glass shield, to
avoid a detonation. Sodium azide should be handled with a plastic spatula. At the azida-
tion stages, the complete removal of residual halogenated solvent used in the last step or
extractions should be kept in mind. Otherwise, explosive species such as diazidomethane
from dichloromethane are possibly generated [40,41]. Furthermore, as well as considering
Smith’s ratio (special attention be paid to the compounds of (C+O)/n < 3)), organic azides
should be designed and prepared with due consideration of their structure, stability, and
the reactivity of azido groups [42]. Particularly in this paper, we reported the potential gen-
eration of possibly hazardous 1,2,3,4-tetrazin-5 (6H)-one 25 or its tautomer 26. Therefore,
the running scale of the nitrogen-nitrogen bond cleavage reaction should be small enough
and conducted with care.

Analysis and Reagents: The 1H and 13C NMR spectra were recorded using a JEOL
JNM-ECX400P/TIM spectrometer (400 MHz for 1H NMR, 101 MHz for 13C NMR, and
202 MHz for 31P NMR). Chemical shifts are reported as δ values in ppm and calibrated
with respect to the residual solvent peak (CDCl3: δ 7.26 for 1H NMR, and δ 77.00 for
13C NMR; Acetone-d6: δ 2.05 for 1H NMR and δ 29.24 for 13C NMR), internal standard
reagent (tetramethylsilane: δ 0.0 for 1H NMR), and external standard reagent (Phosphoric
acid: δ 0.00 for 31P NMR). The abbreviations used are as follows: s (singlet), d (doublet), t
(triplet), q (quartet), br (broad), and m (multiplet). The NMR spectra of the compounds
are shown in Supplementary Material. The melting points were measured using an As
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One melting point apparatus DTM-02. The infrared spectra were measured using a JASCO
FT/IR-460Plus spectrometer. The mass spectra were recorded using a Thermo Scientific
LTQ Orbitrap XL ETD (ESI-Orbitrap). The progress of the reactions was monitored by silica
gel thin layer chromatography (TLC) (Merck TLC Silica gel 60 F254). Phosphomolybdic
acid ethanol solution, ninhydrin, or iodine on silica gel was used for the TLC stains, and
TLC was also monitored with UV lamp (254 or 365 nm). Flash column chromatography
was performed using neutral silica gel N60 from Kanto Chemical Co. Inc. or Chromatorex
PSQ 100 B from Fuji Silicia as neutral silica gel was used for column chromatography. All
of the reagents were purchased from Sigma-Aldrich, Wako Pure Chemical Industries, Ltd.,
TCI (Tokyo Chemical Industry, Co. Ltd., Tokyo, Japan), Kanto Chemical Co. Inc., Kishida
chemical, and Nacalai Tescque. Anhydrous solvents such as tetrahydrofuran (THF), toluene,
and dichloromethane were purchased from Wako Pure Chemical and Kanto Chemical.
Deionized water was used for solvents, reaction quenching, and separation sequences.

5.2. Synthesis of Substrates

2-Azido-N-phenylacetohydrazide (3) (Figure 2)
Chloroacetyl chloride (318 µL, 4 mmol) was added to a stirred solution of phenylhy-

drazine (472 µL, 4.8 mmol) in DMF (2 mL), at ambient temperature. After 25 min, sodium
azide (780 mg, 12 mmol) was added to the mixture and was kept stirred at the same
temperature. After 24 h, diethyl ether and water were added to the mixture to extract the
material. The organic layer was washed with water and brine, then dried over sodium
sulfate. The removal of the solvent under reduced pressure followed by silica gel column
chromatography (hexane/ethyl acetate = 4/1) gave 3 (84 mg, 11%).
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2-(Diphenylphosphaneyl)phenyl benzoate (4) (Figure 4)
Triethylamine (307 µL, 2.2 mmol) and benzoyl chloride (256 µL, 2.2 mmol) were

added to a stirred solution of (2-hydroxyphenyl)diphenylphosphine (556 mg, 2 mmol)
in dichloromethane (20 mL) at room temperature, successively. After 2 h, the organic
components were extracted with ethyl acetate, and the organic layer was washed with
water, 5 wt% sodium bicarbonate aqueous solution, and brine. The organic layer was
dried over sodium sulfate. The removal of the solvent under reduced pressure, followed
by silica gel column chromatography (hexane/ethyl acetate = 50/1), gave the product 4
(631 mg, 83%).
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2-(diphenylphosphino)phenyl benzoate 4 (122 mg, 0.32 mmol) was added to a stirred
solution of azidoacetylhydrazide 3 (55.3 mg, 0.29 mmol) in toluene/water(2.9 mL/
290 µL = 10/1) at ambient temperature. After two hours, the solvent of the mixture
was removed under reduced pressure. The obtained residue was purified by silica gel
column chromatography (hexane/ethyl acetate = 5/1) to give 6 (8.6 mg, 11%). As a result
of the product instability, further purification was not performed.

Red oil; Rf value 0.22 (hexane/ethyl acetate = 1/1); IR (NaCl, CHCl3) νmax 1603, 1471,
1382, 1095 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.96 (dd, 2H, J = 8.5, 1.1 Hz), 7.51 (m, 1H),
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Methyl 2-(diphenylphosphino)benzoate 9 (28 mg, 0.087 mmol) was added to a stirred
solution of azidoacetyl hydrazide 3 (15.1 mg, 0.079 mmol) in toluene/water (790 µL/
79 µL = 10/1) at ambient temperature. After 1.5 h, the solvent of the reaction mixture
was removed under reduced pressure. The obtained residue was purified by silica gel
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column chromatography (hexane/ethyl acetate = 1/10 to ethyl acetate elution) to give 10
(35.6 mg, 96%).

Beige oil; Rf value 0.14 (hexane/ethyl acetate = 1/10); IR (NaCl, CHCl3) νmax 1674,
1173 cm−1; 1H NMR (400 MHz, CDCl3) δ 10.43 (s, 1H), 7.70 (dd, 1H, J = 6.8, 2.8 Hz),
7.53–7.63 (m, 7H), 7.41–7.45 (m, 5H), 7.08–7.16 (m, 3H), 6.81–6.86 (m, 3H), 4.04 (d, 2H,
J = 6.0 Hz); 13C NMR (101 MHz, CDCl3) δ 169.2, 168.8, 148.2, 141.1, 133.5, 132.5, 131.9, 131.7,
130.6, 129.7, 129.6, 129.4, 128.8, 128.7, 120.6, 114.0, 43.4; 31P NMR (162 MHz, CDCl3) δ 36.6;
HRMS (ESI) calcd for C27H25N3O3P [M+H]+ 470.1634, found 470.1641.

2-(2-(2-(2-Azidoethoxy)ethoxy)ethyl)-6-bromo-1H-benzo[de]isoquinoline-1,3(2H)-dione
(14′) (Figure 8)
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Figure 8. 2-(2-(2-(2-Azidoethoxy)ethoxy)ethyl)-6-bromo-1H-benzo[de]isoquinoline-1,3(2H)-dione (14′).

Commercially available 4-bromo-1,8-naphthalic anhydride 12 (728 mg, 2.63 mmol)
and triethylamine (729 µL, 5.26 mmol) was added to a stirred solution of the prepared
2-(2-(2-azidoethoxy)ethoxy)ethanamine 13 [43,44] (908 mg, 3.15 mmol) in ethanol (26 mL)
at room temperature. The mixture was heated under reflux conditions for 6 h. Then,
additional triethylamine (729 µL, 5.26 mmol) was added to the mixture and was heated
for one hour. The solvent was removed under reduced pressure, and the obtained residue
was purified by silica gel column chromatography (hexane/ethyl acetate = 3.5/1 to 2/1) to
obtain 14′ (664 mg, 58%).

White solid; Rf value 0.16 (hexane/ethyl acetate = 4/1); m.p. 215.0–217.2 ◦C; IR (NaCl,
CHCl3) νmax 2106, 1703, 1662, 1370 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.63 (dd, 1H,
J = 7.2, 0.8 Hz), 8.55 (dd, 1H, J = 8.4, 0.8 Hz), 8.39 (d, 1H, J = 7.8 Hz), 8.02 (d, 1H, J = 7.8 Hz),
7.83 (dd, 1H, J = 8.4, 7.2 Hz), 4.43 (t, 2H, J = 6.2 Hz), 3.84 (t, 2H, J = 6.2 Hz), 3.70–3.72 (m,
2H), 3.60–3.64 (m, 4H), 3.29 (t, 2H, J = 5.3 Hz); 13C NMR (101 MHz, CDCl3) δ 163.58, 163.56,
133.3, 132.0, 131.2, 131.0, 130.5, 130.3, 129.0, 128.0, 123.0, 122.1, 70.7, 70.2, 69.9, 67.9, 50.6,
39.2; HRMS (ESI) calcd for C18H18

79BrN4O4 [M(79Br)+H]+ 433.0511, found 433.0521.
2-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-6-hydrazinyl-1H-benzo[de]isoquinoline-1,3(2H)-

dione (14) (Figure 9)
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Figure 9. 2-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-6-hydrazinyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (14).

Hydrazine monohydrate (744 µL, 1.53 mmol) was added to a stirred solution of
bromonaphthalimide 14′ (664 mg, 1.53 mmol) in 2-methoxy ethanol (15 mL) at ambient
temperature. The mixture was then heated at 100 ◦C for 17 h. After the reaction mixture
was cooled, dichloromethane and water were added to extract the materials, and the
organic layer was washed with water and brine. The combined organic layer was dried
over sodium sulfate. Removing the solvent under reduced pressure gave the product 14
(513 mg, 87%) in pure form without further purification.

Orange solid; Rf value 0.24 (ethyl acetate only); m.p. 110.0–112.0 ◦C; IR (NaCl, CHCl3)
νmax 2107, 1685, 1647, 1585, 1387 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.27 (d, 1H, J = 7.3 Hz),
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8.23 (d, 1H, J = 8.2 Hz), 7.88 (d, 1H, J = 8.2 Hz), 7.35 (dd, 1H, J = 7.8, 7.8 Hz), 7.06 (br, 1H),
7.04 (d, 1H, J = 8.8 Hz), 4.43 (t, 2H, J = 5.5 Hz), 3.96 (t, 2H, J = 5.7 Hz), 3.82 (m, 2H), 3.72 (m,
2H), 3.62 (t, 2H, J = 5.0 Hz), 3.27 (t, 2H, J = 5.0 Hz); 13C NMR (101 MHz, CDCl3) δ 164.7,
164.1, 151.8, 134.2, 130.8, 129.0, 125.8, 124.5, 122.2, 118.5, 110.4, 104.5, 70.6, 70.3, 69.8, 68.7,
50.6, 39.0; HRMS (ESI) calcd for C18H21N6O4 [M+H]+ 385.1624, found 385.1638.

N’-(2-(2-(2-(2-Azidoethoxy)ethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-
6-yl)-2-chloroacetohydrazide (17) (Figure 10)
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bromoacetate (3.7 µL, 0.04 mmol) in DMSO (400 µL) at ambient temperature. After three 
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6-yl)-2-chloroacetohydrazide (17).

Chloroacetic anhydride (27.6 mg, 0.162 mmol) was added to a stirred solution of
hydrazine 14 (51.7 mg, 0.134 mmol) in DMF (2 mL) at room temperature. After 3 h, the
mixture was treated with diethyl ether and water to extract the material. The organic
layer was washed with water and brine and dried over sodium sulfate. The removal
of the solvent under reduced pressure, followed by silica gel column chromatography
(hexane/ethyl acetate = 1/1 to 1/2 to ethyl acetate elution), gave 17 (32.1 mg, 52%).

Orange oil; Rf value 0.57 (ethyl acetate only); IR (NaCl, acetone) νmax 3392, 3019, 2110,
1694, 1242, 1171, 1036 cm−1; 1H NMR (400 MHz, acetone-d6) δ 9.91 (s, 1H), 8.92 (s, 1H), 8.47
(d, 1H, J = 8.2 Hz), 8.39 (d, 1H, J = 7.3 Hz), 8.32 (d, 1H, J = 8.7 Hz), 7.55 (dd, 1 H, J = 8.0,
8.0 Hz), 7.12 (d, 1H, J = 8.0 Hz), 4.38 (s, 2H), 4.32 (t, 2H, J = 6.4 Hz), 3.76 (t, 2H, J = 6.6 Hz),
3.68–3.60 (m, 6H), 3.30 (t, 2H, J = 4.8 Hz); 13C NMR (101 MHz, acetone-d6) δ 167.5, 164.6,
164.1, 150.6, 133.9, 131.4, 130.0, 127.9, 126.1, 123.5, 120.4, 113.9, 106.4, 71.09, 71.05, 70.07,
68.4, 51.3, 41.9, 39.5; HRMS (ESI) calcd for C20H22

35ClN6O5 [M(35Cl)+H]+ 461.1340, found
461.1354.

6-Amino-(2-(2-(2-(2-Azidoethoxy)ethoxy)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione
(16) (Figure 11)
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3.65–3.60 (m, 5H), 3.28 (t, 2H, J = 5.2 Hz); 13C NMR (101 MHz, CDCl3) δ 164.6, 164.0, 149.3,
133.8, 131.5, 129.7, 126.9, 124.8, 122.8, 119.8, 109.4, 107.7, 70.6, 70.2, 69.9, 68.3, 50.6, 38.9;
HRMS (ESI) calcd for C18H20N5O4 [M+H]+ 370.1515, found 370.1513.

16 from hydrazine 14 by transamidation
Sodium azide (3.9 mg, 0.06 mmol) was added to a stirred solution of methyl bromoac-

etate (3.7 µL, 0.04 mmol) in DMSO (400 µL) at ambient temperature. After three hours,
hydrazine 14 (15 mg, 0.04 mmol) was added to the mixture. After 13 h, the mixture was
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treated with diethyl ether and water to extract the material. The organic layer was washed
with water and brine and dried over sodium sulfate. The removal of the solvent under re-
duced pressure followed by silica gel column chromatography (hexane/ethyl acetate = 1/3)
to obtain 16 (13.5 mg, 91%).

16 from chloroacetohydrazide 17
Sodium azide (4 mg, 0.06 mmol) and tetrabutylammonium iodide (7 mg, 0.02 mmol)

were added to a stirred solution of chloroacetohydrazide 17 (8.5 mg, 0.018 mmol) in DMF
(300 µL) at ambient temperature. Then, the mixture was heated at 50 ◦C. After 18 h, the
mixture was treated with diethyl ether and water to extract the material. The organic
layer was washed with water and brine and dried over sodium sulfate. The removal
of the solvent under reduced pressure followed by silica gel column chromatography
(hexane/ethyl acetate = 1/1 to 1/2) to obtain 16 (6.1 mg, 72%).

16 from hydrazine 14 via 17 in one pot
Chloroacetic anhydride (10 mg, 0.047 mmol) was added to a stirred solution of hy-

drazine 14 (15 mg, 0.039 mmol) in DMF (400 µL at ambient temperature. After four hours,
sodium azide (15.6 mg, 0.24 mmol) was added, and the mixture was heated at 50 ◦C.
After 20 h, the mixture was treated with diethyl ether and water to extract the material.
The organic layer was washed with water and brine and was dried over sodium sulfate.
The removal of the solvent under reduced pressure was followed by silica gel column
chromatography (hexane/ethyl acetate = 1/1 to 1/2) to obtain 16 (11.6 mg, 80%). Due to
the pertial decomposition during the purification, further purification was not performed.

2-Azido-N-(benzyloxy)acetamide (18) (Figure 12)
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dichloromethane (8 mL) at 0 ◦C, successively. After 25 min, the mixture was warmed up to
room temperature. After a further 4.5 h, the mixture was treated with 1 N HCl and brine,
and the organic layer was dried over sodium sulfate. The obtained crude material, after the
removal of the organic solvent in vacuo, was submitted to the next reaction.

Sodium azide (650 mg, 10 mmol) was added to a stirred solution of the crude material
in tetrahydrofuran (8 mL) and water (2 mL) at room temperature. Then, the mixture was
heated under reflux conditions. After 20 h, the reaction mixture was diluted with ethyl
acetate, and the organic layer was washed with water and brine. The washed organic
layer was dried over sodium sulfate. Removal of the organic solvent followed by silica gel
column chromatography (hexane/ethyl acetate = 1/2) gave the product 18 (304 mg, 74%)
as a white solid.

White solid; Rf value 0.38 (hexane/ethyl acetate = 1/1); m.p. 41.0–42.9 ◦C; IR (NaCl,
CHCl3) νmax 2114, 1704, 1473 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.72 (brs, NH), 7.40 (m,
5H), 4.94 (s, 2H), 3.95 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 164.1, 134.6, 129.3, 129.0, 128.7,
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5.3. Competitive Staudinger and Traceless Staudinger Ligation Methods

Traceless Staudinger ligation
Phosphine 4 (38.2 mg, 0.1 mmol) was added to a stirred solution of 2-azido-N-

phenylacetohydrazide 3 (19.1 mg, 0.1 mmol) and 3-phenylpropyl azide 7 (16.1 mg, 0.1 mmol)
in toluene (1 mL) and water (100 µL) at room temperature. After completion of the reaction
(4 h), the reaction mixture was concentrated in vacuo. The obtained crude mixture was
analyzed by 1H NMR with 1,1,2,2-tetrachloroethane (10.5 µL, 0.1 mmol, 5.94 ppm on 1H
NMR, 2H) as the internal standard to determine the yields.

NMR yields: Products (6: 27%, 8: 3%) and recovered azides (3: 0%, 7: 62%)
Used peaks to measure NMR yields: 6: 4.35 ppm (s, 2H), 8: 3.44 ppm (q, 2H), 3:

3.52 ppm (q, 2H), 7: 1.91 ppm (tt, 2H). 1H NMR spectrum of 8 was referred to as that of the
reported data [46].

Non-traceless Staudinger ligation
Phosphine 9 (27.2 mg, 0.085 mmol) was added to a stirred solution of 2-azido-N-

phenylacetohydrazide 3 (16.2 mg, 0.085 mmol) and 3-phenylpropyl azide 7 (13.6 mg,
0.085 mmol) in toluene (1.7 mL) and water (170 µL) at room temperature. After completion
of the reaction (2 h), the reaction mixture was concentrated in vacuo. The obtained crude
mixture was analyzed by 1H NMR with 1,1,2,2-tetrachloroethane (8.9 µL, 0.085 mmol, 5.94
ppm on 1H NMR, 2H) as the internal standard to determine the yields.

NMR yields: Products (10: 71%, 11: 14%) and recovered azides (3: 0%, 7: 58%)
Used peaks to measure 1H NMR yields: 10: 4.04 ppm (d, 2H), 11: 2.55 ppm (t, 2H), 3:

3.52 ppm (q, 2H), 7: 2.71 ppm (t, 2H). 1H NMR spectrum of 11 was referred to as that in
our previous report [13].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/org3040035/s1, for NMR spectra of isolated compounds.
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