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Abstract

As part of non-terrestrial networks (NTN), the Low Earth Orbit (LEO) plays a critical role in
supporting high-throughput wireless communication. However, the high-speed mobility
of LEO satellites, coupled with the high density of user terminals, makes efficient user
assignment crucial in maintaining overall wireless performance. The suboptimal assign-
ment from LEO satellites to user terminals can result in frequent unnecessary handovers,
rendering the user terminal unable to receive the entire downlink signal. Consequently,
it reduces user rate and user satisfaction metrics. However, finding the optimum user
assignment to reduce handover issues is categorized as a non-linear programming problem
with a combinatorial number of possible solutions, resulting in excessive computational
complexity. Therefore, this study proposes a distributed user assignment for the LEO
networks. By utilizing message-passing frameworks that map the optimization problem
into a graphical representation, the proposed algorithm splits the optimization problem
into a local mapping issue, thereby significantly reducing computational complexity. By
exchanging small messages iteratively, the proposed algorithm autonomously determines
the near-optimal solution. The extensive simulation results demonstrate that the proposed
algorithm significantly outperforms the conventional algorithm in terms of user rate and
user satisfaction metric under various wireless parameters.

Keywords: LEO satellites; handover management; message passing algorithm; satellite
communication networks; distributed optimization

1. Introduction
The massive increase in data, evolving from numeric formats to include images, videos,

and high-dimensional sensor data, has resulted in a significant burden on traditional
communication networks [1,2]. Global network traffic is predicted to reach 6641 exabytes
per month by 2033, with video accounting for over 45% of this traffic [3]. This explosive
growth in data size and demand significantly degrades the performance of terrestrial
networks, which are limited by bandwidth, vulnerable to co-channel interference, and
require high latency, especially in rural areas [4–6]. Consequently, relying only on terrestrial
networks is insufficient to satisfy current and future communication demands. Therefore,
Low Earth Orbit (LEO) satellites, as a part of non-terrestrial networks, are introduced as a
novel solution to ensure reliable, low-latency, and wide-area coverage [6,7].
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LEO networks refer to wireless communication systems that utilize satellite constella-
tions orbiting the Earth at altitudes ranging from approximately 500 to 2000 kilometers [8].
Unlike traditional geostationary satellites, which remain fixed relative to a point on Earth
at an altitude of approximately 35,786 kilometers [9], LEO satellites orbit the Earth at a
rapid pace. Systematically, LEO satellites periodically transmit data to the user terminal
(UT). However, the rapid movement of LEO satellites leads to frequent handover (HO)
counts with very short preparation time, increasing the risk of timing mismatches that
can cause data loss during the transition [10–12]. Additionally, the high dense UT can
incur co-channel interference, which degrades overall wireless performance [12–15]. In the
end, the user throughput and user satisfaction drastically drop. Accordingly, a new user
assignment strategy is required to maintain the performance of LEO networks.

Over the past decade, numerous methods have been introduced to reduce the han-
dover effect in LEO networks. A major concern is when UTs are assigned to satellites with
short visibility windows, as this leads to frequent and unnecessary handovers, resulting in
increased data loss, signaling overhead, and unstable connectivity [16,17]. A study in [18]
proposes a graph-based approach that simultaneously maps satellite coverage. Here, the
proposed approach utilizes nodes and links, where a node represents a satellite and a link
indicates the overlap coverage between each pair of satellites. Then, this technique assigns
link weights based on elevation angle and available channels. By computing the shortest
path within the graph, each user can experience fewer handovers, improved channel qual-
ity, and more balanced traffic distribution. Another study in [19] introduces a bipartite
graph that consists of weighted links. In this case, the weighted links are denoted by the
time setting. If the satellite time falls within the user’s coverage range, then the weight
equals the channel gain. Otherwise, the weight is equal to zero.

Another network flow technique in [20] formulates the satellite handover problem
using a network flow graph, where a node represents a satellite and a UT. Additionally,
weighted edges reflect the UT requests and the quality of satellite service. The handover
process is optimized by computing the minimum-cost and maximum-flow within the graph,
enabling multiple satellite-UT matchings under capacity constraints. To avoid negative
cycles and infinite loops, a modified cost graph is proposed in this study. Simulation
results demonstrate improved service quality and efficient UT handover management in
large-scale LEO constellations.

Another study in [21] proposes a handover strategy for LEO satellite networks by
formulating a utility function that captures two critical metrics: satellite coverage and
propagation delay. The satellite coverage metric depends on both the duration of coverage
and the elevation angle, while the delay component considers the propagation cost. In this
method, the handover process is modeled as a bipartite graph to reflect the relationships be-
tween mobile terminals and candidate satellites. To enhance overall network performance
and balance satellite workloads, a terminal random-access algorithm is introduced, aiming
to maximize user space utility.

A study in [22] utilizes a weighted bipartite graph with the Kuhn–Munkres algorithm
to achieve optimal matching with maximum weight. Subsequently, the hysteresis margin is
employed to reduce unnecessary handover. The hysteresis margin mechanism is adjustable,
providing flexibility in fulfilling various conditions. Another study in [23] proposes an
enhanced message passing algorithm for LEO Satellite, which aimed to mitigate the inac-
curacies caused by Taylor expansion errors in line of sight estimation. A combination of
graph-based and neural network has also been introduced in [24] to tackle handover in LEO
networks. This study employs a graph neural network to maximize the sum rate, while also
considering load balancing concurrently. The method introduces a target satellite selection
scheme, followed by an ACK decision policy to ensure load balancing at the satellites.
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Recently, reinforcement learning methods have also been explored as a novel approach
to address the handover issue in LEO network communication. A Q-learning study in [25]
introduces an energy-aware technique to address the handover issue in LEO networks. By
maximizing signal quality and minimizing associated energy costs, this study aims to re-
duce unnecessary handovers. However, this study is explicitly designed for single-user and
remote scenarios. In another study, multi-agent reinforcement learning is proposed in [26]
to address the high computational cost of handover. This study aims to minimize handover
count by maximizing throughput and visible time under quality-of-service constraints.

However, conventional algorithms still leave major issues unsolved: (i) reliance on
centralized processing, (ii) high computational complexity, and (iii) lack of adaptability
to dynamic and large-scale LEO network environments. Centralized approaches often
struggle with scalability and latency, particularly in rapidly evolving decision-making
networks [27,28]. Furthermore, numerous existing methods rely on exhaustive computa-
tions, e.g., the global shortest path, which can become inefficient as the number of satellites
increases significantly. Most critically, these approaches often assign UTs to satellites with
short visibility durations. This practice accelerates the frequency of handovers, introduces
instability, and contributes to uneven traffic distribution across the constellation.

To overcome this limitation, the proposed distributed algorithm simultaneously maxi-
mizes user rate and user satisfaction metrics in user assignment, thereby directly reducing
the frequency of unnecessary handover. Using message passing frameworks, the proposed
algorithm models the satellite-user network as a factor graph, where each node represents
a relationship between a satellite and a UT. In addition, edges consist of weighted lines
that direct the decision of the relationship based on specific constraints. Instead of relying
on centralized processing, the message-passing mechanism enables each node to itera-
tively exchange local information via a message passing rule, allowing for the distributed
computation of near-optimal decisions. This distributed framework significantly reduces
processing overhead and computational complexity. As messages are propagated across
the network, local decisions converge toward a near-optimum without requiring global
topology awareness or a central coordinator. Compared to existing learning-based algo-
rithms [29], which depend on implicit reward shaping and large amounts of training data,
the proposed algorithm takes a different approach. It is fully message-passing-based, with
objectives and constraints that are explicitly defined. Also, iterative message exchanges
guide the message updates to remain feasible while ensuring a quick convergence rate.
Accordingly, the proposed algorithm has a low computational load, is interpretable, and is
well-suited for real-time user assignment in LEO networks. In addition, message passing
techniques have been applied in numerous fields, including communication networks [30],
power systems [31], manufacturing systems [32], and others.

Our main contributions in this work can be summarized as follows:

1. Distributed user assignment for minimizing handover issue:
This paper proposes a distributed user assignment strategy for LEO-UT communica-
tions. The proposed algorithm jointly maximizes both user rate and user satisfaction,
thereby minimizing unnecessary handover issues. By enabling direct node-to-node
message exchanges, the proposed algorithm eliminates reliance on a centralized con-
troller, allowing each LEO satellite to determine its optimal solution autonomously
based on local information. The evaluation results also show that the proposed
algorithm outperforms the conventional algorithm in terms of user rate and user
satisfaction metrics in various wireless parameters.

2. Network-adaptable algorithm:
The proposed algorithm adapts dynamically to variations in the number of UTs, satel-
lite coverage, and wireless shadowing. With a low number of required iterations for
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local optimization, it can rapidly adjust the assignment structure without needing to
gather all available messages. This ability to characterize and optimize the assignment
in a highly responsive manner ensures that performance remains optimal even under
rapidly changing network topologies, delivering consistent throughput and high
satisfaction metrics to end-UTs.

3. Low computational complexity algorithm:
The user assignment problem is decomposed into localized optimization steps at each
UT, resulting in a significant reduction in computational load compared to centralized
approaches. By minimizing control message exchange and relying on lightweight
calculations, the proposed algorithm supports rapid decision-making with minimal
processing delay, making it well-suited for real-time operation in high-mobility LEO
satellite networks.
The rest of the manuscript is organized as follows. Section 2 presents the system
models. The problem formulation is described in Section 3. The main idea and
proposed algorithm are presented in Section 4. The comprehensive evaluation is
presented in Section 5. Finally, a summary of this study is presented in Section 6.

2. System Models
Suppose a wireless satellite communication system consists of n LEO satellites and

m UTs located on the ground. Each LEO satellite follows a deterministic orbital trajectory
with a constant velocity v, allowing it to periodically cover different ground areas over
time. Due to the dynamic nature of satellite motion, each satellite i ∈ {1, 2, . . . , n} estab-
lishes intermittent communication attempts with UTs j ∈ {1, 2, . . . , m}. Thus, an invisible
transmission window will exist during the handover process, leading to data loss. These
communication attempts are characterized by two key parameters: the time availability Tij

and the elevation quality ϕij (see Section 2.2).
Figure 1 illustrates the dynamics of a UT’s association in a LEO satellite network. The

left-hand panel shows a snapshot of transmissions and interference at a given time t = K∆t,
while the right-hand panel shows the snapshot of handover signal at time t = (K+ 1)∆t,
where the term K+ 1 denotes the time-advancement representation, ∆t denotes a given
fixed-time step, and K ∈ 0, 1, 2, · · · denotes a natural number. From the left-hand panel, the
blue arrows represent the serving transmission from the selected satellite, and the orange
dashed arrows indicate interfering signals from other satellites transmitting simultaneously.
From the right-hand panel, as satellites move in orbit in an index time of t = (K+ 1)∆t, the
serving satellite changes, leading to handover events. At handover instants, a short gap may
appear in which the UT cannot capture the downlink signaling, reflecting synchronization
and switching delays that cause temporary service interruption. Therefore, it shows that
the LEO satellite network experiences two significant challenges: (i) massive co-channel
interference caused by ultra-dense LEO satellites that share the same channel; (ii) frequent
handovers between satellites and UTs, which lead to invisible transmission windows where
connections are temporarily lost. Accordingly, user rate, Rij, and user satisfaction metrics,
Hij, are considered as main factors in LEO communication networks. By considering both
instantaneous achievable sum rate and long-term user experience, the system can optimize
overall network throughput performance while maintaining quality of service (QoS).
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Figure 1. Interference and handover issue in LEO satellite.

2.1. User Rate

The achievable data rate from the i-th LEO satellite to the j-th UT is characterized
based on Shannon’s equation [33]. This formulation takes into account the co-channel
interference from other LEO satellites that are simultaneously transmitting. In addition,
the channel characteristics are also considered in this case. The data rate from the i-th LEO
satellite to the j-th UT in bits per second (bps), i.e., Rij, is computed as

Rij = B log2

(
1 +

PiGij

∑g∈ξ(i) PgGgj + σ

)
, (1)

where B denotes the bandwidth of the communication channel, Pi represents the trans-
mit power of the i-th LEO satellite, Gij denotes the channel gain between the i-th LEO
satellite and the j-th UT, ξ(i) represents the set of neighbor LEO satellites that potentially
interfere the i-th LEO satellite in the same frequency band, and σ is the background noise
power. Finally, this formulation reflects a Signal-to-Interference-Noise Ratio (SINR)-based
model [34], where the achievable rate depends on both the desired signal strength and the
aggregate interference.

2.2. User Satisfaction

The time availability, Tij, denotes the fraction of the total observation period in which
the i-th LEO satellite maintains a direct line-of-sight (LoS) communication link with the j-th
UT. The altitude, orbital speed, and ground footprint of a satellite majorly affect the time
availability and elevation angle to a UT. However, for the sake of simplicity, the detailed
modeling of these orbital parameters is not included in this system model. Instead, the time
availability and elevation angle are assumed to be precomputed and are directly utilized in
the system model.

In addition, the elevation angle, ϕij, represents the angle between the local horizontal
plane at the j-th UT and the line connecting the i-th LEO satellite to the j-th UT. Higher
elevation angles typically correspond to higher link quality due to reduced atmospheric
path loss and signal distortion. As the satellite moves, its elevation dynamically changes,
reaching a maximum of nearly 90◦ when it is close to the zenith and a minimum of nearly
0◦ when it is close to the horizon.

The LEO communication networks should be aware of user-centric metrics that con-
sider the stability and quality of LEO satellite access over time. Accordingly, an integrated
satisfaction index that jointly considers the service availability and the link elevation quality
is introduced, as follows

Hij = η Tij + (1− η) ϕij, (2)
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where Hij is the satisfaction index of j-th UT to the i-th LEO Satellite and η ∈ [0, 1] is a
weighting factor that balances the contribution of time availability and elevation quality.

Here, the time availability is mathematically modeled as the fraction of time slots
where the i-th LEO satellite successfully serves the j-th UT. This model is consistent with
prior visibility-based analyses, where satellite-to-site availability is a fundamental factor of
quality of service in LEO systems [35]. Accordingly, the notation is computed as

Tij =
N served

ij

Nt
, (3)

where N served
ij denotes the number of time slots during which the i-th LEO satellite trans-

mits data to the j-th UT, and Nt indicates the total number of sampled time slots.
On the other side, the elevation quality is computed as the average normalized ele-

vation angle across all served time slots. This indicates that higher elevation angles result
in more substantial link budgets and reduced fading, whereas lower elevations experi-
ence higher attenuation. Such dependence of link reliability on elevation angle has been
statistically characterized in recent LEO studies [36,37]. Thus, this formula is expressed as

ϕij =
1

N served
ij

∑
t∈τij

max
(

Elij(t)
90◦

, 0
)

, (4)

where Elij(t) denotes the elevation angle of the i-th LEO satellite relative to the j-th UT at
time slot t. The set τij represents the collection of time slots in which the link between the
i-th LEO satellite and j-th UT is considered active, i.e., elevation above the visibility mask,
andN served

ij = |τij| is the number of corresponding slots. The normalization by 90◦ ensures
that ϕij ∈ [0, 1], with unity corresponding to the satellite being directly overhead and zero
corresponding to either horizon or non-visibility. If no valid serving slot exists, in this case,
N served

ij = 0, then ϕij is defined as zero.
Finally, the integrated satisfaction index Hij represents both the continuity of service

via availability and the geometry-induced link quality via elevation. This integrated
mathematical rationale aligns with LEO networks design principles that jointly emphasize
user-centric satisfaction metric and overall rate [20,38].

3. Problem Formulation
This section formulates the optimization of a downlink LEO satellite communication

system. At any given time, a satellite can only serve UTs within its communication range.
Therefore, these pairwise relationships are represented using the candidate sets, i.e.,M(i)
and X (j). Here,M(i) ⊆ {1, 2, . . . , m} denotes the set of UTs that can receive data from the
i-th LEO satellite. In addition, X (j) ⊆ {1, 2, . . . , n} denotes the set of LEO satellites that
can transmit data to the j-th UT.

A non-diagonal binary variable Cij ∈ {0, 1} and diagonal binary variable Cjj ∈ {0, 1}
are introduced to characterize the assignment decision. If the i-th LEO satellite is assigned
to transmit to the j-th UT, Cij = 1; zero indicates otherwise. In addition, a self-assignment,
Cjj = 1, shows that the j-th UT is in an idle state, therefore actively enabled to receive data
from any satellite; otherwise, the UT is in a busy state, thereby unable to receive data from
any satellite.

The similarity metric, i.e., Sij, is defined as a utility metric that combines user data rate
and user satisfaction metrics across all satellite and UT pairs. Specifically, the proposed
algorithm aims to simultaneously optimize two critical aspects: (i) the quality of signal
transmission, measured by throughput, and (ii) the user satisfaction metric, represented
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by time availability and quality of elevation. Thus, the similarity metric is computed
as follows:

Sij =

σRij + (1− σ)Hij, if Cij = 1 and Cjj = 1

0, if otherwise
. (5)

where σ indicates the weighting factor with a range of 0 and 1.
The main objective is to maximize the similarity metric, thereby enhancing the cu-

mulative benefit derived from both the achievable data throughput and user satisfaction,
as experienced by UTs. By maximizing Sij, the mathematical framework naturally favors
stable and high-quality assignments, thereby avoiding short-lived connections that trigger
frequent or unnecessary handovers. This indirect handover optimization is consistent with
recent LEO satellite research, where throughput-driven but stability-aware association
policies have been shown to mitigate excessive handovers [20]. Furthermore, the emphasis
on availability and elevation within Hij ensures alignment with LEO networks service con-
tinuity requirement [37,38]. However, this optimization must consider the load balancing
among all involved LEO nodes. An unbalanced network, where only a subset of satellites
are heavily utilized while others remain idle, can degrade overall performance. Moreover,
it can magnify computational overhead and excessive resource utilization. To address this
issue, the connection assignments should be fairly distributed to ensure that no individual
satellite or UT is disproportionately burdened. Accordingly, the optimization problem is
defined as

max
Cij

n

∑
i=1

∑
j∈M(i)

(
Sij
)
Cij, (6)

subject to

∑
j∈M(i)

Cij = 1, ∀i ∈ {1, . . . , n}, (7)

∑
i∈X (j)

Cij ≤ [Cjj = 1], ∀j ∈ {1, . . . , m}. (8)

Two constraints are established to guide the decision-making process for the objec-
tive function. Constraint (7) ensures that each satellite can transmit to exactly one UT
among its set of candidate UTs. This constraint ensures that each satellite transmits exclu-
sively, preventing any satellite from serving multiple UTs simultaneously during a given
scheduling interval. This constraint design is motivated by both wireless and algorithmic
considerations. From the wireless side, dedicating the complete resource of a satellite
to one UT maximizes user rate and satisfaction metric under limited LEO power and
bandwidth budgets [37,39], mitigates inter-beam interference [40], guarantees deterministic
latency bounds in ultra-dense scenarios [38], and simplifies frequent handovers by reducing
signaling overhead [41]. From the algorithmic side, the one-to-one mapping maintains
factor-graph sparsity, ensuring convergence of the message-passing algorithm [42], lowers
computational complexity [43], and improves interpretability of assignment decisions [44].
Constraint (8) controls the reception capability of the UTs. Each UT may or may not be
ready to receive data, as indicated by a diagonal variable Cjj, where Cjj = 1 implies that
the j-th UT is ready to receive and Cjj = 0 indicates otherwise. If Cjj = 1, the UT can accept
data from one and only one satellite within its candidate set X (j). This constraint also
allows a UT not to receive any signal from the satellite; in this case, Cij = 0 and Cjj = 1.
For ready UTs, this constraint limits the number of transmitting satellites to exactly one,
minimizing redundant allocations. In addition, for any UT not prepared to receive data,
i.e., Cjj = 0, no satellite is allowed to transmit to the corresponding UT.
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The optimization of the objective function (6) falls under the category of nonlinear
programming, which requires excessive computational resources due to its complex and
non-convex nature. Finding the global optimum through conventional methods typically
involves an exhaustive search, which can lead to scalability issues when applied to large-
scale systems. To address this limitation, the proposed algorithm employs a distributed
algorithmic framework that effectively decomposes the original large-scale optimization
problem into local subproblems. Each local subproblem can then be solved independently,
allowing for parallel processing and reducing the overall load on the system. Although
this method does not always guarantee the global optimal solution, it typically yields a
near-optimal outcome and achieves an efficient trade-off between solution quality and
computational efficiency. As a result, both the computational burden and algorithmic
complexity can be significantly reduced, making the approach suitable for real-time or
resource-constrained environments.

4. Proposed Algorithm
To enable a distributed algorithm, a constrained optimization problem should be

transformed into an unconstrained optimization problem. Therefore, the optimization
problem is computed as

maximize ∑
i,j

Sij(Cij) + ∑
i

Fi(Cij) + ∑
j

Gj(Cij) (9)

subject to Fi(Cij) =

0, ∑j∈M(i) Cij = 1

−∞, otherwise
(10)

Gj(Cij) =

0, ∑i∈X (j) Cij ≤ [Cjj = 1]

−∞, otherwise
(11)

Here, two functions (10) and (11) are introduced to steer the decision of the objective
function based on the constraints (7) and (8). Function (10) enforces the objective function
on a LEO satellite to only transmit to one UT. If an objective function violates this function,
then Fi(Cij) has a value of minus infinity, and by maximization is never achieved. Otherwise,
the Fi(Cij) equal zero. In addition, Function (11) controls the matching problem, where
the LEO satellite can only transmit if the UT is ready to receive data, Cjj = 1. If this
constraint is violated, the maximization result only oscillates iteratively without ever
achieving convergent values.

A graphical representation, specifically a factor graph, is used to structure the uncon-
strained optimization problem systematically. This factor graph models the dependencies
among the variables and the constraints in the optimization. Accordingly, the flow of mes-
sages exchanged between nodes in the factor graph can be represented. Figure 2 presents
the constructed factor graph that consists of variable nodes indicated by circles and func-
tion nodes indicated by squares. The function nodes Fi correspond to the satellite-side
constraint that is steered by constraint (7), i.e., ensuring that each satellite can serve at most
one UT. Conversely, the function nodes Gj represent the user-side constraint that enforces
constraint (8), i.e., ensuring the reception capability of the UT. Each variable node is also
linked to an objective function, Sij (6). The edges in the figure represent the logical and bias
dependencies between variable nodes and function nodes. During the iterative message-
passing process, satellites exchange small-sized messages with their candidate UTs, while
UTs send back response messages reflecting their selection status. This iterative exchange
enables distributed inference over the factor graph. Accordingly, the corresponding figure
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presents how the mathematical formulation of Equations (6)–(8) is mapped into a factor
graph structure.

Figure 2. Graphical representation of LEO satellite–UT optimization.

Figure 3 illustrates the detailed structure of a single node, denoted as Cij, within the
overall factor graph. This figure shows the local interactions between three key function
nodes, i.e., Fi, Gj, and Sij, each of which is connected to the variable node, i.e., Cij. Initial
messages are exchanged via the edges connecting these nodes, with βij and ζij representing
the initial messages between Fi and Cij. In addition, the αij and λij denoting the initial
messages between Gj and Cij. Also, sij conveying information between Sij and Cij. These
messages reflect the probabilistic inference, where local computations update beliefs or
costs iteratively across the factor graph. By utilizing this node-level structure, the overall
problem can be decomposed into smaller and more manageable subproblems. By applying
message passing rule [42,45,46], the initial messages βij, ζij, αij, λij are exchanged iteratively
by considering all involved messages and max-sum rule to produce final messages β̃ij, ζ̃ij,
α̃ij, and λ̃ij. The transformation from initial messages into final messages is expressed by
finding the marginal of binary preference values, as shown below:

β̃ij = βij(1)− βij(0), (12)

ζ̃ij = ζij(1)− ζij(0), (13)

λ̃ij = λij(1)− λij(0), (14)

α̃ij = αij(1)− αij(0), (15)
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Figure 3. Detailed structure of a single node in the factor graph.

The initial messages β̃ij and ζ̃ij represent the interaction between the variable node Cij

and the function node Fi. Here, the message β̃ij is an incoming message from a variable
node that is simply the summation of all the involved messages to the variable nodes, Cij.
Considering the preference of binary value; therefore, β̃ij is computed as

β̃ij = s̃ij + α̃ij. (16)

In addition, the final message ζ̃ij is characterized based on the preference value of
the variable node, specifically the initial messages ζij(1) and ζij(0). The message ζij(1)
represents the maximum value obtained when the variable Cij is set to 1. Accordingly, by
applying the max-sum message passing principle, the message ζij(1) is represented as the
maximum value between the associated local function node Fi under the condition Cik = 1
with k ̸= j and the other incoming messages besides from j node, i.e., ζix(Ci j). In this case,
when the i-th LEO satellite transmits to the j-th UT; thus, the i-th LEO satellite can never
transmit to any other nearby UTs. Accordingly, this formulation is expressed as follows:

ζij(1) = max
Cik , k ̸=j

[
Fi(Ci1, . . . , Cij = 1, . . . , CiN) + ∑

x ̸=j
ζix(Cix)

]
(17)

= ∑
i ̸=s

βis(0). (18)

On the other hand, the value ζij(0) is obtained identically by setting Cij = 0 and maximizing
over the remaining variables. In this case, when the i-th LEO satellite does not choose the
j-th UT, then the i-th satellite can transmit to exactly one neighboring satellite in addition
to the j-th UT. Therefore, the message Cij = 0 is represented as follows:

ζij(0) = max
Cik , k ̸=j

[
Fi(Ci1, . . . , Cij = 0, . . . , CiN) + ∑

x ̸=j
ζix(Ci)

]
(19)

= max
i ̸=s

βis(1) + ∑
m∈ℓ(i,s)

βim(0)

 (20)
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The final message ζ̃ij is computed as the preference value of a binary choice, as follows

ζ̃ij = ζij(1)− ζij(0) (21)

=

[
∑
i ̸=s

βis(0)

]
−

max
i ̸=s

βis(1) + ∑
m∈ℓ(i,s)

βim(0)

 (22)

= −max
i ̸=s

[βis(1)− βis(0)] (23)

= −max
i ̸=s

βis (24)

The final message ζ̃ij in (24) indicates the update mechanism, where each variable node
updates its belief by combining local computations with other incoming messages.

The initial messages λij and αij are introduced as intermediary messages between
variable nodes Cij and factor nodes Gj in the factor graph. Similar to the final message β̃ij,
the final message λ̃ij also considers the binary preference value that quantify incoming
values from other involved messages, i.e., ζ̃ij and s̃ij. Thus, the computed messages are
expressed as

λ̃ij = s̃ij + ζ̃ij (25)

In addition, the final message α̃ij is affected by the function node Gj; therefore, it will
consider the diagonal and non-diagonal variable nodes. Similar with previous messages,
the final message α̃ij need to consider the binary preference value: Cij = 1 and Cij = 0. For
the non-diagonal variable nodes with Cij = 1, the i-th LEO satellite can only transmit data
to the j-th UT; accordingly, there is no neighboring node of the i-th LEO satellite that allows
it to transmit data to the j-th node. This logic is confirmed by the following equations, as
shown below:

αij(1) = max
Copt

ij

[
gi(Cij, . . . , Cij = 1, . . . , Cnj) + ∑

k ̸=i
λkj(Ctj)

]
(26)

= λij(1) + ∑
k∈Ei(j)

λkj(0) (27)

For non-diagonal variable nodes with Cij = 0, the i-th LEO satellite does not transmit
data to the j-th UT. In this case, there are two possible options: (i) exactly one neighboring
satellite can transmit the data to the j-th UT, or (ii) none of the satellites transmit to the j-th
UT. Therefore, the message value αij(0) in this case is calculated as the maximum of two
possible options. The first options is the sum of three parts: the message from i-th LEO
satellite to the j-th user in the preference value of Cij = 0, the message from the neighbor
m-th satellite to j-th UT in the state 1, and the sum of all other messages to the j-th UT
from any neighboring of i-th LEO satellite, except the m-th satellite. The second option
is the sum of all messages to the j-th UT from satellites other than the i-th LEO satellite,
expressed as ∑k ̸=i λkj(0). Accordingly, the αij(0) is defined as

αij(0) = max

λij(0) + λmj(1) + ∑
l∈El(j),mj

λl j(0), ∑
k ̸=i

λkj(0)

 (28)
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By considering the preference value, the final message α̃ij is computed as

α̃ij = αij(1)− αij(0) (29)

=

λij(1) + ∑
k∈Ei(j)

λkj(0)

−
max

λij(1) + λmj(1) + ∑
l∈El(j),mj

λl j(0), ∑
k ̸=i

λkj(0)

 (30)

= min
[
λmj(0)− λmj(1), λij(1)− λij(0)

]
(31)

= min[−λmj, λij]. (32)

Two binary preference values are also considered for the diagonal variable, i = j. For
Cjj = 1 that indicates the j-th UT is ready to receive the data, then there are two possible
cases, i.e., (i) there is exactly one satellite that transmit to the j-th UT, and consequently,
there is not another concurrent neighboring transmit to the j-th UT; (ii) none satellite
transmit to the j-th UT due to optimization choice. Thus, the message αjj(1) is expressed
as follows:

αjj(1) = max

λij(1) + ∑
k∈E(i,j)

λkj(0), ∑
k ̸=j

λkj(0)

 (33)

In the case of Cjj = 0, i.e., the j-th UT is not ready to receive the data; therefore, no satellite
allows transmitting to the j-th UT also. Accordingly, the formulation is computed as

αjj(0) = ∑
k ̸=j

λkj(0) (34)

By finding the marginal of the binary preference value, the final message is computed as

α̃jj = αkj(1)− αij(0)

=

max

λij(1) + ∑
k∈E(i,j)

λkj(0), ∑
k ̸=j

λkj(0)

− [∑
k ̸=j

λkj(0)

]
(35)

= max
[
λij(1)− λij(0), 0

]
(36)

= max[λij, 0] (37)

In the final stage of the algorithm, the maximum a posteriori (MAP) criterion is
employed to determine the optimal decision. In this case, the MAP decision rule is applied
using the marginalized final messages obtained from the iterative message passing process.
These marginal messages summarize the aggregated information from all relevant nodes.
Therefore, the final decision is computed as follows:

C̃jj = s̃ij + ζ̃ij + α̃jj (38)

C̃ij = s̃ij + ζ̃ij + α̃ij (39)

The final decision (37) and (38) describe the final MAP-based decision metrics for
diagonal and non-diagonal variables, respectively. Each decision metric, C̃jj or C̃ij, is
formed by summing the contributions from the messages s̃ij, ζ̃ij, and the message based
on diagonal and non-diagonal, α̃jj or α̃ij. Algorithm 1 summarizes the procedure of the
proposed algorithm.
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Algorithm 1: Proposed distributed LEO satellite-UT algorithm.

Set t← 1 and λ̃
(t)
jj = 0

Repeat
For UT self-assignment:

Update α̃
(t)
ij and send to neighboring UTs via (38).

Update ζ̃ ij
(t+1)

and send to neighboring UTs via (24).
For Satellite to UT assignment:

Update α̃
(t)
ij and send to neighboring UTs via (33).

Update ζ̃ ij
(t+1)

and send to neighboring UTs via (24).
Until all messages have been converged or max iteration reached.
Compute C̃(t)

ij and C̃(t)
jj to determine the LEO satellite and UT assignments.

If C̃(t)
jj = 1 and C̃(t)

ij = 0 ,
the j-th UT are ready to receive the data, however i-th LEO satellite

transmit to another UT.
If C̃(t)

jj = 1 and C̃(t)
ij = 1 ,

the j-th UT are ready to receive the data and i-th LEO satellite transmit to
the j-th UT.

If C̃(t)
jj = 0,

the j-th UT are not ready to receive the data.

5. Simulation Results
This section covers the evaluation results by comparing the proposed algorithm

with the conventional algorithms. The simulation is developed in MATLAB R2024a and
executed with an 11th Gen Intel® Core™ i5-1135G7 CPU @ 2.40 GHz (8 logical cores) and
8 GB RAM. For benchmarking, three conventional algorithms are implemented: (i) graph:
a bipartite graph matching approach to stabilize handovers [18]; (ii) netflow: a network-
flows-based method that models handover as a flow optimization problem [20]; and
(iii) greedy: algorithm that assigns satellites to UTs by the highest instantaneous throughput
without long-term stability terms [17]. The user rate, user satisfaction metric, and handover
(HO) count are evaluated under several variations, including user density, coverage, and
shadowing. In addition, the computational complexity and algorithm convergence are also
investigated in this section.

5.1. Simulation Parameters

The simulation models a low Earth orbit (LEO) satellite downlink under NTN (Non-
Terrestrial Network) assumptions defined in 3GPP TR 38.811 [47] and TR 38.821 [48]. The
network comprises n LEO satellites and m static UTs randomly distributed within the
coverage area. Each UT is connected to at most one serving satellite at any arbitrary time.

Wireless propagation is modeled here using the 3GPP LOS-dominant Rician fading
and a K-factor of 10–12 dB. Since UTs are considered static objects, the Doppler shift is
caused only by satellite motion and is applied using the 3GPP NTN Doppler model.

The downlink transmission from the LEO satellite to the UT operates in the Ku-band,
i.e., 12–12.7 GHz, with a carrier frequency of 12.2 GHz, a 100 MHz channel bandwidth, and
a subcarrier spacing of 60 kHz. Large-scale fading includes free-space loss and clear-sky
atmospheric absorption, while log-normal shadowing with a 2 dB standard deviation
models LOS outdoor variations. Each satellite transmits at 30 dBW equivalent isotropically
radiated power (EIRP) in the downlink, derived from a raw transmit power of 10 dBW and
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a satellite antenna gain of 20 dBi. The UT receiver has a system noise temperature of 200 K.
Thus, the noise power calculation is expressed as

N = KγsysB, (40)

where B is the channel bandwidth, γsys indicates receiver temparature, and K denotes
Boltzmann constant. For the sake of simplicity, the Boltzmann constant is normalized to 1.

Here, LEO satellites are assumed to follow a constant-speed ground-track at altitude
with a certain speed. Hence, the resulting angular drift is expressed as

θ̇ =
vsat

R⊕ + h
180
π

, (41)

where vsat is the orbital velocity in km/h unit,R⊕ is the Earth’s radius, andH is the satellite
altitude in km unit. The conversion factor 180

π converts radians per second into degrees per
second. This formulation reflects the high relative angular speed of LEO satellites, which
is a critical factor for evaluating handover frequency and mobility management in LEO
networks’ constellation.”

For the constant–speed ground-track model, the satellite longitude and latitude are
parametrized as

satLon(t) = wrap180
(
RAAN + θ(t)

)
,

satLat(t) = I cos
(
θ(t)

)
,

(42)

where RAAN denotes the right ascension of the ascending node, I indicates the orbital
inclination, θ(t) = θ0 + θ̇ t indicates the pass phase, and wrap180(·) transforms angles to
the interval [−180◦, 180◦]. Tables 1 and 2 correspondingly summarize the wireless-link
budget parameter and geometry motion parameter.

Table 1. Wireless and link budget parameters.

Parameters Values

Carrier frequency fc = 12.2 GHz

Channel bandwidth B = 100 MHz

Subcarrier spacing ∆ f = 60 kHz

Small-scale fading Rician, K = 10–12 dB

Shadowing Log-normal, σsh = 3 dB

Satellite EIRP (per beam) Pi = 30 dBW

Receiver temperature Tsys = 200 K

Noise power σ = kTsysB with k = 1

Table 2. Geometry and motion parameters.

Parameters Values

Earth radius R⊕ = 6371 km

Altitude H = 1200 km

Inclination I = 53◦

Satellite speed (constant) vsat = 27,000 km/h

5.2. Performance Under Different User Terminal Density

The number of UTs is a critical factor affecting the performance of LEO satellite
networks. More involved UTs lead to increased co-channel interference, which can result
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in reduced per-user throughput, lower satisfaction metric requirements, and frequent
unnecessary handovers. Moreover, the high number of UTs also enables several UTs to
fail to allocate wireless resources. Therefore, the impact of UT density on overall network
performance needs to be rigorously investigated.

Figure 4 presents the per-user rate performance of all algorithms corresponding to the
number of UTs; in this case, the number of LEO satellites is maintained at a fixed number,
i.e., 80 satellites. The per-user rate naturally decreases with an increase in the number
of UTs, as more UTs compete for the limited wireless resources. Moreover, co-channel
interference also occurs frequently in ultra-dense environments, leading to data loss and
distortion during transmission.

Figure 4. Per-user rate performance versus the number of UTs.

When the number of UTs is very small, in this case 50 UTs, the proposed algorithm
achieves a high rate up to 2.11× 108 bps/user. The proposed algorithm consistently out-
performs conventional algorithms by approximately 8.76%, 17.09%, and 50.07% compared
to the graph-based method, the NetFlow approach, and the greedy algorithm, respec-
tively. When the network load increases to a medium-dense environment, i.e., 300 UTs, the
per-user rate of the proposed algorithm dramatically decreases up to 0.62× 108 bps/user.
Although the proposed algorithm’s performance decreases significantly, it remains higher
than that of the graph, NetFlow, and greedy methods by 7.7%, 18.9%, and 43.02%, respec-
tively. Finally, under an ultra-dense scenario with 500 UTs, the proposed algorithm achieves
only 0.48× 108 bps/user, but still outperforms the graph, NetFlow, and greedy methods by
approximately 8%, 19.65%, and 45.75%, respectively.

Figure 5 shows the satisfaction metric performance of all algorithms as the number of
UTs increases from 50 to 500. In a typical wireless network, the satisfaction level decreases
with increasing user density due to higher competition for limited resources. However,
the proposed algorithm consistently achieves a higher satisfaction level compared to the
conventional algorithms. When the number of UTs is relatively small, i.e., 50 UTs, all
algorithms achieve satisfaction levels close to one, indicating that nearly all UTs can be
served. As the number of UTs increases to 300, the satisfaction level of the proposed
algorithm decreases approximately 0.85; this performance still outperforms conventional
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algorithms, providing improvements up to 3.5%, 7%, and 12% compared to the graph-
based, NetFlow, and greedy algorithms, respectively. Even under heavy load conditions at
500 UTs, the proposed algorithm still achieves a satisfaction metric close to 0.79, whereas the
graph-based, NetFlow, and greedy methods correspondingly drop to 0.77, 0.75, and 0.73.

Figure 5. Satisfaction metric performance versus the number of UTs.

Figure 6 shows that the handover count per user increases almost linearly with the
number of UTs. When the number of UTs equals 500, the proposed algorithm achieves
about 2.79 handover counts per user, compared to 3.44 for the graph-based Graph method,
3.89 for NetFlow, and 4.42 for the greedy algorithm. Even in smaller-scale scenarios with
only 100 UTs, the proposed algorithm maintains an advantage, with 0.27 HO/user versus
0.35 HO/user–0.44 HO/user for the other algorithms, confirming its efficiency across
different load levels.

The consistent performance of the proposed algorithm is mainly due to its distributed
optimization mechanism. Unlike conventional methods that rely on either centralized deci-
sions or simplistic heuristics, the proposed algorithm performs iterative message exchanges
only among nearby UTs and satellites. This localized interaction significantly reduces
computational burden while enabling each satellite to make more informed scheduling
decisions. As the number of UTs increases, the proposed algorithm utilizes local message
exchanges to ensure that each satellite can still make informed scheduling decisions even
under limited resource availability.
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Figure 6. Handover count per user performance versus the number of UTs.

5.3. Performance Under Different Coverage

The coverage of an LEO satellite directly affects both the number of UTs that can
be served simultaneously and the quality of their channel conditions. Expanding the
coverage area enables satellites to reach more terminals, thereby potentially enhancing
overall performance. However, at specific coverage scales, the performance gain begins to
stabilize due to the influence of interference and path loss, which enables data to be lost
and distorted.

Figure 7 shows that increasing the coverage scale leads to an increased per-user rate
across all methods because of more favorable channel conditions. However, at higher
coverage, all algorithm performance starts to converge due to path-loss and interference
effects balancing out. In this case, the proposed algorithm consistently achieves the highest
performance, starting from approximately 5.2× 107 bps/user at a coverage scale of 0.5
and reaching nearly 7.1× 107 bps/user at a coverage scale of 3.0. Compared to the graph-
based, NetFlow, and greedy algorithms, the proposed method demonstrates a persistent
improvement margin of 10–15%, 20–25%, and 40–45%, respectively, which confirms its
robustness in diverse coverage scenarios.

Figure 8 shows that the satisfaction metric improves significantly as the coverage scale
increases and then stabilizes at higher coverage values. At a coverage scale of 1.0, the
proposed algorithm achieves a satisfaction metric of approximately 0.86, compared to 0.84,
0.82, and 0.78 for the graph-based, NetFlow, and greedy methods, respectively. When the
coverage scale expands to 3, the proposed method maintains satisfaction levels around 0.92,
while the graph-based and NetFlow methods remain near 0.90, and the greedy algorithm
at about 0.84.
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Figure 7. Per-user rate performance versus coverage scale.

Figure 8. Satisfaction metric performance versus coverage scale.

Figure 9 shows that enlarging the coverage scale significantly decreases the handover
count per user. At the smallest coverage scale of 0.5, the proposed algorithm records about
3.36 HO/user, compared to 4.2 for the graph-based method, 4.63 for NetFlow, and 5.25
for the greedy algorithm. As the coverage scale expands to 3.0, all algorithms converge
toward lower values, with the proposed algorithm experiencing about 0.56 HO/user.
In contrast, the graph-based technique, NetFlow, and greedy algorithm remain slightly
higher at 0.7, 0.77, and 0.82 HO/user, respectively. This result confirms that the proposed
method consistently maintains the lowest handover count across both small and wide
coverage conditions.
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Figure 9. Handover count per user performance versus the coverage scale.

These results show that while all methods benefit from the additional coverage oppor-
tunities, only the proposed algorithm can simultaneously maximize throughput and ensure
a higher proportion of satisfied UTs, highlighting its superior balance between efficiency
and fairness in LEO satellite networks.

5.4. Performance Under Different Shadowing

Shadowing introduces random fluctuations in the received signal power caused by
environmental obstacles such as terrain, buildings, or atmospheric conditions. Here,
shadowing is modeled as a log-normal random process with zero mean and a standard
deviation σsh, following commonly used LEO satellite channel assumptions. As the shad-
owing variance increases, the effective link quality degrades, resulting in a reduction in
both per-user rates and satisfaction metrics. To assess the overall algorithm performance
against shadowing,

Figure 10 shows that the per-user rate decreases continuously with increasing σsh. The
proposed algorithm achieves approximately 7.5× 107 bps/user at σsh = 0 dB but declines to
about 4.2× 107 bps/user when σsh = 8 dB. Despite this degradation, the proposed method
consistently outperforms other algorithms, achieving 8.8%, 19.2%, and 44.2% per-user rate
improvements compared to the graph-based, NetFlow, and greedy algorithms, respectively,
at σsh = 4 dB.

Similarly, Figure 11 illustrates that the satisfaction metric also degrades as shadowing
increases. At σsh = 0 dB, all methods achieve satisfaction levels close to 1.0. However, as
shadowing grows severe, the satisfaction level of the proposed algorithm drops to around
0.69 at σsh = 8 dB, while the graph-based, NetFlow, and greedy methods degrade to 0.67,
0.66, and 0.63, respectively.

Figure 12 illustrates the sensitivity of handover count to shadowing variance (σsh).
When σsh = 0 dB, the proposed algorithm achieves about 1.2 HO/user, compared to 1.55
for the graph-based technique, 1.65 for NetFlow, and 1.875 for the greedy algorithm. As
the shadowing variance increases to σsh = 8 dB, the handover counts grow for all schemes:
the proposed algorithm reaches about 2.16 HO/user, while Graph, NetFlow, and Greedy
increase to 2.7, 2.97, and 3.38 HO/user, respectively. These results confirm that the proposed
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algorithm is the most robust to fading-induced variability, maintaining the lowest handover
frequency under all shadowing conditions.

The proposed algorithm relies on the distributed optimization strategy, which adap-
tively exchanges messages among nearby UTs and satellites. This local message exchange
enables mitigating the impact of deep fades and resource contention more effectively than
conventional algorithms. Accordingly, the proposed algorithm achieves higher throughput
and satisfaction metric, even under substantial shadowing performance.

Figure 10. Per-user rate performance versus shadowing standard deviation.

Figure 11. Satisfaction metric performance versus shadowing standard deviation.
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Figure 12. Handover count per user performance versus shadowing standard deviation.

5.5. Convergence Analysis

The convergence of the proposed algorithm is evaluated to ensure the stability of
finding the final decision. Here, the convergence properties are analyzed under two
scenarios: (i) the proposed algorithm and (ii) the proposed algorithm with a relaxed
constraint model.

Figure 13 illustrates the normalized objective function across iterations for both cases.
Under the one-to-one mapping of Constraint (7), the proposed algorithm demonstrates
fast and stable convergence, achieving more than 95% of the normalized objective function
within the first ten iterations, and reaching full convergence before 20 iterations. This behav-
ior demonstrates that the one-to-one mapping constraint-enforced algorithm consistently
renders the problem into an optimal solution. In contrast, when the relaxed constraint
model is adopted, the algorithm fails to converge within the iteration budget. Instead, the
objective function exhibits oscillatory behavior around a suboptimal region, with values
fluctuating between 0.82 and 0.90 across iterations. This instability arises because the re-
laxed constraints allow multiple inconsistent assignment configurations, which prevent the
iterative updates from reinforcing a single optimal solution. The comparison between the
two scenarios shows the critical role of Constraint (7) in ensuring convergence: it prevents
oscillations, guarantees the feasibility of assignments, and accelerates the stabilization of
the algorithm. These results confirm that the proposed algorithm can converge with the
minimum required iterations. This finding justifies the enforcement of strict constraints
in practical deployments of the message-passing algorithm, especially for delay-sensitive
LEO networks where stability and reliability are critical.
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Figure 13. Convergence properties of the proposed algorithm.

5.6. Computational Complexity

The proposed algorithm operates in an iterative and distributed manner, where only
lightweight local messages are exchanged between UTs and their visible satellites. Messages
such as λij, βij, αij, and ζij are derived by accumulating small-sized information from
neighboring nodes.

The computational complexity of the proposed scheme is compared with other baseline
scheduling algorithms in Table 3. The computational complexity of the proposed algorithm
grows only quadratically with the number of UTs, i.e., O(m2). In contrast, the graph-
based and NetFlow formulations require solving centralized optimization problems, which
typically scale as O(m3) or O(m3 log m), respectively. Meanwhile, the greedy heuristic
achieves the same order of O(m2) complexity. The computational performance result
shows that the proposed algorithm provides an effective balance between computational
efficiency and network performance.

For the proposed algorithm, each iteration updates one message per satellite-UT edge,
costing O(mn). Because Constraint (7) enforces a one-to-one mapping, therefore, m ≃ n.
Accordingly, it simplifies the computational complexity to O

(
m2). Convergence is reached

within a bounded number of iterations, and the one-to-one mapping ensures that the factor
graph remains sparse. The quadratic scaling, therefore, follows directly from the m×m
edge structure in the factor graph.

For the bipartite graph, the cubic complexity arises from repeated augmenting-path
searches. To complete the assignment, the algorithm must find m augmenting paths, one
for each UT to be matched. Each path search requires updating feasibility labels and slack
variables across the entire m×m cost matrix, which may involve scanning up to O

(
m2)

entries. Hence, the total complexity is m ×O
(
m2) = O

(
m3). The key insight of cubic

computational complexity growth is that global feasibility is maintained and updated
across all m2 entries for every one of the m assignments.

For the network-flow formulation, the complexity becomes super-cubic. The as-
signment is formulated as a min-cost max-flow problem with |V| = O(m) nodes and
|E| = O

(
m2) arcs, which dominates all satellite–UT pairs. The successive shortest-path
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algorithm augments one unit of flow at a time, which requires computing a shortest path
on the residual graph. Using Dijkstra with a binary variable, a single shortest-path run
costs O(|E|log|V|) = O

(
m2logm

)
. Because O(m) augmentations are needed in one per

UT, the total complexity becomes O(m)×O
(
m2 log m

)
= O

(
m3logm

)
. The m log m factor

arises specifically from heap operations in Dijkstra, e.g., insert, decrease-key, extract-min.
Thus, the additional logarithmic factor reflects the data structure cost in each shortest-path
computation.

For the greedy algorithm, two cases must be distinguished. In the naïve version, each
of the m assignment steps scans the full m×m utility matrix to find the maximum rate,
costing O

(
m2) per step. With m steps in total, this results in O(m)×O

(
m2) = O

(
m3). In

the optimized version, row and column maxima are maintained and updated after each
assignment. Each update then requires only O(m) operations, reducing the total cost to
O(m)×O(m) = O

(
m2). However, while the optimized greedy algorithm achieves the

same order as the proposed method, it is short-sighted, optimizing only local throughput
at each step and lacking the convergence guarantees that message passing provides.

Table 3. Computational complexity of scheduling algorithms.

Method Proposed Algorithm Graph-Based
Method NetFlow Method Greedy Method

Complexity O(m2) O(m3) O(m3 log m) O(m2)

6. Conclusions
This paper develops an efficient user assignment framework to address the handover

problem in LEO satellite communication networks. By jointly optimizing the user rate and
satisfaction metric in a distributed manner, the proposed algorithm can find a final assign-
ment decision with low computational complexity. Through a message-passing framework,
the proposed algorithm enables UTs and satellites to exchange simple local messages iter-
atively, thereby making informed decisions with a limited involved parties and without
relying on a central coordinator. The three contributions are achieved in this study. First,
the distributed user assignment strategy is confirmed to minimize unnecessary handovers,
as reflected in a significantly reduced handover count compared with the conventional
algorithm. Under 500 UTs, the proposed algorithm achieves 2.79 HO/user, which improves
the conventional algorithm by 18.89%. Second, the adaptability of the proposed method is
validated by its ability to maintain performance under dynamic conditions. The proposed
algorithm achieves 0.48× 108 bps/user and a satisfaction metric of 0.79 when the number
of UTs equals 500, improving upon the best conventional method by up to 8% in per-user
rate and 2% in satisfaction. In the coverage scale of 3, the proposed algorithm achieves
7.1× 107 bps/user and 0.92 of user satisfaction, improving the best conventional algorithm
by up to 15% in per user rate and 2.2% in satisfaction metric. Under severe shadowing
of 8 dB, the proposed algorithm still achieves 4.2 × 107 bps/user and 0.69 satisfaction,
representing gains of 8.8% and 2.9%, respectively, over the best conventional algorithm.
Third, the low-complexity design is validated by the derived quadratic, i.e., O

(
m2), that

scales from the message-passing formulation, which outperforms the cubic and super-cubic
complexities of conventional algorithms. Convergence analysis further shows that stable
solutions are consistently reached within fewer than 20 iterations. A research direction can
be further extended to model multi-UT assignments per satellite, which requires consider-
ing additional interference management, resource partitioning, and convergence challenges.
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Additionally, mobility-aware prediction and cross-layer optimization are crucial in future
dynamic satellite constellations.
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