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Abstract

Achieving ubiquitous coverage in 6G networks presents significant challenges due to the
limitations of high-frequency signals and the need for extensive infrastructure, and pro-
viding seamless connectivity in remote and rural areas remains a challenge. We propose
an integrated optimization framework for UAV-LEO-RIS-assisted wireless networks, aim-
ing to maximize system sum rate through the strategic placement and configuration of
Unmanned Aerial Vehicles (UAVs), Low Earth Orbit (LEO) satellites, and Reconfigurable
Intelligent Surfaces (RIS). The framework employs a dual wireless backhaul and utilizes a
grid search method for UAV placement optimization, ensuring a comprehensive evaluation
of potential positions to enhance coverage and data throughput. Simulated Annealing
(SA) is utilized for RIS placement optimization, effectively navigating the solution space to
identify configurations that improve signal reflection and network performance. For sum
rate maximization, we incorporate several metaheuristic algorithms, including Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Salp
Swarm Algorithm (SSA), Marine Predators Algorithm (MPA), and a hybrid PSO-GWO ap-
proach. Simulation results demonstrate that the hybrid PSO-GWO algorithm outperforms
individual metaheuristics in terms of convergence speed and achieving a higher sum rate.
The coverage improves from 62% to 100%, and the results show an increase in spectrum
efficiency of 23.7%.

Keywords: UAV; RIS; LEO; placement optimization; NTN networks; phase shift optimization;
sum rate

1. Introduction

In the Beyond 5G (B5G) and 6G wireless communication landscape, it becomes criti-
cal to ensure ubiquitous and reliable coverage, especially in challenging or underserved
environments such as rural areas, urban canyons, disaster zones, and dense urban net-
works [1,2], although we can optimize the coverage and capacity of 5G using existing
4G infrastructure [3]. The unmanned aerial vehicle—reconfigurable intelligent surfaces
(UAV-RIS) technology provides a solution to these challenges by dynamically expanding
and enhancing wireless coverage. UAVs provide flexible on-demand deployment that
rapidly adapts to user distribution and network conditions, while RIS enables energy-
efficient beamforming [4] and channel reconfiguration without active transmission. The
synergy between UAVs and RIS facilitates intelligent and cost-effective wireless coverage
by overcoming obstacles, mitigating signal blockages, and optimizing spectral efficiency
in 3D space. This becomes especially relevant for 6G goals such as 3D global coverage,
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extreme data rates, and intelligent networking. By integrating UAV-RIS systems, networks
can achieve higher connectivity reliability, improved coverage continuity, and green com-
munication objectives, positioning this technology as a cornerstone in the realization of
robust, adaptive, and future-proof wireless infrastructures [5].

Low earth orbit (LEO) UAV-RIS networks represent an emerging paradigm for B5G
and 6G communication systems, combining the global coverage of LEO satellite constella-
tions with the flexible deployment of UAVs augmented by RIS to form a space-air-ground
integrated architecture [6,7]. LEO satellites offer reduced latency and ubiquitous three-
dimensional coverage critical for real-time, mission-critical applications [8]. UAVs equipped
with RIS can dynamically adjust their positions and surface configurations to reconstruct
reliable air-to-ground links, mitigate blockages, and steer beams toward ground users,
significantly enhancing link quality and spectrum efficiency [9]. RIS modules exploit pas-
sive reflection elements to achieve cost- and energy-efficient beam management, reducing
Doppler shift effects and inter-beam interference in satellite links. In B5G contexts, these net-
works support high-throughput, low-latency IoT and edge services, while in 6G scenarios,
they underpin advanced use cases such as holographic communications, digital twins, and
autonomous systems by enabling intelligent, adaptive electromagnetic environments [10].
Furthermore, the integration of LEO, UAV, and RIS aligns with 3GPP non-terrestrial net-
work standardization efforts, promising scalable and resilient connectivity for remote and
underserved regions with minimal infrastructure investment [11]. Recent research also
explores resource allocation and UAV trajectory optimization to further maximize spectral
efficiency in these hybrid networks [12].

Dual backhaul systems for UAV-RIS networks combine a satellite link and a terrestrial
link to provide robust, high-availability connectivity and mitigate failures in extreme
conditions. This hybrid architecture enables UAV-mounted RIS panels to dynamically
optimize both channels through passive beam steering and link selection algorithms,
balancing the satellite link’s path diversity with the terrestrial link’s capacity to enhance
spectral efficiency and reliability for BSG/6G NTN applications [13,14].

In UAV-RIS networks, coverage optimization entails strategically positioning UAVs
and orienting RIS panels to mitigate blockages and maximize ground-to-user coverage,
often formulated as mixed-integer nonlinear programs to ensure full area illumination and
user connectivity [15]. Phase shift optimization focuses on designing optimal reflection
coefficients for RIS elements using convex approximation or alternating optimization meth-
ods to steer electromagnetic waves toward intended receivers, enhancing received power
and counteracting path loss [16]. Sum rate optimization jointly tunes UAV trajectories,
power allocation, and RIS phase configurations to maximize total network throughput
under QoS constraints, typically leveraging successive convex approximation or itera-
tive block coordinate descent algorithms [17]. By integrating coverage, phase shift, and
sum rate optimization frameworks, UAV-RIS systems deliver robust, high capacity links
for B5G/6G non-terrestrial networks (NTN), enabling seamless connectivity in complex
environments [18]. The major contributions of this study are as follows:

*  We propose a novel dual wireless backhaul system for RIS-assisted UAV and LEO
networks for reliable communications.

¢ We formulate an UAV placement optimization using a grid search algorithm for better
line of site (LOS) between the UAV and Users.

*  We optimize the placement of RIS with optimized UAV using the Simulated Annealing
(SA) algorithm to connect all the users for reliable communications.

¢  We maximize the sum rate through phase shift optimization using metaheuristic
algorithms: PSO, GWO, SSA, MPA, GA, and hybrid PSO-GWO.
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The remainder of the paper is organized as follows: Section 2 presents background
and related works carried out for NTN networks. Section 3 outlines the procedure and
methodologies, the problem formulation procedure that we adopted, and the algorithms
used to solve these problems. Section 4 presents the output and results that we calculate,
and the improvement of the results using the algorithms. Finally, Section 5 concludes the
paper with recommendations for future works.

2. Related Work

Recent literature has extensively explored UAV-mounted RIS placement strategies
to enhance ground coverage in terrestrial environments, employing mixed-integer non-
linear programming and metaheuristic algorithms to determine optimal UAV altitudes
and horizontal coordinates for RIS deployment [19,20]. Coverage optimization studies
model urban blockage scenarios by integrating UAV-mounted RIS panels to dynamically
steer mmWave beams, demonstrating significant improvements in coverage ratio over
conventional UAV-only systems through joint three-dimensional placement and orientation
algorithms [21].

Phase shift optimization research has focused on designing optimal reflection coeffi-
cients for RIS elements via alternating optimization and convex relaxation techniques, sig-
nificantly boosting received signal power and mitigating path loss. Sum rate maximization
frameworks jointly tune UAYV trajectories, transmit power, and RIS phase configurations,
often leveraging successive convex approximation or block coordinate descent methods,
achieving notable throughput gains in multi-user downlink scenarios [22-25].

Extensions to non-terrestrial networks integrate LEO satellite backhauls with UAV-RIS
nodes, where aerial-RIS panels assist satellite beams to extend coverage and throughput
while optimizing aerial placement and phase design under backhaul constraints [26]. These
related works underscore the critical interplay between UAV-RIS placement, coverage,
and phase shift optimization in advancing both terrestrial and non-terrestrial B5G/6G
network architectures.

In obstacle-oriented environments, UAV-mounted RIS placement must jointly con-
sider three-dimensional line-of-sight (LoS) blockage models derived from high resolution
obstacle maps to ensure reliable connectivity, with path planning algorithms adapting
UAV positions in real time to avoid blockages and maintain coverage quality. Recent
formulations treat the placement problem as a non-convex, NP-hard optimization, where
metaheuristic methods are used to optimize UAV location and RIS orientation to maximize
sum rate under Rician fading channels [27,28].

Blockage awareness is enhanced by integrating ray tracing or statistical blockage
models into the objective, enabling adaptive phase shift optimization of RIS elements to
steer beams around obstacles and boost received power, which has been shown to yield
significant throughput gains in urban scenarios [29].

Simulation studies in both dense urban and indoor testbeds demonstrate that obstacle-
aware UAV-RIS frameworks can improve sum rate significantly over baseline UAV-only
deployments, by dynamically repositioning aerial-RIS nodes and reconfiguring phase shifts
in response to user mobility and obstacle dynamics [30]. The literature lacks reliability
and uniform coverage, and we are motivated to address the problems by proposing a
dual wireless backhaul system for NTN networks in the B5G and 6G networks for reliable
communication and ubiquitous connectivity.

3. System Model and the Problem Formulations

We consider a RIS-assisted UAV communication network utilizing a dual wireless
backhaul, comprising one Ground Earth Station (GES) to LEO to UAV (GES-LEO-UAV)
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and another BTS-UAV link, operating in both active and standby modes at a frequency of
28 GHz. Dual wireless backhaul is vital for reliable network operation, even if one of the
links fails. Figure 1 shows a schematic diagram for RIS-assisted UAV networks with a dual
wireless backhaul system in a blockage scenario where the UAV is placed in the center of
2D grids initially at a height of 50 m and then optimized the positions using a grid search
algorithm to improve the LOS users. The UAV-Users networks in the proposed RIS-assisted
UAV networks act as an access network and communicate with users directly at LOS. UAV-
RIS-user networks are used to provide access to NLOS users by deploying the necessary
RISs using SA to make all users LOS. Dual wireless backhaul networks provide connectivity
between the core networks and the access networks, ensuring reliable operations. Phase
shift optimization is carried out using metaheuristic algorithms to maximize the sum rate.

- = > Transit/Bach

NLOS

«—>LOS

RIS

Earth
Station /

&

Figure 1. An RIS-assisted UAV communication network with dual wireless backhaul.

3.1. Backhaul Link Budget
3.1.1. Link Budget Calculation for BS-to-UAV at 28 GHz

To assess the signal strength from a ground-based Base Station (BS) to a UAV operating
at millimeter wave frequencies, particularly at 28 GHz, a link budget analysis is performed
using the Friis transmission equation under free space Line of Sight (LOS) conditions. The
received power at the UAV is given by Equation (1),

P,(UAV) = P+ Gt + G, — Ly — L, [dBm] 1)

where P; is the BS transmit power (dBm), G; and G, are the transmitter and receiver antenna
gains (dBi), L, is the free space path loss (dB), and Ly, accounts for miscellaneous system
losses such as cable attenuation and fading margin. The free-space path loss (FSPL) is given
2
as (%) and computed in dBm using Equation (2),
L, = 20log,((d) +20log;,(f) — 147.55 [dBm] ()

where d is the distance in meters and f is the carrier frequency in Hz. The significant
propagation loss in the mmWave band, even over relatively short distances, draws attention
to designing a system with high gain antennas, optimized UAV positioning, or using
RIS to maintain reliable connectivity. Recent works have investigated similar mmWave
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aerial link scenarios, offering insights into link optimization and advanced enhancement
techniques [31-34].

3.1.2. Bachhaul Networks and Link Budget

The link budget for a communication link between a ground-based Earth station and

a LEO satellite quantitatively determines the received signal power and the overall quality

of the communication link. The procedure begins by computing the Free Space Path Loss

(FSPL) using Equation (2). The Effective Isotropic Radiated Power (EIRP) is calculated as
Equation (3),

EIRP = P; 4+ Gt — Ly [dBm] 3)

where P; is the transmit power (in dBm), G; is the transmitter antenna gain (dBi), and L
accounts for transmitter-side losses. The received power at the LEO is given by Equation (4),

P, = EIRP + G, — LFSPL — Lix — Latm [dBm] (4)

where G; is the receiver antenna gain, L;x includes receiver-side losses, and Latm models
atmospheric attenuation, especially significant at Ka-band frequencies such as 28 GHz. The
thermal noise power at the receiver is computed as in Equation (5),

N = 101og,,(kTB) 430 + NF [dBm] 5)

where k is the Boltzmann constant (1.38 x 10723]/K), T is the system noise temperature
(K), B is the receiver bandwidth (Hz), and NF is the receiver noise figure (dB). The Carrier-
to-Noise Ratio (C/N) is then given by Equation (6),

~ =P —N [dB] ©6)

This metric is a key indicator of link quality and is used to assess whether the commu-
nication system can meet the required modulation and coding thresholds. This analytical
approach forms the backbone of satellite communication performance evaluations and
can be extended to more complex models, including Rician fading and link margin analy-
sis [35-38].

3.2. Access Networks

The access networks comprise UAVs, RISs, and users. Networks face different envi-
ronmental challenges, such as rain, thunderstorms, and infrastructure constraints, such
as buildings and trees, which degrade the strength of the signal and affect the QOS of the
system. A UAV is deployed as an aerial base station in the considered simulation topology
to provide wireless coverage in an urban-like environment. The deployment area is a
square region of size 300m x 300 m, within which the UAV is positioned exactly at the
geometric center, i.e., at coordinates (150 m, 150 m), and maintained at a fixed altitude of
100 m above ground level. This central aerial deployment ensures symmetrical coverage
potential across the area. A set of ground users is randomly distributed within the x-y
plane at ground level using a uniform spatial distribution, representing a realistic and
unstructured user layout.

Next, the geometric environment is laid out by randomly dropping ground users
across a rectangle [Xmin, Ymax] X [Vmin, Ymax], €ach at height h,. Buildings are specified
as footprints{ (¥, ¥) : Xmin < ¥ < ¥max, ¥Ymin < ¥ < Ymax } €xtruded to height h;,. Any user
whose (x,y) coordinate satisfies {Xmin < X < ¥max, Ymin < ¥ < Ymax } for any building is
removed, since they would lie inside that structure. The heart of the LOS blockage test
casts a ray from the UAV at (xyay, yuav, huav) down to each user at (xy, yu, hy). If the
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projection of this ray intersects a building’s footprint at (Xint, Yint), We compute the ray’s
altitude there by linear interpolation using Equation (7),
d:
hray = huay + (hy — hyav) 7~ 7)
dot
where

dint = \/(xint — xuav)? + (Yint — yuav)?,  diot = \/(xu — xuav)? + (Yu — yuav)?

If hray < hy, the link is blocked.

To address non-line-of-sight (NLOS) challenges arising due to urban obstacles, RISs are
strategically mounted on building walls. These RIS units are placed at optimized locations
and elevations to reflect and steer the UAV’s signal toward blocked users, effectively
restoring LOS connectivity. The obstacles in the environment are modeled as rectangular
prisms (cuboids), each representing a building or large urban structure. These obstacles are
defined by their base coordinates in the x-y plane and are assigned a fixed height of 50 m.
The presence of these obstacles introduces realistic shadowing effects and necessitates LOS
checking using ray casting or geometric intersection methods between the UAV, RIS, and
users [39]. The UAV alone initially attempts to cover as many users as possible, after which
RISs are incrementally deployed on visible building surfaces to assist NLOS users until full
coverage is achieved. In the proposed framework, a UAV-enabled communication system
is designed to maximize ground user coverage by ensuring LOS connectivity through
both direct UAV-user links and RIS-assisted reflections. The UAV is initially placed at a
fixed altitude, and a grid search algorithm is applied over a predefined 3D grid to find
the optimal UAV position that covers the maximum number of users with LOS [40,41].
Algorithm 1 illustrates the detailed procedure for grid search.

Algorithm 1 Grid Search for Optimal UAV Coverage

1: Input: Search bounds areaXlim, areaYlim, user positions userPos, heights user Height, UAV height
uavHeight, buildings bx, by, bh

2: Output: Optimal UAV position uavPos, coverage percentage covPct
3: Initialize grid: xGrid, yGrid with step size gridStep
4: Initialize: coverMat <— 0, coverageList < 0, bestCover < —oo
5: for each x; € xGrid do
6: for each y; € yGrid do
7: Initialize blocked[k] + false, Vk
8: for each user k do
9: for each building j do
10: Check intersection (xj,s, Yint) between UAV-user line and building j
11: if intersection exists then
12: Compute d;,,; and dyy (distance to user and to intersection)
13: Compute intersection height (Equation (7))
14: if rayH < bh[j] then
15: blocked[k] < true; break
16: end if
17: end if
18: end for
19: end for
20: Compute coverage: cf (Equation (10))
21: Update coverMat(y;, x;) and coverageList
22: if cf > bestCover then
23: bestCover < cf, bestPos < (x;,1;)
24: end if
25: end for
26: end for

27: uavPos <+ bestPos, covPct + bestCover x 100
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3.2.1. UAV Placement Optimization with LOS Constraints

In this work, a blockage-aware grid search strategy is adopted to determine the optimal
two-dimensional placement of a UAV flying at a fixed altitude, aimed at maximizing the
coverage of ground users in an environment with building obstructions. The UAV is
assumed to operate at a constant height, and its horizontal coordinates (x,y) are varied
over a discrete grid G C R2. For each candidate location, the algorithm evaluates whether a
LOS connection exists between the UAV and each user by performing geometric intersection
checks against 3D building models. A user is considered covered only if the direct signal
path is unobstructed or if the height of the signal ray at the point of intersection is greater
than the height of the obstructing building. The optimization objective is to maximize
the ratio of users who have LOS connectivity to the UAV. Mathematically, the problem is
formulated as shown in Equation (8):

1 M

max « — LOS(x,v), 8
[max; Nukzzl k(X y) (8)

subject to the constraint in Equation (9):
(x,y) € G, and LOSi(x,y) € {0,1}, Vk. 9)

where N, is the total number of ground users, and LOS,(x, y) is a binary function that
returns 1 if user k has unobstructed LOS to the UAV at position (x, y), and 0 otherwise. This
formulation ensures that UAV placement is environmentally aware, accounting for urban
obstructions and terrain features. Such blockage-sensitive modeling has been emphasized
in recent studies that integrate realistic 3D map data and spatial visibility constraints into
UAV deployment and trajectory design. Moreover, this grid search strategy provides a
performance baseline for more advanced optimization approaches, such as RIS-assisted
or learning-based UAV placement frameworks [42—45]. The LOS condition for each user
is evaluated through geometric visibility checks, and the overall coverage is calculated as
shown in Equation (10).
Number of users with LOS

Coverage = Total number of users x 100% (10)

If some users remain uncovered due to urban blockages, RISs are strategically added
on building walls one by one, starting with a single RIS until all of the users are in LOS
either with a UAV or any one of the RISs. RIS placement is optimized using SA.

3.2.2. RIS Placement Optimization Using SA

In the context of RIS-assisted wireless communication, optimal placement of RIS
is a crucial factor influencing overall coverage, signal strength, and energy efficiency.
The RIS placement problem is inherently non-convex and combinatorial, particularly in
dynamic environments involving obstacles, user mobility, and multiple constraints such as
LOS conditions.

SA, a stochastic optimization algorithm inspired by the physical annealing process, is
well suited to handle such complex scenarios due to its ability to escape local optima and ef-
ficiently explore high-dimensional search spaces. Unlike gradient-based methods that may
get trapped in suboptimal solutions, SA probabilistically accepts worse solutions at higher
temperatures, enabling it to traverse rugged objective landscapes effectively. This makes
SA particularly advantageous in RIS placement tasks where both discrete (e.g., candidate
building positions) and continuous (e.g., height or tilt angles) variables must be jointly op-
timized. Furthermore, its simplicity and low computational overhead make it attractive for
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real-time or adaptive placement schemes in RIS models supported by UAV or LEO. Overall,
the integration of SA into the RIS placement model offers a robust and flexible solution
strategy to improve system performance under practical deployment conditions [46—48].

We aim to maximize the coverage of users not already served by a UAV by optimally
placing a fixed number of RIS units on candidate building wall positions. Let N, be the
number of users, C = {cj,...,cy,} the set of candidate RIS positions, and B the set of all
buildings. The RIS placement decision setis S = {ry,..., Ings } € C, where Ngys is fixed.
The optimization problem is formulated in Equation (11).

Nlt

1
max — mask 11
Scc,|S|=Npis  Nu k:Zl ¢ (1

where mask; € {0,1} indicates whether user k is covered either directly or via RIS. The
coverage condition for each user is defined as in Equation (12):

1, ifLOS(u,u, B) =1
1, if3r € Sst. LOS(w 1, B\ By)) =1
and LOS(rj, uy, B\ By,) =1

0, otherwise

mask; = (12)

where Br]. denotes the building to which RIS j is mounted, excluded from LOS checks to
allow reflections. Algorithm 2 outlines the detailed procedure for SA optimization in RIS
placement. The minimization of the number of RIS deployments after UAV placement
optimization is formulated as in Equation (13),

Nu
min (2 Luncovered (l)> (13)

xRS \ ;=1
where xgjs denotes the candidate RIS positions and N, is the total number of users.

3.2.3. Rician Channel Model for UAV-RIS-User Communication

In UAV-assisted wireless networks enhanced by RIS, the communication links are
often dominated by strong LOS components, particularly at millimeter wave frequencies.
As such, the Rician fading model is especially suitable for modeling small scale fading in
UAV-RIS-user systems, capturing both deterministic LOS and scattered NLOS effects. The
Rician fading coefficient is given by Equation (14),

K 1
h=/——"h —h 14
VErl Los+\/K+1 NLOS (14)

where hypg is the LOS component, hnios ~ CAN(0,1) models the scattered NLOS
paths, and K is the Rician K factor representing the power ratio between LOS and
NLOS components.

In a RIS-assisted UAV communication link, the effective end-to-end channel is ex-
pressed as in Equation (15),

o g 00
hege = hpu + Z hRuenhBR/ (15)

n=1

where hpgy; denotes the direct UAV-user link, hg}g and hl(an)l are the channels from the UAV
to the n-th RIS element and from the RIS to the user, respectively, and 8, = e/?" represents
the adjustable phase shift applied by the n-th RIS element.

The received signal-to-noise ratio (SNR) at the user is given by Equation (16),
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lthGV|heff|2 . 4”fd 2
=———, with I = 16
v [pathNO ’ 1 path c (16)

where P; is the transmit power, G; and G, are the antenna gains, f is the carrier frequency,
d is the total path distance, c is the speed of light, and Nj is the noise power. This channel
model allows accurate evaluation of beamforming, phase tuning, and RIS placement
strategies. Several studies [49-52] have validated the applicability of the Rician model in
such systems, particularly in urban or elevated scenarios where LOS paths dominate. Once
100% LOS coverage is achieved, RIS phase shift optimization is carried out to maximize
the system sum rate using various metaheuristic algorithms including Particle Swamp
Optimization (PSO) [53], Grey Wolf Optimization (GWO) [54], Genetic Algorithm (GA) [55],
Salp Swarm Algorithm (SSA) [56], and a hybrid PSO-GWO algorithm [57].

Algorithm 2 SA for RIS Placement Optimization

1: Input: Candidate positions candPos, building IDs candBld, user data, UAV position,
buildings blds, number of RIS numRIS

2: Output: Optimized RIS positions RISpos_SA, coverage history covS Ahist
3: Initialize: Ty < 1.0, & < 0.995, maxIter < 500
4: currSA <+ random selection of numRIS candidates
5: bestSA < currSA, bestCovSA < baseline UAV-only coverage
6: covSAhist < [bestCovSA]
7. for it = 1 to maxIter do
8 T+« Tp-alit-D)
9: nxt < currSA with one random RIS index changed
10: if any duplicates in nxt then
11: continue
12: end if
13: mask < initial UAV coverage mask
14: for each uncovered user k do
15: for each RIS 7 in nxt do
16: pris < candPos]r]
17: bris < candBld|r]
18: if LOS blocked from UAV to RIS or RIS to user k then
19: continue
20: else
21: mark user k as covered; break
22: end if
23: end for
24: end for
25: covNew < fraction of users covered
26: if covNew > bestCovSA or rand() < exp(%) then
27: currSA < nxt
28: bestSA < currSA
29: bestCovSA + covNew
30: end if
31: Append bestCovS A to covS Ahist
32: if bestCovSA > 1 then
33: break
34: end if
35: end for

36: RISpos_SA < candPos[bestSA]

3.2.4. Sum Rate Maximization Problem Formulation

In RIS-assisted UAV communication systems, optimizing the phase shifts of RIS ele-
ments is critical to enhancing spectral efficiency and achieving robust coverage in complex
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propagation environments. The RIS contributes additional signal paths by reflecting the
incident signal from the UAV toward the users, and each element introduces a controllable
phase shift to align the reflected wavefronts. The goal is to maximize the system-wide sum
rate by jointly tuning these phase shifts, considering both the direct UAV-user link and
RIS-assisted paths. The optimization problem can be formulated as shown in Equation (17),

2
max Z log, | 1+ —— thGr hax + Z Z GRIShur e]‘p“h(”k) ) 17)
{4’re} r=1le=
subject to the constraints in Equation (18),
¢re €10,2), Vr=1,...,R,e=1,...,N. (18)

r.e)

Here, h; ;. denotes the direct LOS channel between the UAV and user k, while h(
and hg;,e ) represent the channels from the UAV to RIS element e on RIS 7, and from the RIS
element to user k, respectively. The reflected link is scaled by the RIS gain Ggys, and ¢y .
is the tunable phase shift applied by the RIS element. This problem is non-convex due to
the modulus square of a complex-valued sum and the coupling between variables, making
traditional convex solvers ineffective. Metaheuristic optimization techniques are well suited
to this type of problem, as they can efficiently search high-dimensional, non-convex spaces
without requiring gradient information. Moreover, this formulation inherently supports
blockage modeling by nullifying direct or reflected channel terms when the LOS path is
obstructed, making it applicable in realistic urban or terrain-aware UAV-RIS deployment
scenarios. The optimization objective is expressed in Equation (19),

(1 N lhpux + th,k@hBR2>

5 (19)

K
Rsum = Z 10g2
k=1

where ©® = diag(e/®, ..., e/N) is the RIS phase shift matrix. The hybrid PSO-GWO algo-
rithm leverages the global search capability of PSO and the exploitation strength of GWO
to improve convergence and solution accuracy. This integrated UAV-RIS system ensures
full coverage and enhanced signal performance, representing a scalable and intelligent
approach for 6G non-terrestrial networks (NTNs) [58-60].

In this setup, a UAV communicates with multiple ground users through both direct
and RIS-assisted links. The communication channels are modeled using Rician fading,
which captures the deterministic LOS component and the scattered NLOS component,
making it suitable for UAV-based scenarios with elevated platforms and partial obstruction.
The effective channel gain for the direct UAV-user link is expressed in Equation (20),

A/ . 27td,
hg = hros Plo eI, (20)
do
and )
A
Plyp=(— 21
o= (1) e

where dj is the distance between the UAV and the user, A is the carrier wavelength, and
PLy is the free-space path loss at 1 m as expressed in Equation (21). Each RIS consists of N
reflecting elements and the RIS-assisted signal component for user k is modeled as shown
in Equation (22),
R N
=Y ) Grus - higg e - higy, )

r=1e=1
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where h(ﬁz and hl(fl)l represent the UAV-to-RIS and RIS-to-user channels for the e-th RIS
element, respectively, Gris is the RIS gain, and ¢, is the optimized phase shift. In the case
of active RIS, an additional gain term is included. The received SINR at user k is computed
as shown in Equation (23),

PGiGr - |hy + he|?
No

SINR; = , (23)
where P; is the UAV transmit power, G; and G, are the antenna gains, and Nj is the noise
power [61]. The total system throughput is then calculated as the sum-rate, which is
expressed in Equation (24). The phase vector ¢ € [0,271]R'N is optimized to maximize Ry
using metaheuristic algorithms.

K
Riota1 = Y log, (1+ SINRy). (24)
k=1

3.3. Metaheuristic Algorithms

Metaheuristic algorithms represent a set of techniques aimed at solving problem:s,
enabling the discovery of effective solutions that may not be the best, especially for intri-
cate optimization challenges where conventional approaches falter. The main features of
metaheuristic algorithms include population-based, stochastic, heuristic-driven, balanced
exploration and exploitation capabilities, and problem independence. To optimize the
phase shift in RIS-assisted UAV networks, we employ PSO, GWO, SSA, MPA, GA, and
a hybrid PSO-GWO approach for comparative analysis. Table 1 shows the key features,
advantages, and disadvantages of the algorithms used [53-57,62-65]. A hybrid PSO-GWO
approach is also applied, where PSO is run for the first half of the iterations, and the best
solution is used to seed GWO in the second half. This hybridization improves convergence
behavior and overall sum-rate performance in the presence of Rician fading and multi-user
interference [66,67].

Table 1. Comparison of metaheuristic algorithms.

Algorithm  Features Advantages Disadvantages
PSO Swarm-based population Simple, scalable and flexible Trap to local optima for complex
Velocity and position updates Few control parameters problems, sensitive to parameters
GWO Wolf leadership hierarchy Balanced global and local search Slower in high dimensions
Encircling and hunting models Robust for complex landscapes Sensitive to population size
SSA Bio-inspired Salp swarm Fast convergence, flexible Slow,trap to local optima
Leader and follower models Few parameters, good exploration =~ Limited constraint handling
GA Selection, crossover, mutation Flexible, global search, adaptable Many parameters, slow
Genetics, probabilistic search Handles discrete and continuous Stochastic results, time-consuming
MPA Marine predators, elite matrix Strong exploration and exploitation =~ Premature convergence
Lévy and Brownian foraging Fast, robust for complex problems diversity loss, computational cost
PSO-GWO  Exploits PSO’s swarm intelligence ~ Adaptable, fast convergence More complex; tuning needed
with GWO'’s hierarchical strategy =~ Robust for complex landscapes Potential redundancy

The various metaheuristic algorithms exhibit time and space complexities. PSO,
GWO, MPA, and SSA have the same time complexities of O(N x I x D), and that of
GA and hybrid PSO-GWO are O(N x I x D + NlogN) due to selection, sorting and
O(N x I x D) 4+ OH due to extra overhead (OH) for hybridization respectively. The space
complexity is O(N x D) for PSO, GWO, SSA, MPA, and hybrid PSO-GWO, and for GA, it
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is O(N x D + N), where N is the population size, I is number of iterations and D represents
dimension of solution space [68-70].

3.4. Experimental Setup

We used MATLAB 2024a and the MATLAB toolbox running on a PC having 12th
Gen Intel(R) Core(TM) i7-1270P 2.20 GHz, 16.0 GB RAM, a 64-bit operating system, an
x64-based processor, and Windows 11 Pro for the experimental analysis and execution of
the algorithms defined.

4. Results and Discussion
4.1. Link Budget Calculation and Outcomes

We first calculate the link budget for GES-LEO-UAV and BS-UAV as a dual back-
haul link for reliable communication systems, working even if either of the links fails.
First, we calculate the link budget for the base station (BS) and the UAV using the
Equations (1) and (2), considering the nearly realistic values and assumptions described

in Section 3.1.1. The calculated path loss is within the range detectable by the receiver to
ensure QoS. Table 2 shows the parameters for the BS-UAV link budget.

Table 2. Parameters used in BS-to-UAYV link budget calculation at 28 GHz.

Parameter Value Unit
Transmit Power (P) 30 dBm
Transmit Antenna Gain (G;) 15 dBi
Receiver Antenna Gain (G;) 5 dBi
Carrier Frequency (f) 28 GHz
Propagation Distance (d) 1000 m

Free Space Path Loss (L)) 121.39 dB

Miscellaneous Losses (L;;) 3 dB

Speed of Light (c) 3 x 108 m/s
Received Power (P;) -74.39 dBm

Then we calculated the link budget for the satellite earth station to UAV, through LEO,
to have a backhaul as a redundant link for service reliability. We employed a free-space
path propagation model for path loss and assumed realistic values for other parameters
and used Equations (2)—(6), as illustrated in Section 3.1.2. Table 3 shows the parameters
used for the link budget calculation for GES to LEO satellite and their outcomes.

4.2. UAV and RIS Placement Optimization

We simulate a communication environment supported by a UAV within a 300 m x 300 m
urban area, where a UAV is deployed in the center of the region at an altitude of 100 m.
A total of 72 ground users (22 are discarded as they are within building footprints) are
randomly distributed across the area, each positioned at a height of 1.5m. The environment
includes six rectangular buildings that may obstruct line-of-sight (LOS) paths between the
UAV and users. These buildings have fixed heights of 50 m and are defined by their 2D
footprints: Bl spans (20-270m, 220-270m), B2 spans (200-220m, 20-130m), B3 spans
(20-100 m, 50-70 m), B4 spans (100-120 m, 70-200 m), B5 spans (150-270 m, 130-150m),
and B6 spans (10-100 m, 180-200m). Users located within any building footprint are
excluded from the simulation. For each remaining user, we evaluate whether the direct
UAV-to-user link is obstructed by any building using geometric intersection, detection and
3D ray height comparison. Users are then classified as either having LOS or being blocked,
based on whether the ray intersects a building below its roofline. The result shows that
62% of users are LOS with UAVs and the remaining 38% have NLOS with UAVs.
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Table 3. Link budget calculation for LEO-ground satellite communication.

Parameter Value Unit

Input Parameters

Carrier frequency (f) 28 GHz
Distance to satellite (d) 500 km
Transmit power (P;) 43 dBm
Transmit antenna gain (G¢) 30 dBi
Receive antenna gain (G;) 30 dBi
Transmitter losses (Lix) 2 dB
Receiver losses (Lyx) 2 dB
Atmospheric losses (Latm) 2 dB
Bandwidth (B) 100 MHz
Noise temperature (T) 500 K
Boltzmann constant (k) 1.38 x 1072 J/K
Calculated Outcomes

Free space path loss (Lpspr.) 175.37 dB
Received power (F;) —78.37 dBm
Noise power (N) —91.61 dBm
Carrier-to-noise ratio (%) 13.24 dB

Figure 2a,b show the 2D and 3D layout of the initial deployment of UAVs, obstacles,
and users. The connection between UAV and user with green and red lines shows the LOS
and NLOS, respectively. To improve the LOS between UAV and user or coverage footprint,
we optimize the position of the UAV by moving the XY plane, thus maintaining a constant
height of 100m by a grid search algorithm with a grid size of 10 m, since there is a single
UAV. The objective is to increase LOS users as in Equation (8) subject to the constraint of
Equation (9). The coverage is increased to 68% after grid search as detailed in Algorithm 1.
Figure 2c shows the coverage heat map of grid search, and Figure 2d shows coverage in
each iteration. Figure 2e,f show the 2D and 3D deployment after the grid search algorithm,
showing the coverage improvement.

To improve the coverage further, i.e, full coverage, we introduce RIS one by one,
starting with a single RIS to minimize resources and optimize the location of RIS. Then we
add one RIS each time till 100% coverage (ubiquitous connectivity) is achieved. Adding
a RIS initially improves coverage to 96%. SA is used for optimization as described in
Algorithm 2. Figure 3a shows the coverage against each iteration with a single RIS. Then
we add RIS each time iteratively and use SA optimization, and we obtain full coverage
with two RIS. Figure 3b shows the coverage convergence, achieving 100% with 2 RISs.
Figure 3c,d show the optimized placement of UAV-RIS using SA, ensuring LOS from UAV
or RIS to all users.

4.3. RIS Phase Shift Optimization Under Rician Fading

After achieving LOS of all users (100% coverage), we build a set where a UAV com-
municates with multiple ground users through both direct and RIS-assisted links. Table 4
shows the parameters used for UAV-RIS-users access networks.

We calculate the effective channel gain of the UAV to the user’s direct signal us-
ing Rician fading using Equation (20) with free space reference path loss at 1 m using
Equation (21). We consider the number of elements of an RIS to be 64, and we model the
RIS-assisted signal between the UAV and a user using Equation (22). Then we calculate
SINR at any user using Equation (23). The total sum rate is calculated using Equation (24).
The sum rate is 9.8593 bits/s/Hz for the initial deployment of UAV and 10.7762 bits/s/Hz
after placement optimization of UAV due to the increase in LOS users.
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Table 4. UAV-RIS-users access network input parameters.

Parameter Value Unit
Carrier Frequency (fo) 28 GHz
Wavelength (A = ¢/ fo) 0.0107 m
UAV Transmit Power (FP) 43 dBm
UAV Antenna Gain (Gy) 20 dBi
User Antenna Gain (g;) 0 dBi
RIS Tile Gain (Passive) (Gris) 0 dBi
RIS Tile Gain (Active) (Agg) 20 dBi
Receiver Noise Floor (Np) —-90 dBm
Rician K-factor (K) 10 dB
Number of RIS elements (Ngjem) 64 -
Scatter variance (o) 1 -
RIS element spacing (dejem) A2 m

We used metaheuristic algorithms PSO, GWO, SSA, MPA, GA, and hybrid PSO-GWO
to evaluate the comparative performance of phase shift optimization. Table 5 shows the
initial parameters used for phase shift optimization to have maximum average sum rate.

Table 5. Metaheuristic algorithm parameters used in UAV-RIS optimization.

Parameters Values

GA Tournament selection; single-point crossover; mutation rate 0.1 per generation
PSO Inertia w = 0.7, cognitive/social factors c; = c; = 1.5

GWO Convergence coefficient a linearly decreases from 2 to 0

SSA Salp leader coefficient ¢; = 2 exp(—(4t/T)?), chain update for followers

MPA Predator—prey switch probability (0.1 + ¢ (0.8/T)), Lévy exponent p = 1.5

Figure 3e,f show each algorithm’s average sum rate convergence of passive and
active RIS, respectively. In both cases, hybrid PSO-GWO shows the best average sum rate.
Figure 4a shows the sum rate outcome after phase shift optimization for active and passive
RIS, and the best value of sum rate is 10.778 bits/s/Hz for passive RIS from hybrid PSO-
GWO. The average sum rate is not improved due to a dominant direct UAV-users signal, as
passive RIS does not amplify the signal. We then optimized for active RIS with a gain of 20
dBi, resulting in the improvement of the sum rate of active RIS over passive RIS, and the
best value of sum rate is 12.1962 bits/s/Hz from hybrid PSO-GWO. Figure 4b shows the
phase element index heatmap against each iteration. Since the sum rate increment depends
on the transmit power, the number of RIS elements, and the gain of active RIS, we analyzed
the impact of these parameters by varying the values of particular parameters, maintaining
the constant values of other parameters. Figure 4c shows the sum rate outcomes against the
different transmitted power values. The result indicates that the sum rate can be increased
significantly if we increase the transmit power. Similarly, Figure 4d,e show that the sum rate
can also be increased by increasing the gain of active RIS and the number of RIS elements,
respectively. The comparative values show that the gain of active RIS significantly impacts
the average sum rate of the users. Figure 4f shows the sum rate variation with the number
of users.
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The UAV placement using a grid search algorithm, incremental deployment of RIS,
and phase shift optimization using metaheuristic algorithms to maximize the sum rate one
after another results in a joint increase in coverage and spectrum efficiency. The results
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5. Conclusions and Future Directions

In this study, we presented an integrated UAV-LEO-RIS communication framework
with dual wireless backhaul designed to enhance data throughput and coverage in next-
generation wireless networks. The framework strategically combines UAVs, LEO satellites,
and RIS to optimize network performance. We employed a grid search method for UAV
placement optimization, SA for RIS deployment, and PSO, GWO, SSA, GA, MPA, and a hy-
brid PSO-GWO for sum rate maximization. Simulation results demonstrate that the hybrid
PSO-GWO algorithm outperforms individual metaheuristics in terms of convergence speed
and achieving higher sum rates, offering a robust solution for scenarios requiring rapid
deployment and high data throughput. The sum rate can be significantly increased from
9.8593 bits/s/Hz to 10.7762 bits /s /Hz and the LOS rate from 62% to 68% using the Grid
search algorithm. SA optimization results in further improvement in LOS coverage from
68% to 100%, adding two RISs. Although increasing the transmit power greatly enhances
the sum rate, practical power constraints at the transmitter make it impossible to increase it
indefinitely. The sum rate is increased significantly with the increase in active RIS gain. This
active component can be installed on top of building walls, and it plays an important role in
having 100% LOS coverage and increasing the spectrum efficiency from 9.8593 bits/s/Hz
to 12.1962 bits/s/Hz, i.e., 23.7%. This plays a crucial role in achieving ubiquitous coverage
and improved spectrum efficiency.

Future efforts will include modeling users with mobility, dynamic obstacles, and real-
world case studies. To further enhance the capabilities of the proposed framework, future
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research can explore multiple UAV-RIS-assisted network optimization; the incorporation
of deep reinforcement learning, energy efficiency optimization, scalability, and real-world
deployment; and integration with Emerging Technologies such as NOMA, MEC, and
intelligent scheduling frameworks.

Author Contributions: Conceptualization, N.R.K,, B.R.D. and S.R.].; methodology, N.R. K. and B.R.D;
software, N.R.K,; validation, N.R.K., BR.D. and S.R.J.; formal analysis, N.R.K,; investigation, B.R.D.
and S.R.].; resources, BR.D.; data curation, N.R.K.; writing—original draft preparation, N.R.K.;
writing—review and editing, N.R.K., B.R.D. and S.R].; visualization, N.R.K,; supervision, B.R.D. and
S.R.J.; project administration, B.R.D.; funding acquisition, B.R.D. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by University Grants Commission, Nepal (Grants ID: CRG-
078/79-Engg-01) principally investigated by Dr. Babu R. Dawadi.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The language correction Al tools such as Grammarly and Quillbot were used
for this manuscript to ensure that the sentences were grammatically correct and to improve English
sentence structure for clarity. After using these tools, the authors reviewed and edited the content as
needed and take full responsibility for the content of the publication. We are thankful to reviewers

for their constructive comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Pogaku, A.C.; Do, D.T; Lee, B.M.; Nguyen, N.D. UAV-assisted RIS for future wireless communications: A survey on optimization
and performance analysis. IEEE Access 2022, 10, 16320-16336. [CrossRef]

2. Khatiwoda, N.R.; Dawadi, B.R.; Joshi, S.R. An Integrated Architecture of RIS-based Non-Terrestrial Networks with 6G for
Rural Communications. In Proceedings of the 2024 International Conference on Emerging Technologies and Innovation for
Sustainability (EmergIN), Greater Noida, India, 20-21 December 2024; pp. 30-36.

3. Khatiwoda, N.R.; Dawadi, B.R.; Joshi, S.R. Capacity and Coverage Dimensioning for 5G Standalone Mixed-Cell Architecture: An
Impact of Using Existing 4G Infrastructure. Future Internet 2024, 16, 423. [CrossRef]

4. Khaled, A.; Alwakeel, A.S.; Shaheen, A.M.; Fouda, M.M.; Ismail, M.I. Placement optimization and power management in a
multiuser wireless communication system with reconfigurable intelligent surfaces. IEEE Open ]. Commun. Soc. 2024, 5, 4186—4206.
[CrossRef]

5. Xu, Q.; You, Q.; Gong, Y.; Yang, X.; Wang, L. RIS-assisted UAV-enabled green communications for industrial IoT exploiting deep
learning. IEEE Internet Things J. 2024, 11, 26595-26609. [CrossRef]

6. Toka, M,; Lee, B.; Seong, J.; Kaushik, A.; Lee, ].; Lee, J.; Lee, N.; Shin, W.; Poor, H.V. RIS-empowered LEO satellite networks for
6G: Promising usage scenarios and future directions. IEEE Commun. Mag. 2024, 11, 128-135. [CrossRef]

7.  Shayea, I; El-Saleh, A.A.; Ergen, M.; Saoud, B.; Hartani, R.; Turan, D.; Kabbani, A. Integration of 5G, 6G and IoT with Low Earth
Orbit (LEO) networks: Opportunity, challenges and future trends. Results Eng. 2024, 23, 102409. [CrossRef]

8. Mohamed, E.M.; Rihan, M. Bandit approach for unmanned aerial vehicle-centric low earth orbit satellite selection. Digit. Signal
Process. 2024, 151, 104546. [CrossRef]

9. Zhou, L.; Xu, W.; Wang, C.; Chen, H.H. Ris-enabled uav cognitive radio networks: Trajectory design and resource allocation.
Information 2023, 14, 75. [CrossRef]

10. Othman, W.M,; Ateya, A.A.; Nasr, M.E.; Muthanna, A.; ElAffendi, M.; Koucheryavy, A.; Hamdi, A.A. Key Enabling Technologies
for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless
Networks. |. Sens. Actuator Netw. 2025, 14, 30. [CrossRef]

11.  Worka, C.E.; Khan, FA.; Ahmed, Q.Z.; Sureephong, P; Alade, T. Reconfigurable Intelligent Surface (RIS)-Assisted Non-Terrestrial

Network (NTN)-Based 6G Communications: A Contemporary Survey. Sensors 2024, 24, 6958. [CrossRef]


http://doi.org/10.1109/ACCESS.2022.3149054
http://dx.doi.org/10.3390/fi16110423
http://dx.doi.org/10.1109/OJCOMS.2024.3426495
http://dx.doi.org/10.1109/JIOT.2024.3369687
http://dx.doi.org/10.1109/MCOM.002.2300554
http://dx.doi.org/10.1016/j.rineng.2024.102409
http://dx.doi.org/10.1016/j.dsp.2024.104546
http://dx.doi.org/10.3390/info14020075
http://dx.doi.org/10.3390/jsan14020030
http://dx.doi.org/10.3390/s24216958

Telecom 2025, 6, 61 20 of 22

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ma, T.; Zhou, H.; Qian, B.; Cheng, N.; Shen, X.; Chen, X.; Bai, B. UAV-LEO integrated backbone: A ubiquitous data collection
approach for B5G internet of remote things networks. IEEE |. Sel. Areas Commun. 2021, 39, 3491-3505. [CrossRef]

Chen, R.; Wang, W.; Wu, W. An Adjustable Wireless Backhaul Link Selection Algorithm for LEO-UAV-Sensor-Based Internet of
Remote Things Network. Sensors 2024, 24, 1973. [CrossRef]

Janji, S.; Wawrzyniak, P.; Formanowicz, P; Kliks, A. Integrating UAV-Enabled Base Stations in 3D Networks: QoS-Aware Joint
Fronthaul and Backhaul Design. arXiv 2024, arXiv:2404.17547.

Yu, B.; Zhang, J.; Chen, J.; Xu, Y,; Gao, R.; Wang, J. Aerial RIS-Enabled Wireless Coverage Enhancement Under UAV Jitter. In
Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 20-22 October
2023; pp. 1716-1721.

El Hammouti, H.; Saoud, A.; Ennahkami, A.; Bergou, E.H. Energy Efficient Aerial RIS: Phase Shift Optimization and Trajectory
Design. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24-27 June 2024;
pp- 1-7.

Wei, Z.; Cai, Y;; Sun, Z.; Ng, DW.K,; Yuan, J.; Zhou, M.; Sun, L. Sum-rate maximization for IRS-assisted UAV OFDMA
communication systems. IEEE Trans. Wirel. Commun. 2020, 20, 2530-2550. [CrossRef]

Jia, H.; Chen, G.; Huang, C.; Dang, S.; Chambers, J.A. Trajectory and phase shift optimization for RIS-equipped UAV in FSO
communications with atmospheric and pointing error loss. Electronics 2023, 12, 4275. [CrossRef]

Elnabty, I.A.; Fahmy, Y.; Kafafy, M. A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond
networks. Phys. Commun. 2022, 51, 101564. [CrossRef]

Darem, A.A.; Alkhaldi, TM.; Alhashmi, A.A.; Mansouri, W.; Alghawli, A.S.A.; Al-Hadhrami, T. Optimizing resource allocation
for enhanced urban connectivity in LEO-UAV-RIS networks. . King Saud Univ.—Comput. Inf. Sci. 2024, 36, 102238. [CrossRef]
Yao, Y,; Lv, K,; Huang, S.; Li, X.; Xiang, W. UAV trajectory and energy efficiency optimization in RIS-assisted multi-user
air-to-ground communications networks. Drones 2023, 7, 272. [CrossRef]

Huroon, A.M.; Huang, Y.C.; Wang, L.C. Optimized transmission strategy for UAV-RIS 2.0 assisted communications using rate
splitting multiple access. In Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong,
China, 10-13 October 2023; pp. 1-6.

Zeng, S.; Zhang, H.; Di, B.; Han, Z.; Song, L. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS
orientation and location optimization. IEEE Commun. Lett. 2020, 25, 269-273. [CrossRef]

Tran, T.T.M.; Vu, B.M.; Shin, O.S. Optimization of Bandwidth Allocation and UAV Placement in Active RIS-Assisted UAV
Communication Networks with Wireless Backhaul. Drones 2025, 9, 111. [CrossRef]

Zhang, Q.; Zhao, J.; Zhang, R.; Yang, L. Downlink Transmissions of UAV-RIS-Assisted Cell-Free Massive MIMO Systems:
Location and Trajectory Optimization. Sensors 2024, 24, 4064. [CrossRef]

Jeon, H.B.; Park, S.H.; Park, J.; Huang, K.; Chae, C.B. An energy-efficient aerial backhaul system with reconfigurable intelligent
surface. IEEE Trans. Wirel. Commun. 2022, 21, 6478-6494. [CrossRef]

Zhang, W.; Li, J.; Yu, W,; Ding, P.; Wang, J.; Zhang, X. Algorithm for UAV path planning in high obstacle density environments:
RFA-star. Front. Plant Sci. 2024, 15, 1391628. [CrossRef] [PubMed]

Ahmed, M.; Soofi, A.A.; Khan, F; Raza, S.; Khan, W.U.; Su, L.; Xu, F; Han, Z. Toward a Sustainable Low-Altitude Economy: A
Survey of Energy-Efficient RIS-UAV Networks. arXiv 2025, arXiv:2504.02162.

Mihertie, H.D.; Wang, Z. Resource allocation for UAV-RIS-assisted RSMA system with hardware impairments. Comput. Netw.
2025, 266, 111336. [CrossRef]

Saleh, A.M.; Omar, S.S.; Abd El-Haleem, A.M.; Ibrahim, L.I.; Abdelhakam, M.M. Trajectory optimization of UAV-IRS assisted 6G
THz network using deep reinforcement learning approach. Sci. Rep. 2024, 14, 18501. [CrossRef]

Maral, G.; Bousquet, M. Satellite Communications Systems: Systems, Techniques and Technology, 5th ed.; Wiley: Hoboken, NJ,
USA, 2009.

Xiao, Z.; Xia, P; Xia, X.G. Enabling UAV cellular with millimeter-wave communication: Potentials and approaches. IEEE Commun.
Mag. 2016, 54, 66-73. [CrossRef]

Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges, and open
problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334-2360. [CrossRef]

Alghamdi, R; Alhadrami, R; Alhothali, D; Almorad, H; Faisal, A; Helal, S; Shalabi, R; Asfour, R, Hammad, N; Shams, A; et al.
Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE access.
2020, 8, 202795-202818. [CrossRef]

ITU-R. Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems. Recom-
mendation ITU-R P.618-13. 2017. Available online: https:/ /www.itu.int/rec/R-REC-P.618 /en (accessed on 14 March 2025).
Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun.
Mag. 2020, 58, 55-61. [CrossRef]

Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2002.


http://dx.doi.org/10.1109/JSAC.2021.3088626
http://dx.doi.org/10.3390/s24061973
http://dx.doi.org/10.1109/TWC.2020.3042977
http://dx.doi.org/10.3390/electronics12204275
http://dx.doi.org/10.1016/j.phycom.2021.101564
http://dx.doi.org/10.1016/j.jksuci.2024.102238
http://dx.doi.org/10.3390/drones7040272
http://dx.doi.org/10.1109/LCOMM.2020.3025345
http://dx.doi.org/10.3390/drones9020111
http://dx.doi.org/10.3390/s24134064
http://dx.doi.org/10.1109/TWC.2022.3149903
http://dx.doi.org/10.3389/fpls.2024.1391628
http://www.ncbi.nlm.nih.gov/pubmed/39483676
http://dx.doi.org/10.1016/j.comnet.2025.111336
http://dx.doi.org/10.1038/s41598-024-68459-8
http://dx.doi.org/10.1109/MCOM.2016.7470937
http://dx.doi.org/10.1109/COMST.2019.2902862
http://dx.doi.org/10.1109/ACCESS.2020.3031959
https://www.itu.int/rec/R-REC-P.618/en
http://dx.doi.org/10.1109/MCOM.001.1900411

Telecom 2025, 6, 61 21 of 22

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

Lin, M.; Huang, Q.; Cola, T.D.; Wang, ].B.; Wang, ]J.; Guizani, M.; Wang, ].Y. Integrated 5G-satellite networks: A perspective on
physical layer reliability and security. IEEE Wirel. Commun. 2020, 27, 152-159. [CrossRef]

Saboor, A.; Vinogradov, E.; Cui, Z.; Pollin, S. Probability of line of sight evaluation in urban environments using 3D simulator. In
Proceedings of the 2023 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Istanbul,
Turkiye, 4-7 July 2023; pp. 135-140.

Dufour, ].M.; Neves, J. Finite-sample inference and nonstandard asymptotics with Monte Carlo tests and R. In Handbook of
Statistics; Elsevier: Boca Raton, FL, USA, 2019; Volume 41, pp. 3-31.

Kang, Z.; You, C.; Zhang, R. Placement learning for multi-UAV relaying: A Gibbs sampling approach. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7-11 June 2020; pp. 1-6.

Zhang, T.; Lei, J.; Liu, Y,; Feng, C.; Nallanathan, A. Trajectory optimization for UAV emergency communication with limited user
equipment energy: A safe-DQN approach. IEEE Trans. Green Commun. Netw. 2021, 5, 1236-1247. [CrossRef]

Mazaherifar, A.; Mostafavi, S. UAV placement and trajectory design optimization: A survey. Wirel. Pers. Commun. 2022,
124,2191-2210. [CrossRef]

Xu, Y,; Zhang, T; Liu, Y.; Yang, D.; Xiao, L.; Tao, M. Computation capacity enhancement by joint UAV and RIS design in IoT. IEEE
Internet Things J. 2022, 9, 20590-20603. [CrossRef]

Tang, X; Xiong, Z; Dong, L; Zhang, R; Du, Q. UAV-enabled aerial active RIS with learning deployment for secured wireless
communications. Chin. . Aeronaut. 2024, 103383. [CrossRef]

Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Sciernce 1983, 220, 671-680. [CrossRef]

Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural
Computing; Wiley-Interscience: Hoboken, NJ, USA, 1989.

Zhai, L.; Zou, Y,; Zhu, J.; Jiang, Y. RIS-assisted UAV-enabled wireless powered communications: System modeling and
optimization. IEEE Trans. Wirel. Commun. 2023, 23, 5094-5108. [CrossRef]

Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable
intelligent surfaces. IEEE Access 2019, 7, 116753-116773. [CrossRef]

Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE
Commun. Mag. 2020, 58, 106-112. [CrossRef]

Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36—42. [CrossRef]

Pan, C.; Ren, H.; Wang, K; Elkashlan, M.; Nallanathan, A.; Wang, J.; Hanzo, L. Intelligent reflecting surface aided MIMO
broadcasting for simultaneous wireless information and power transfer. IEEE ]. Sel. Areas Commun. 2020, 38, 1719-1734.
[CrossRef]

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; Volume 4, pp. 1942-1948.

Mirjalili, S.; Mirjalili, 5.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46—61. [CrossRef]

Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, H. Salp Swarm Algorithm: A bio-inspired optimizer for
engineering design problems. Adv. Eng. Softw. 2017, 114, 163-191. [CrossRef]

Senel, EA.; Gokge, F; Yiiksel, A.S.; Yigit, T. A novel hybrid PSO-GWO algorithm for optimization problems. Eng. Comput. 2019,
35, 1359-1373. [CrossRef]

Wu, Q.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021,
69, 3313-3351. [CrossRef]

Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered
by Al reconfigurable meta-surfaces: An overview. IEEE ]. Sel. Areas Commun. 2020, 38, 2450-2525. [CrossRef]

Abuzgaia, N.; Younis, A.; Mesleh, R. UAV Communications in 6G Cell-Free Massive MIMO Systems. In Proceedings of the 2023
IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer
Engineering (MI-STA), Benghazi, Libya, 21-23 May 2023; pp. 634-639.

Zhang, J.; Bjornson, E.; Matthaiou, M.; Ng, D.WK_; Yang, H.; Love, D.]. Prospective multiple antenna technologies for beyond 5G.
IEEE ]. Sel. Areas Commun. 2020, 38, 1637-1660. [CrossRef]

Poli, R. Analysis of the publications on the applications of particle swarm optimization. J. Artif. Evol. Appl. 2008, 2008, 685175.
Castelli, M.; Manzoni, L.; Mariot, L.; Nobile, M. S.; Tangherloni, A. Salp swarm optimization: A critical review. Expert Syst. Appl.
2022, 189, 116029. [CrossRef]

Faramarzi, S.; Heidarinejad, M.; Gandomi, A.H. Marine Predators Algorithm: A Nature-Inspired Metaheuristic. Expert Syst.
Appl. 2020, 152, 113377. [CrossRef]


http://dx.doi.org/10.1109/MWC.001.2000143
http://dx.doi.org/10.1109/TGCN.2021.3068333
http://dx.doi.org/10.1007/s11277-021-09451-7
http://dx.doi.org/10.1109/JIOT.2022.3178983
http://dx.doi.org/10.1016/j.cja.2024.103383
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1109/TWC.2023.3324500
http://dx.doi.org/10.1109/ACCESS.2019.2935192
http://dx.doi.org/10.1109/MCOM.001.1900107
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/JSAC.2020.3000802
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1007/s00366-018-0668-5
http://dx.doi.org/10.1109/TCOMM.2021.3051897
http://dx.doi.org/10.1109/JSAC.2020.3007211
http://dx.doi.org/10.1109/JSAC.2020.3000826
http://dx.doi.org/10.1016/j.eswa.2021.116029
http://dx.doi.org/10.1016/j.eswa.2020.113377

Telecom 2025, 6, 61 22 of 22

65.

66.

67.

68.

69.
70.

Rai, R.; Dhal, K.G.; Das, A.; Ray, S. An inclusive survey on marine predators algorithm: Variants and applications. Arch. Comput.
Methods Eng. 2023, 30, 3133-3172. [CrossRef]

Prasad, R.; Roy, A.; Kumari, S. Enhancing Cloud Task Scheduling Using a Hybrid Particle Swarm and Grey Wolf Optimization
Approach. arXiv 2025, arXiv:2505.15171. [CrossRef]

Houssein, E.H.; Saad, M.R.; Djenouri, Y.; Hu, G.; Ali, A.A.; Shaban, H. Metaheuristic algorithms and their applications in wireless
sensor networks: review, open issues, and challenges. Clust. Comput. 2024, 27, 13643-13673. [CrossRef]

Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [CrossRef]
Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009.

Huang, T.; Yin, H.; Huang, X. Improved genetic algorithm for multi-threshold optimization in digital pathology image
segmentation. Sci. Rep. 2024, 14, 22454. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/s11831-023-09897-x
http://dx.doi.org/10.48550/arXiv.2505.15171
http://dx.doi.org/10.1007/s10586-024-04619-9
http://dx.doi.org/10.1016/j.jocs.2020.101104
http://dx.doi.org/10.1038/s41598-024-73335-6

	Introduction
	Related Work
	System Model and the Problem Formulations
	Backhaul Link Budget
	Link Budget Calculation for BS-to-UAV at 28 GHz
	Bachhaul Networks and Link Budget

	Access Networks
	UAV Placement Optimization with LOS Constraints
	RIS Placement Optimization Using SA
	Rician Channel Model for UAV–RIS–User Communication
	Sum Rate Maximization Problem Formulation

	Metaheuristic Algorithms
	Experimental Setup

	Results and Discussion
	Link Budget Calculation and Outcomes
	UAV and RIS Placement Optimization
	RIS Phase Shift Optimization Under Rician Fading

	Conclusions and Future Directions
	References

