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Abstract: Device-to-Device (D2D) communication is a promising technological innovation
that is significantly considered to have a substantial impact on the next generation of
wireless communication systems. Modern wireless networks of the fifth generation (5G)
and beyond (B5G) handle an increasing number of connected devices that require greater
data rates while utilizing relatively low power consumption. In this study, we present joint
mode selection, channel assignment, and power allocation issues in a semi-distributed
D2D scheme (SD-scheme) that underlays cellular networks. The objective of this study
is to enhance the data rate, Spectrum Efficiency (SE), and Energy Efficiency (EE) of the
network while maintaining the performance of cellular users (CUs) by creating a threshold
of data rate for each CU in the network. Practically, we propose a centralized approach
to address the mode selection and channel assignment problems, employing greedy and
matching algorithms, respectively. Moreover, we employed a State-Action-Reward-State-
Action (SARSA)-based reinforcement learning (RL) algorithm for a distributed power
allocation scheme. Furthermore, we suggest that the sub-channel of the CU is shared
among several D2D pairs, and the optimum power is determined for each D2D pair sharing
the same sub-channel, taking into consideration all types of interferences in the network.
The simulation findings illustrate the enhancement in the performance of the proposed
scheme in comparison to the benchmark schemes in terms of data rate, SE, and EE.

Keywords: device-to-device (D2D); resource allocation; greedy algorithm; matching theory;
power allocation; reinforcement learning (RL); SARSA

1. Introduction

The growing demand for improved broadband services for mobile devices and the
rapid growth of different fields of application, such as vehicle-to-vehicle communication,
automating factories, cellular healthcare services, and augmented and virtual reality solu-
tions, require the development of new (B5G) network architectures. These architectures
need to be capable of supporting lower energy consumption and higher area capacity com-
pared to current networks [1]. Considering these demands, the problem of limited network
capacity is an important challenge for the evolution of emerging wireless networks. In
addition to the limited availability of the spectrum, the development of the cellular network
is leading to concerning levels of energy consumption [2]. The importance of EE has been
growing as a consequence of economic, operational, and environmental considerations [3].
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Furthermore, the rapid increase in data rate demands and power-intensive mobile sys-
tems and applications, in combination with the scarcity of available spectrum resources,
necessitates the exploration of innovative networking solutions.

D2D communication is a promising technology among the emerging B5G solutions,
providing potential solutions for the aforementioned demands. D2D communication en-
ables direct transmission of data traffic instantaneously via the D2D transmitter toward a
D2D receiver without passing via a cellular gNB [4]. Moreover, it requires low power trans-
mission that enhances EE and allows for the spectrum sharing of the available resources,
ultimately improving spectral efficiency. D2D communications utilizing the resources
of wireless cellular networks will be crucial in enhancing the capacity of incoming B5G
systems [5]. The advantages of implementing D2D communication over wireless cellular
networks are becoming widely recognized, particularly for data offloading, content shar-
ing, EE, coverage expansion, and enhanced utilization of the spectrum. Furthermore, an
additional demand in B5G networks is the capacity to deal with extensive communications
resulting from the rapid increase in connected devices in conventional cellular networks [6].

Mode selection and resource allocation are crucial issues for creating and maintaining
direct connections between D2D users within cellular networks. Furthermore, the distribu-
tion of network resources among D2D pairs and cellular users can be achieved efficiently,
which could improve SE and EE by controlling interferences in the network.

Mode selection is an essential challenge in D2D communications that enhances EE and
average data rate and minimizes interference in the network. It decides whether D2D users
can perform in direct mode or cellular mode. The mode selection procedure is flexible,
leading to decreased latency and increased spectrum resource utilization. The gNB can
assign three D2D communication modes to each D2D pair, including direct D2D mode
(DM), relay-assisted D2D mode (RM), and local route D2D mode (LM) [7].

D2D communication can utilize either a licensed or unlicensed spectrum for channel
assignment to establish direct connections, assigned as in-band and out-band D2D commu-
nications, respectively [8]. According to out-band D2D communication, users communicate
via direct communication utilizing an unlicensed spectrum, separated from that utilized
by cellular users in the network. On the other hand, in-band D2D communication may be
categorized into two classifications: underlay and overlay. According to the framework of
underlaying in-band communication, the spectrum is shared and assigned to D2D pairs
and CUs. Moreover, in-band communication overlay identifies specific parts of the whole
spectrum for D2D communications and the other portion for CUs. This study investigates
the idea of underlaying in-band D2D communication, focusing on improving the system'’s
performance. However, D2D pairs experience interference when implemented with the
underlay in-band architecture, caused by the utilization of shared sub-channels [9]. Conse-
quently, the control of interference becomes a significant research concern within the field
of D2D communication networks.

Despite the improvements in cellular networks enabled by D2D communication, many
concerns should be addressed. Conventional cellular networks are significantly affected
by the interferences imposed by D2D communications due to the sharing of cellular user
resources. These concerns have a substantial effect on the performance of cellular user
communications and could impact the future development of D2D technology. Therefore,
it is essential to figure out efficient strategies for the purpose of allocating resources to
D2D communication pairs without maximizing the complexity of the network’s topology.
Specifically, effective allocation of resources for D2D communications is an important
challenge in the cellular network. Following the mode selection procedure, optimal sub-
channel resource allocation is necessary to achieve the goal of D2D technology [10].
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Power control and interference mitigation should be considered through the resource
allocation process. Additionally, to enhance EE and guarantee QoS for both D2D pairs and
CUs, appropriate power allocation approaches need to be designed. Blindly implementing
power control to D2D communications in a cellular network could reduce system efficiency.
D2D transmitters should optimize their transmission power to enhance EE, SINR demands,
and system performance.

Machine Learning (ML) has been demonstrated to be highly beneficial in multiple areas
due to its ability to precisely predict future scenarios and address complex problems with
huge datasets [11]. Artificial intelligence approaches have been indicated to be an excellent
technique for tackling complicated non-convex optimization problems in communication
networks. In the field of wireless communication networks, reinforcement learning (RL)
based on ML techniques has been utilized to solve the issue of power allocation [12].

2. Related Work

Various current investigations have tackled the problem of mode selection, channel
assignment, and power allocation for D2D communication underlay cellular networks.
For instance, in [13], the resource allocation problem has been formulated based on the
investigation of the system model in many-to-many matching D2D communication under-
lying cellular networks. An overlapping coalition game method that utilizes a candidate
sequence is introduced to improve the D2D transmission data rate. The simulation findings
showed that the efficiency of the proposed method, which incorporates an optimization
technique for candidate sequences, outperforms that of the overlapping approach with
random optimization.

In [14], a genetic algorithm-based joined power and channel allocation was inves-
tigated in D2D-underlayed cellular networks. Efficient allocation of transmitted power
and shared channels for every user is achieved by a genetic algorithm optimization, that
assists in minimizing interference. The simulation outcomes illustrated that the proposed
approach outperformed the fixed, random, and particle swarm optimization approaches in
terms of maximizing the total resource utilization. In [15], the authors addressed the issues
of mode selection, spectrum usage, and power management in D2D underlay cellular
communications by the use of a hierarchical game approach. For mode selection and
channel assignment issues, the optimal solution is achieved by employing the hedonic
coalition game. Moreover, the non-cooperative game is employed to tackle the issue of
power management in the proposed scheme. The algorithm effectively addressed the
issue of fair allocation of resources among users, while simultaneously improving the
system throughput.

In [16], the interference management issue was investigated in order to effectively
enable the coexistence of two technologies: a massive MIMO and a D2D communication sys-
tem that shares uplink network resources under cellular networks. To achieve a distributed
solution, they formulated the problem via a matching theory and presented a resource
optimization technique utilizing the principles of many-to-many matching to enhance the
performance of the system. The numerical outcomes illustrated that the suggested method
effectively improved the network performance by leveraging the diversification benefits of
massive MIMO and matching users based on their preferences. Moreover, in [17], the paper
presented a dynamic resource allocation strategy for D2D communications under cellular
networks. The suggested resource allocation technique incorporates a Q-learning-based
power management algorithm to allocate optimum powers for D2D pairs, with the goal of
optimizing the throughput. The introduced algorithm employs a Q-learning technique to
enhance the transmission power for the D2D pairs that utilize the same resource block at
the establishment of a unique D2D pair. The model findings showed that the suggested
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technique can achieve quick convergence and outperform the random power allocation
algorithm in terms of overall throughput. In [18], the authors examined techniques for
allocating resources in D2D communications underlaying cellular networks. A unique DC
programming method for the difference of convex functions is provided to successfully
address this complex resource allocation problem. The simulation findings showed that
the introduced system reaches the maximum weighted sum-data rate in comparison to the
benchmark methods, while simultaneously guaranteeing the satisfaction of QoS demands
for each D2D pair and CUs.

Furthermore, in [19], the quality of cell-edge user coverage was enhanced with the
development of a D2D-relay communication system for underlay cellular networks. Sub-
sequently, the Lagrange dual approach-based power allocation technique was developed
to effectively allocate power levels to the users in the network. The suggested technique
converges in time, and an optimal closed-form solution is derived. The simulation findings
demonstrated that the suggested strategy highly improved the network coverage, the
data rates of users, and the SE of the system. In [20], a multi-agent Q-learning approach is
presented to enhance the throughput of D2D communications underlying cellular networks.
First, the multi-agent Q-learning technique-based channel resource allocation is imple-
mented. Furthermore, to tackle the issue of slow convergence in the Q-learning algorithm
for the D2D communications system, the authors included a Fuzzy C-Means algorithm
into a multi-agent Q-learning framework. This integration aimed to enhance the utilization
of power management by employing a Q-learning approach. The results showed that the
implementation of the multi-agent Q-learning approach enhances the system’s throughput.
In [21], the authors proposed an auction technique based on a D2D relay selection algo-
rithm underlaying cellular networks. The cooperative willingness of user relay devices
was evaluated from a social level. As social relationships become stronger, the willingness
to cooperate increases and the transmission power of the relay also increases. Subsequently,
they determined a relationship between the outage probability and the transmission power.
Next, an auction approach was employed to stimulate relays to enhance the transmitted
power via monetary incentives. The results demonstrated the technique’s superiority over
previous relay methods, as it not only enhanced the system’s data rate but also decreased
the probability of a communications outage.

Additionally, the researchers in [22] suggested a graph coloring approach to address
interference issues in D2D communications-based cellular networks. The primary objective
is to exploit the weighted prioritization of spectrum resources, allowing several D2D pairs
to use the same resources as cellular users inside the network. Once the spectrum allocation
has been achieved, the power management process is employed to reduce the transmission
power of D2D pairs which leads to minimizing the interferences and enhancing the energy
consumption of the entire cell. The simulation outcomes illustrated that the suggested
method successfully mitigated co-channel interference, enhanced system throughput, and
minimized power consumption in comparison to the traditional techniques. The authors
in [23] suggested a method based on the D2D multicast clusters approach along with a
Q-Learning-aided approach to tackle the issue of joint sub-channel assignment and power
management for D2D communication under cellular networks. An agglomerative hierar-
chical clustering approach using unsupervised ML was suggested to establish clusters of
D2D pairs, considering user preferences and ensuring reliable D2D multicast communica-
tions across D2D users. The numerical simulation outcomes indicated that the suggested
approach provided substantial benefits for the throughput and EE of the introduced system
compared to existing techniques. In [24], the paper examined the issues of joint channel
assignment and power management in D2D communications underlaying cellular net-
works based on the concept of the NOMA technique. The suggested approach divided
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the issue into two sub-issues: channel assignment and power management. The assign-
ment of channels to the pairs is shown using a matching game theory, providing a stable
solution while considering the interferences imposed by users in the network. The power
allocation problem is addressed in both phases utilizing difference-of-convex programming
that is optimized iteratively by the Frank—Wolfe method. The performance investigations
have shown that the suggested method enhanced SE, fairness, and network connectivity.
In [25], the authors examined the issue of resource allocation for D2D communications
in cellular networks. A one-to-many matching game was implemented to enhance spec-
trum utilization and tackle frequency interference problems. They introduced a resource
allocation algorithm based on the relationship between the distance of the users and the
interference levels to assign channel resources efficiently. This technique enables D2D pairs
to efficiently reuse channel resources utilized by CUs in close proximity while minimizing
interference between D2D pairs and CUs. Moreover, the particle swarm optimization tech-
nique was employed to tackle the optimum power allocation problem, aiming to obtain the
highest transmission rate of the network. The simulation findings demonstrated that this
approach enhanced system data rate and performance, while simultaneously minimizing
the computational complexity.

In [26], a resource allocation technique is suggested, based on the QL algorithm,
for D2D communication in the unlicensed spectrum. This approach allows for dynamic
allocation of transmitted power to D2D users based on updating network traffic condi-
tions, leading to improved performance of the coexisting system. The agent’s states are
determined by different factors such as fairness, SNR, and data rate of CUs. The agent’s
actions can be determined by the different duty cycles and transmission power levels. The
agent can learn the duty cycles and optimum power transmission via iterative interaction
responses to the network. The comprehensive simulation findings indicated that the pro-
posed technique outperforms the compared approaches in resource allocation fairness and
throughput. The authors in [27] tackled a joint optimization issue of resource allocation,
optimum power management, and relay-selection in a two-way relaying approach under-
laying cellular networks. The power management problem is solved using particle swarm
optimization, while the relay selection problem is addressed via the one-to-one stable
matching technique. The numerical outcomes indicated that employing stable matching in
the relay selection problem significantly increased the performance of the network, D2D
data rate, and EE. In [28], the authors investigated the enhancement of system fairness and
throughput in an underlying D2D communications scheme by employing joint channel
allocation and power management methodologies. They suggested an iterative resource
allocation approach based on RL by considering the channel parameters. The authors
proposed an enhanced reinforcement learning-based SARSA algorithm. The simulation
findings illustrated the enhancement of the system’s throughput, EE, and SE. In [29], the
authors examined EE optimization for D2D communications underlaying cellular networks.
The primary objective of the study is to improve the performance of the scheme as well as
reduce the power conception of the equipment while maintaining the QoS for every user.
The Q-learning algorithm is applied to achieve optimum communication between the users
and gNB in the proposed network. The simulation findings demonstrated that the proposed
system enhanced the transmission performance as compared with the traditional systems.

In [30], the authors proposed a joint channel allocation and power allocation issue for
D2D connections within cellular networks. The main goal of this research is to optimize
the EE of the proposed scheme while satisfying the QoS of CUs and D2D communications.
The suggested problem is NP-hard and complex to solve; therefore, an iterative solution
is introduced. The authors introduced Dinkelbach’s method to address the problem and
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obtain the optimal solution. The simulation findings showed the advantage of the suggested
technique relative to conventional schemes.

3. Research Contributions

This paper introduces joint mode selection, channel assignment, and power allocation
issues of D2D communications underlaying cellular networks in an uplink scenario, where
a single sub-channel can be shared via a CU and several D2D pairs. The main goal of this
study is to enhance the data rate, SE, and EE of the proposed network, while simultaneously
satisfying the minimal QoS demands for CUs and D2D pairs. The suggested approach is
a semi-distributed architecture, in which mode selection and channel assignment issues
are centralized, while the power management issue is solved with a distributed technique.
The complexity of this technique is lower in comparison to centralized solutions. Firstly,
the optimal D2D mode can be achieved by utilizing a greedy algorithm that chooses the
best mode among DM, RM, and LM based on maximum SINR. Furthermore, the provided
channel assignment method is based on a matching algorithm that takes into consideration
the priorities of both the D2D pairs and the CUs, which differs from most of the existing
research that mainly investigates the preferences of D2D pairs only. The channel assignment
technique based on two-sided preference achieves stable matching with minimal complexity.
Moreover, the channel assignment method enables the reuse of a single CU sub-channel
throughout several D2D pairs, resulting in higher SE. A higher number of D2D pairs may
be served with limited spectrum resources through the implementation of this type of
resource-sharing scheme.

In addition, power management is achieved for each D2D pair by applying the SARSA-
based RL algorithm. This low-complexity distributed RL algorithm has the ability to
calculate the optimum power for each D2D pair that enhances the EE of the network. While
several studies have attempted to address the issue of resource allocation throughout D2D
pairs, they have either insufficiently accounted for the potential that D2D users might
interfere with each other or have assigned resources based on the assumption that D2D
pairs have a constant power transmission. The proposed approach differs from previous
studies that either assumed a fixed D2D power or neglected the interferences between
the D2D pairs. The main contributions of the introduced scheme can be illustrated as
described below:

1. The problem of joint mode selection, channel assignment, and power allocation is
formulated for D2D communications underlaying cellular networks by utilizing the
uplink resources of CUs. The optimization problem is formulated to enhance the data
rate, SE, and EE of the network while considering QoS characteristics related to D2D
pairs and CUs simultaneously.

2. By employing a greedy algorithm, a mode selection technique is introduced to choose
the optimum mode throughout DM, RM, and LM across every D2D pair in the
network. The computational representation is formulated based on the highest SINR.

3. channel assignment method is introduced, using a matching algorithm to assign
the optimal sub-channel to the D2D pairs in the network. The channel assignment
approach based on a two-sided preferences list provides stable matching with low
complexity. The first preference list consists of the data rates of D2D pairs arranged in
descending order according to their highest value. The second preference list consists
of the interference effect of CUs on D2D pairs when they share the same sub-channel,
arranged in ascending order according to their lowest impact value.

4. low-complexity distributed SARSA-based RL algorithm is implemented to address
the issue of power control and allocate the optimum power level for each D2D pair to
enhance the EE of the network.
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5. The effectiveness of the suggested method has been shown by simulations, particularly in
terms of the data rate, SE, and EE of the network in comparison to conventional systems.

The remainder of this paper is organized as follows: Section 4 provides a comprehen-
sive clarification about the system model. Section 5 defines the mode selection, channel
assignment, and power allocation problem. Section 6 discusses the challenge and illustrates
the methodologies utilized for joint mode selection, channel assignment, and the power
allocation scheme. Section 7 presents and discusses the simulation parameters as well as
the simulation results. Section 8 concludes the paper.

4. System Model

In this study, we explore the principle of the D2D communication scheme underlaying
cellular networks, which involves spectrum sharing across multiple D2D users. For every
D2D pair, we analyze three different modes, which include DM, RM, and LM, as illustrated
in Figure 1. The DM enables direct transmission of data from the transmitter to the receiver
of each D2D pair. Moreover, the second D2D mode is RM which aims to establish relay
communication between two distant devices. An idle user is used as a relay node in this
mode to facilitate the creation of a connection between the transmitter and receiver of the
D2D pairs. Regarding the LM, it is suggested that auxiliary antennas be installed on the
gNB to enhance the connections of the LM [31]. The data are transferred via the gNB instead
of entering the core, which means that the gNB acts as a node to support the connections of
faraway users to establish a D2D pair.

— DM Link
— RM Link
— LM link
—— CU Link
— — » Interference Link

Figure 1. System model.

In this study, we examine an environment where N represents the D2D pairs’ number.
Furthermore, Ty, Ry, and RU,, represent the D2D transmitter, receiver, and relay of the pair
n, respectively. Let us suppose W is the total bandwidth in the network which is partitioned
to a number of sub-channels indicated as K. Table 1 illustrates the scheme symbols.

Table 1. Scheme symbols.

Symbol Description
N D2D pairs’ number
M CUs number
T, D2D transmitter

R, D2D receiver
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Table 1. Cont.

Symbol

Description

RU,
w
K
G, GRUm

GT”’I’II Gmn
Py, Pc, Pz

Gtr, GTrU, GTZ

Grur, Gzr
(0}

Yn,kr Ym,k
jD/ jR/ jL
Grr, Grrruy Gz

Grur, Gru'rur GrUZ

1 2 3
Hn k’ Hn,k’ Hn,k

Rn,kr Rm,k
‘%D/ ‘%RI ‘%L
@D @R @L
£p, 03
3t, at, Rt

41, @41
o

77 (9)

Relay user equipment

System Bandwidth

Sub-channels” number

Channel gain for nth D2D pair, R, to mth CU, respectively
Channel gain across nth D2D pair and mth CU, mth CU
and nth D2D pair, respectively

Power transmission of the D2D pair, CU, and gNB,
respectively

Channel gain between T, to R,;, RU,;, and gNB,
respectively

Channel gain across RU,, and gNB to R,

Noise power

Received SINR for D2D pair #n and cellular user m utilizing
sub-sub-channel k, respectively

Interference impact of CUs, other D2D transmitters, and
D2D relays on the nth DM, RM, and LM, respectively
Channel gain between other D2D transmitters to R, RU,,,
and gNB, respectively

Channel gain across other D2D relays to R,;, RUj;, and
gNB, respectively

Binary mode sub-channel assignment indicator of DM, RM,
and LM respectively

Data rate for nth D2D pair and mth CU, respectively
Mode selection sets of DM, RM, and LM respectively

DM, RM, and LM, each has respective quotas

Primary and secondary preference lists, respectively
State, action, and reword of the SARSA algorithm

Next state and next action of the SARSA algorithm

The learning rate

The discount factor

The value function

Letpn — {pllpz,...,pn,...

, PN}, Pc, Pz denote the transmission power of the T, CU,

gNB, respectively. The transmitted power for every D2D pair P, is determined from the
available power levels set, ranging from p;;, t0 Pmax, while the transmission power of
CUs is supposed to be fixed. In the proposed scheme, IT is the binary mode sub-channel
assignment indicator matrix with IT € {0,1}, where IT! Tk I1? ok and 3 ok Tepresent the
binary mode sub-channel assignment indicators for DM, RM and LM, respectlvely If the
nth D2D pair is utilizing the sub-channel k of the CU m, then II = 1, otherwise, I = 0.
The SINR of the nth D2D pair utilizing kth shared sub-channel of the mth CU at time slot ¢
is given as follows:

PaGrr()ITL + (P, Grru(t) + Pu(t)Grur ()T + (PuGrz(t) +PzGzr(H)IT,

Ipop + Pc(t)Ginn + 0

Yok (t) = )

where Grr, Grru, Grz, represent the channel gain between T, to R,;, RU,;, and gNB, respec-
tively. Gryr and Gzg refer to the channel gain between RU,, and gNB to R;;. Furthermore,
Guin refers to the channel gain of the D2D pair nth and the mth CU. o denotes the noise
power. The expression .#pyp can be illustrated as follows:

Ipop = Ip + IR+ I1, ()
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where Jp, Fr, and .1, demonstrate the impact of the interferences on the nth D2D pair
in DM, RM, and LM caused by gNB, other D2D T, and other RU,. The mathematical
representation of .#p, #r, and .#;, can be shown as follows:

N N
Ip = PzGzr(OIT}  + Y PuGrrILy, + Y PuGrur ()T, 3)

n=1 n=1

N

IR = (PzGzru(t) + PzGzr (1)) IT, , + ¥ (P,Grru(t) + PuGrgr(t) I1)

N " . @

+ 2 (B Grurgu(t) + PaGrun(t)I T,
n=

N N
n=1 n=1
where G, Gpry, and Gtz are the channel gain between other D2D transmitters to R,
RU};, and gNB, respectively. Moreover, Grir, Gryy/riyr @nd Gruyz represent the channel
gain between other D2D relays to R;;, RU};, and gNB, respectively. The SINR of the mth CU
utilizing the kth sub-channel at time slot t may be expressed as follows:

Yo x(t) = ,
" Y pn()Go 4+ Ty pu(t)Grum + &

(6)

The data rate of D2D pair n utilizing the uplink kth sub-channel can be determined at
time slot t as follows:

Rn,k(t) =W log2(1 + Yn,k(t>)/ (7)

Furthermore, the data rate of CU m utilizing the kth channel can be determined at
time slot t as follows:

Rm,k(t) =W logz(l + Ym,k<t))r 8)

SE shows the effectiveness of using the available spectrum in terms of the data rate
obtained regarding a given bandwidth. Thus, the SE for the nth D2D communication pair
can be given as follows:

XN TR Rug(t)
= v , 9)

Based on the obtained data rate and energy consumption, the EE of the D2D commu-

SEn,k(t)

nications scheme at time slot f is given as follows:

_ Lot Tt Rux(t)
Yl pa(t) + peir

EEn,k(t) (10)

where p.;, denotes the D2D pair circuit power consumption.

5. Problem Formulation

In this study, an optimization problem in D2D networks is investigated, specifically
concentrating on joint mode selection, channel assignment, and power allocation optimiza-
tion issues. In our proposed system, D2D users can choose among the available three D2D
modes, including DM, RM, or LM based on maximum SINR. Moreover, a network that
has been completely loaded is regarded as having no dedicated channels for D2D pairs
to utilize. Moreover, the optimum power level can be obtained from the range Py, to
Pyiax. This paper aims to optimize the sum data rate, SE, and EE of the proposed D2D
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communications scheme while guaranteeing the QoS demands for both D2D pairs and
CUs. The following is the formulation of the optimization problem:

N K
max YY" Ryi(t),SE(t), and EE,x(t), (11)
AILP 2 k=1
s.t.
N
Yo Y Rux(t) = Ry, (b), Vkel...K, (11a)
n=1k=1
Y =1 n €N, (11b)
n
N K
Y Y Iy Iy, or I, < K Vkel...K, (11c)
n=1k=1
Y I, =1 m € UEs, (11d)
m
N
I, < 3, Vn € N, (11e)
n=1
Puin < Pn < Ppax, VN, RU, (11f)
Pc, Pz = Puax, (11g)

Constraint (11a) specifies the minimal data rate for the nth D2D pair in shared sub-
channel k. Constraint (11b) denotes that each D2D pair n chooses one mode among the
D2D modes including DM, RM, or LM. Constraint (11c) indicates that the binary mode
sub-channel indicator matrix for each D2D including DM, RM, and LM is equivalent to
or less than the total number of sub-channels k. Moreover, the constraint (11d) indicates
that every cellular user m utilizes a distinct sub-channel k. The constraint (11e) indicates
that each sub-channel may be utilized a maximum of three times. The constraints (11f) and
(11g) denote that T;;, CUs, and gNB utilize specific transmission power.

To sufficiently address the optimization problem expressed in (11), it should be di-
vided into two sub-issues: joint mode selection and channel assignment, as well as power
management. Since it is an MINLP problem, the optimization problem is NP-hard and
involves computational difficulties.

6. Proposed Joint Mode Selection and Resource Allocation Scheme
(SD-Scheme)

In the present part, we introduce an SD-scheme underlaying cellular networks. Joint
mode selection, channel assignment, and power allocation are considered with the aim
of optimizing the sum data rate, SE, and EE. First, the mode selection issue is tackled by
employing a greedy algorithm based on maximum SINR to select the optimum mode
among DM, RM, and LM for every D2D pair. After that, the matching algorithm is
implemented to tackle the problem of sub-channel assignment by exploiting the two-
sided preference lists to optimize the utilization of spectrum resources. Finally, the power
allocation issue is solved by introducing SARSA-based RL to obtain the optimum power
for each D2D pair in the proposed scheme.

Several important factors inspired the decision to choose the SARSA algorithm for
this study. Firstly, the modeling of the network in the complicated and proposed scenario
of resource allocation for D2D communication is simply unpracticable. Therefore, the
model-free feature of this system is particularly advantageous in this particular scenario.
Moreover, the SARSA algorithm is highly applicable to decentralized decision-making and
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enables agents to self-sufficiently learn the most optimal policies, which aligns effectively
with the architecture of the proposed network. The proposed approach utilizes an SARSA
algorithm to train and update the power level states by considering the environment
feedback information.

6.1. Mode Selection and Channel Assignment Scheme (C-Scheme)

Firstly, this study examines a mode selection technique for D2D communication
by employing a greedy algorithm. The method focuses on direct, relay, and local route
D2D modes to enhance the performance of the D2D scheme. The mode selection issue is
tackled based on the maximum SINR to calculate the best mode for each D2D pair, while
considering the distance between the transmitter and the receiver. This will guarantee the
chosen mode optimizes signal quality while taking into account the physical relationship
of the communication devices, thereby maximizing overall performance. However, a
threshold level is considered for the distance between the transmitter and the receiver for
each D2D communication in the proposed network.

Let us suppose that ./Z is a set of 0 and 1 elements that are applied to represent which
mode is chosen. The following formula is applied to select the best mode:

Mpopn = Mp + MR + M1, (12)

where /p, MR, and 4, represent the mode selection sets of DM, RM, and LM, respectively.
If the data rate in a DM is greater than in an RM and an LM for each given n D2D
communication pair, then #p =1 and #r = #;, = 0, and similarly for other cases. While a
value in the set of the mode selection /#pyp,, is 1, the associated mode is selected (A p, MR,
or /1), subsequently adding that particular data rate of that D2D pair 7 to the sum data
rate of the network. Conversely, when a value in the mode selection set #p;p, is valued
as 0, it leads to a missing contribution to the sum data rate of that particular D2D pair 7.

Once the optimal D2D mode is determined in a scenario including DM, RM, and LM,
the gNB employs the matching method to assign optimum reused sub-channels for the
D2D pairs, which increases the spectrum utilization in the proposed network. This part
introduces the model of a channel assignment issue to optimize the sum data rate and SE
accordingly. We define the channel assignment formula in which D2D pair n shares the
sub-channel k with CU m at time slot t as follows:

IT= (Hi,k/ IT; H:,k) (13)

Nx3K’

The vectors Hrll,k’ Hg,k/ and IT 2,k indicate the possibility that the D2D pair is assigned
to DM, RM, or LM, using the shared sub-channel k with CUs. For each D2D mode in
the proposed scheme, the quota (@) can be determined. @ represents the threshold of
mode-channel assighment for every D2D pair within the framework. The @ features can be
illustrated as follows:

hd 25:1 ZnNzln,lq,k < @P, vn e P

i ZkK:1 ZnN:1Hi’k < @R, vn ¢ R
o T XN I3 <@t vne .t

Based on the above criteria, it is crucial that the overall set of D2D pairs across the
modes, that are assigned to sub-channel k, should not exceed @. In the matching game, the
establishment of the two-sided preference lists can be represented as follows:

0 = {RDL(8), RE (1), REx(1) ], (14)
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0 = {Pc(t)Gum}, (15)

where /P and ¢° denote preference lists that consist of D2D pairs arranged in descending
sequence according to their highest data rate and CUs organized in ascending sequence
according to their minimal interference effect, respectively.

While performing the matching game theory, every D2D pair within the cell is pro-
posed to earn the sub-channels with its higher priority. Consequently, the gNB admits
the D2D pairs with the highest priority while refusing the remaining pairs. For further
clarification, if the D2D pair n gives a proposal to pick sub-channel k based on its greatest
utility in ¢, then sub-channel k is subsequently assigned to the exact D2D pair n according
to the least interference impact utility function in ¢°. Moreover, the matching process
continues till all devices in the network are paired to enhance the system performance.

To provide a more detailed explanation of the resource allocation process, we now
describe the matching game-based sub-channel assignment in greater depth.

Matching Process Execution:

e  Each D2D pair initially proposes to the sub-channel that provides the highest data rate
based on its preference list.

e  The gNB evaluates all proposals and initially assigns sub-channels to D2D pairs while
ensuring that the total number of assigned pairs does not exceed the predefined
threshold @.

e If a sub-channel receives multiple proposals, the gNB selects the D2D pairs that
maximize SE and rejects lower priority requests.

e  Rejected D2D pairs then propose to their next preferred sub-channel, and this process
iterates until a stable matching is achieved, meaning no further changes can improve
the overall network performance.

This iterative matching ensures an efficient and interference-aware sub-channel allo-
cation strategy that enhances both spectral efficiency and system stability. The complete
mode selection and channel assignment approach is detailed in Algorithm 1.

Algorithm 1. C-scheme algorithm
Input: M, N, K

Output: I,

1: Initialization IT, ; = zeros(N, 3K)

2: forltoM

3: determine Y, x(t)

4: determine R, (f)

5: end for

6: forl1toN

7: calculate Y, x(f)

8: calculate Ry, i (t), SE,, i (t), EE, (t)

9: end for

10: find .#p;p,, based on maximum Y, x(f)
11: find Q from the matrix #pypy

12: forl1toN

13: forl1to K

14: calculate er?,k(t)/ Rﬁ,k(t)f Rf;’k(t) with regards to #pypy
15: calculate the interference impact of CUs
16: end for
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Algorithm 1. Cont.
17: end for
18: sort /7 in descending order
19: sort £° in ascending order
20 the most preferred sub-channel k is matched by D2D pair n based on ¢” and ¢°
21: if Rn,k Z Rth
22: setll, =1
23: else
24: setIl, ;=0
25: end if

6.2. Proposed RL-Based Power Allocation Scheme

The power allocation optimization can be achieved using a dynamic distribution
scheme. A wireless network with real-time communications demands immediate training
and learning of the D2D pairs to provide distributed power allocation without imposing a
significant load over the gNB. Thus, ML provides a potential solution with a wide range of
applications in the execution of dynamic resource allocation and tackles many challenges
associated with prospective communications networks. The transmitter of the D2D pair,
performing as the intelligent agent in this scenario, has the ability to learn and make the
most suitable decision to enhance the network performance.

One of the most advanced ML techniques is RL. RL utilizes an approach based on
trial and error to determine the best resource allocation decisions. Moreover, RL works
efficiently without any previous information about the system environment, in contrast to
the traditional techniques. RL may enhance performance by facilitating rapid detection of
optimum solutions or decisions in comparison with conventional centralized techniques.

SARSA is a reinforcement learning approach utilized to identify the best action in a
dynamic resource allocation system. This research presents an SARSA-based approach to
solving the issue of power distribution, including the following elements:

Agent: the agent is the D2D transmitter and serves as a crucial element in the power
allocation issue.

State: The state of the SARSA algorithm includes essential network information, such
as interference levels, channel conditions, and user location. These factors describe the
present state of the environment, operating as inputs to an agent’s decision-making in
power distribution. In this case, the agent indicates the connection of D2D pairs.

Action: The action is an activity performed via the agent. The power distribution levels
established by the D2D pairs constitute the action, which comprises a range of powers from
Prin t0 Ppax.

Reward: The reward function in the SARSA-based power management approach is
defined as the EE of each D2D pair within the system. The agent’s interactions with the
environment in SARSA are illustrated in Figure 2.

In the specific state 4, the action «; is selected, and the reward %; is allocated to the
D2D pair (agent) for each action performed. The agent subsequently transitions to the newly
created state ;11 and executes another action, ;1 for its present state 4;;1. Moreover, the
pattern J4-c-Ri-91.11-+41 defines the sequence of procedures for the suggested SARSA
algorithm. The Q-value is firstly set to zero value, then the proposed algorithm modifies
the Q-table in accordance with the current policy.
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Figure 2. Agent-environment interactions in SARSA.

The algorithm shows the agent inside the SARSA framework has to accomplish several
episodes. At each time step t, the agent in the state s; chooses an action «; based on greedy
strategy. Afterwards, the agent receives the reward %; and proceeds to the following state
Jt+1, where they choose the action «;;1 in dependence on the Q-table. The state—action
equation can be represented as:

Q(st,e) = (1-a)Q(st, @) + a[Bri1 + Y Q(3111, @141)], (16)

Here, o represents the learning rate of the agent, %; 1 denotes the reward function
of the next state, and ¥ signifies the discount factor. In the framework of RL, the agent
aims to optimize the reward by adopting an optimal policy. The optimum policy can be
calculated through the Bellman formula:

7" (3) = max@* (3, «), (17)

acd

Subsequently, the value function is identified by the following equation:

7 (4) = Q(s,a), 18
(9) = max@(s, @) (18)
The given equation is utilized to identify the optimal action value in order to optimize

@(3t,«+) for each state involved.

= Q(s,a), 19
@ = argmax (3,2) (19)
To decide what action « is going to be chosen during a particular time f, the Explo-
ration and Exploitation Policy (EEP) feature is employed as follows:

argmax@(s,«) exploitation
a = wed . (20)
rand(a) exploration
acd
In Equation (20), the ‘e — greedy’ strategy is used while performing EEP, indicating
the fact that the probabilities of exploitation and exploration are € and 1 — ¢, accordingly.
Furthermore, a Markov Decision Process model of D2D communications underlaying
cellular networks is provided to allocate power for each D2D pair using SARSA-based
RL. Moreover, the actions of the agents, which are represented as «, include a set of
transmission powers, are indicated by P,;, and are allocated to the D2D transmitters T),.
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The reward function is formulated based on EE for each D2D pair n employing sub-
channel k as follows:

R, = EE”/k( \/ Rn,k(t) - Ritf;in) if R”rk(t) = thﬁin (21)
_ pth . 4
EEn,k(_e(Rn,k(t) Riyin) ) Zf Rn,k(t) < R;}zlin

Exploration involves a comprehensive examination of the network, gathering infor-
mation, and randomly selecting actions to evaluate their efficiency. However, exploitation
exploits the advantage of previous decisions according to the Q-table. Exploration and
exploitation have trade-off features in power distribution techniques that utilize RL.

SARSA is more appropriate for our case than Q-learning because of its on-policy
nature, which updates action values according to the current policy, hence offering a
more adaptive response to network changes. This functionality is especially beneficial in
D2D communication systems, where interference levels and network topology may vary.
The Q-learning method, while efficient in static situations, fails to update according to
real-time rules, potentially limiting its flexibility in dynamic contexts. Our investigation
demonstrates that SARSA surpasses Q-learning in EE and power consumption, particularly
under changing interference levels, highlighting its enhanced capability to handle real-time
interference in high-density networks. Algorithm 2 defines the extensive structure of the
SARSA strategy.

Algorithm 2. SARSA algorithm for power allocation issue

1: Initialize: N, M, Pyax, Pyin, ITy k, @(3, @) table, %, ¢, &

2: For episode € {1,...,EP} do

3: Reset 5,t=0

4 Select the level of power between Py;y and Py,;,,, utilizing policy derived Q

(e-greedy)
5 Forte€{0,...,T—1}do
6: Every agent performs an action « € A as well as observes % and 4;1
7: Check (11a), (11f), and (11g)
8 If the conditions are satisfied, then
9: Establish action ¢ € A, &, 311
10:  Endif

11: Each agent takes an action «;;1 € A and observes &% and 4;11

12:  Update the Q-table

13: S+ 41, A+ @t

14:  End until all D2D pairs connect or the total iteration numbers is reached
15:  End for

16:  Output: optimum power for each D2D pair

7. Simulation Results

This part demonstrates the performance evaluation of the proposed SD-scheme re-
garding sum data rate, EE, SE, outage probability, and power saving. The SD-scheme that
effectively joins the centralized mode selection and channel assignment scheme (C-scheme)
is introduced based on greedy and matching algorithms, respectively, with the distributed
power allocation scheme based on the SARSA algorithm. The suggested approach is com-
pared with multiple traditional schemes, including a channel allocation scheme based on
matching theory with the goal of optimizing EE [24], a channel allocation scheme based on
the greedy algorithm [30], and power allocation schemes based on Q-learning in [17,23,29].
Table 2 contains the parameters employed in the simulation.
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Table 2. Simulation parameters.

Parameter Value
Entry 1 data
Cell radius 500 m
CUs number 20
D2D pairs number 2-38
Transmitter to receiver distance 10-100 m
Total Bandwidth 5 MHz
Noise power —174 dBm//Hz
Sub-channel bandwidth 240 KHz
D2D transmitter power 0-23 dBm
gNB transmitting power 35 dBm
SINR threshold 3 dBm
Shadowing standard deviation 8 dB
Circuit power 0.1 watt
CU transmitting power 23 dBm
Discount factor 0.9
Learning rate 0.2
Epsilon 0.2

Figure 3 shows the EE comparison of the proposed SD-scheme with the suggested
C-scheme, a channel allocation scheme based on matching theory with the goal of optimiz-
ing EE [24], a traditional channel allocation scheme based on the greedy algorithm [30],
and power allocation schemes based on Q-learning-RL in [17,23,29] versus the number of
D2D pairs. The EE rises with the incremental in the number of D2D pairs. As illustrated
in Figure 3, the introduced approach demonstrates performance superiority and outper-
forms the benchmark schemes. The substantial boost in EE of the suggested technique
demonstrates its efficacy in managing resources with the increase in D2D pairs, resulting in
allocating optimal transmission power to each pair based on its requirements. Conversely,
conventional systems provide limited enhancements, stabilizing at lower EE values as
the number of D2D pairs escalates. The papers [24,30] confirm the worst EE since these
schemes utilize conventional centralized approaches which lead to high control overhead,
delayed or inflexible decisions, and insufficient optimum power allocation. In contrast,
the proposed SARSA-based RL outperformed the Q-learning algorithm schemes [17,23,29],
especially, where the pair number equals 10 and higher. The reason is that Q-learning often
exhibits excessive exploration in some scenarios, strongly seeking optimum behaviors that
enhance throughput, perhaps resulting in increased energy consumption. This conduct
may adversely affect EE, particularly in D2D networks where sustaining low consumption
of energy is essential. Furthermore, SARSA offers a more appropriate balance between
exploration (engaging in new actions) and exploitation (utilizing the currently optimal
action). This balanced approach in EE guarantees that power consumption is low during
long exploratory stages since the SARSA strategy is continually adjusted depending on
actual performance.

Figure 4 demonstrates the effectiveness of the proposed SD-scheme on total power
saving versus the D2D pair numbers in the network. It is obvious that the power saving of
the suggested scheme and the benchmark schemes increase as the number of D2D pairs
increases. When the number of D2D pairs increases, the total power saving obtained by
the suggested technique shows a constant and substantial enhancement, especially at the
highest D2D pairs number. The introduced scheme outperforms the conventional systems
as shown in the figure. The reason is that the SARSA algorithm is on-policy learning that
responds to varying network situations instantaneously. Moreover, the introduced SARSA
algorithm optimized the power transmission for every D2D pair continually in response to
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the channel conditions and interferences established by the CUs or other D2D pairs inside
the cell.
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Figure 3. EE versus number of D2D pairs [17,23,24,29,30].
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Figure 4. Total power saving versus number of D2D pairs [17,23,24,29,30].

Figure 5 compares the sum data rate of the SD-scheme to benchmark algorithms with
various numbers of D2D pairs. The increment in the sum data rate is proportional to the
D2D pair increase. It is clear that the [24,30] approaches outperform the proposed scheme
in terms of sum data rate since these approaches employ maximum transmission power
which results in reducing EE in the system. Moreover, in comparison to the benchmark
schemes, the SD-scheme provides a higher sum data rate. The reason is that optimizing
mode selection and channel assignment mitigates the effects of co-tier interference resulting
from spectrum sharing between CUs and other D2D pairs. Consequently, the sum data
rate of the network is enhanced accordingly. Clearly, the sum data rates increase slightly
when the number of D2D pairs is between 25 and 40, due to the second reuse of the
CUs’ spectrum that increases the interference in the network. Furthermore, the suggested
strategy enhances network performance by effectively balancing the utilization of resources
and interference mitigation.
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Figure 5. Sum data rate versus the number of D2D pairs [17,23,24,29,30].

Table 3 provides an overview of performance values, particularly EE, total power
savings, and sum data rate, to elucidate the benefits of the SD-scheme over the C-scheme.
The findings clearly indicate that the SD-scheme achieves better performance based on
elevated EE, total power savings, and sum data rate, demonstrating its efficacy in resource
allocation for D2D communications within cellular networks.

Table 3. Performance values.

EE (Bit/Sec/Watt) Total Power Saving (Watt) ~ Sum Data Rate (Bit/Sec)
No. of
. SD- SD- SD-
P 3 . :
airs Scheme C-Scheme Scheme C-Scheme Scheme C-Scheme
5 1.12 0.71 0.49 0.27 1.3 x 107 2.0 x 107
10 2.06 0.95 0.91 0.49 2.6 x 107 3.4 x 107
15 3.45 1.54 1.40 0.77 3.8 x 107 49 x 107
20 452 2.12 1.74 0.93 49 x 107 6.4 x 107
25 5.14 2.93 243 1.37 5.5 x 107 7.2 x 107
30 5.21 3.15 2.93 1.74 5.9 x 107 7.8 x 107
35 5.25 3.40 422 2.72 5.8 x 107 7.8 x 107

Figure 6 shows the SE evaluation of the SD-scheme with the benchmark schemes
in relation to the D2D pair numbers. The term SE rises incrementally with the number
of D2D pairs since the sub-channel reuse indicator improves correspondingly with the
increase in D2D pairs. Consequently, the co-tier interferences among shared channels of
CUs increase. The SD-scheme demonstrates superior efficiency relative to other approaches.
This approach demonstrated better SE when the number of D2D pairs ranged from 2 to 25,
related to the minimal interference across the shared channels during the single reuse of the
CUs’ uplink channel. Moreover, the SE decreases in cases where there are 25-40 D2D pairs
due to multiple times reusing the uplink spectrum of CU resources. When the transmitted
power of the D2D pair is set to the maximum value, an increased data rate and SE are
obtained due to a strong signal which results in increasing the interference and decreasing
EE accordingly. The significant efficacy of the proposed strategy is attributed to its adaptive
resource allocation mechanism, which responds flexibly to changing network situations.
This flexibility ensures potential improvements in SE, which is especially important in
heavily loaded D2D environments where interference management is critical.
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Figure 6. SE versus the number of D2D pairs [17,23,24,29,30].

Figure 7 shows the comparison of the outage probability with various numbers of
D2D pairs. The outage probability of the SD-scheme increases in accordance with the
number of D2D pairs because of the increased network interferences. Nonetheless, the
suggested method and other channel-optimized algorithms reduce the probability of
outages by ensuring the most efficient utilization of the resources in order to meet the
minimal QoS demands for each D2D pair. By optimizing reused channels, the suggested
system efficiently allows multiple D2D pairs using one particular CU’s sub-channel. Despite
the number of D2D pairs growing, this approach maintains low outage probability and
reduced interference. Because of the unmanaged interferences of the resources that are
shared among D2D pairs and between D2D pairs and CUs from the other side in benchmark
methods, the outage probability significantly increases.
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Figure 7. Outage probability versus the number of D2D pairs [17,23,24,29,30].

The EE analysis for varying transmission power of CUs is illustrated in Figure 8. It is
clear that there are slight decreases in EE with the incremental increase in CUs transmitting
power due to high interference created by CUs and the higher transmission power of D2D
pairs required to satisfy QoS demands. The EE of the suggested SD-scheme demonstrates
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better performance in comparison to traditional schemes. The reason is that a lack of
scalability and flexibility with a higher power level can be observed in traditional systems
like [24,30], which show better establishing EE but rapidly decrease as CU power rises.
The suggested approach, on the other hand, demonstrates its better energy management
and adaptation to varied network conditions by maintaining better EE despite changes in
power levels.
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Figure 8. EE versus transmission power of CUs [17,23,24,29,30].

Figure 9 shows the sum data rate comparison of the suggested SD-scheme with
traditional schemes versus the transmission power levels of CUs. The sum data rate
demonstrates a slight decrease with the increase in CU transmission power. The first reason
is due to the increased interference of D2D pairs that share the same spectrum of CUs.
Secondly, the D2D pairs experience higher competition for limited resources in the network.
The conventional approaches fail to efficiently allocate resources which results in low SINR
and low sum data rate accordingly.
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Figure 9. Sum data rate versus transmission power of CUs [17,23,24,29,30].
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Figure 10 demonstrates the total power saving of the proposed SD-scheme over
varying transmission power levels of CUs. It is obvious that the total power saving remains
stable up to 15 dBm, after that, the total power saving increases sharply due to several
reasons. Firstly, the pairs can barely perform with the same power level without any
requirement to enhance the transmission power strategies. Furthermore, the interference
from CUs substantially affects the D2D links; consequently, the D2D pairs tend to overcome
the interference threshold. Asillustrated in Figure 10, the proposed SD-scheme outperforms
the benchmark approaches. The reason is that the proposed SARSA-based RL allocates
optimum power for each D2D pair according to the immediate demands of users and
ensures that the D2D pairs are utilizing the lowest possible power to prevent co-tier
interference and guarantee communication between the transmitter and receiver for the
D2D link.
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Figure 10. Power saving versus transmission power of CUs [17,23,24,29,30].

Figure 11 illustrates the SE different levels in relation to different available techniques
versus the CU transmission power. When the transmission power of CUs escalates, the
SE decreases to specific thresholds, except for the [24,30] methods, since these approaches
employ maximum transmission power. The reason behind this decrease is the conflict of
sub-channel reuse since the transmission power of CUs increases. Hence, the D2D pairs
experience higher interference due to shared resources between them.

Figure 12 demonstrates the probability of connections for D2D modes including
DM, RM, and LM versus the maximum distance of relays to D2D pairs. Regarding DM,
the figure indicates a consistent probability with the variety of relay distances since the
distance between relays and D2D pairs has no impact on direct D2D mode. Furthermore,
the probability of connection of RM decreases with the incremental distance, highlighting
the dependence of D2D pairs on the proximity of relays to establish efficient communication
links. When the distance of relays increases, the D2D pairs tend to communicate with each
other through LM. Consequently, LM increases with the increase in the distance between
relays to D2D pairs.
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Figure 11. SE versus transmission power of CUs [17,23,24,29,30].
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Figure 12. Probability of D2D connections versus maximum distance of relays to D2D pairs (m).

Figure 13 demonstrates the probability of connections of D2D pairs including DM,
RM, and LM in comparison to the highest distance between the D2D pair. It is obvious that
the DM reaches the highest probability of connections when the maximum distance across
the D2D pair is limited. Furthermore, the probability of connections for DM decreases with
the increase in distance since the DM mode depends on the proximity between transmitter
and receiver, which allows the D2D pair to operate efficiently. On the other hand, the
probability of connections for both RM and LM increases with the increase in the maximum
distance between the D2D pair. The reason is that when the distance is medium, the pair
tend to choose RM to maintain the QoS threshold. Moreover, when the distance is high, the
pair prefers to choose the LM for the same previous reason since the power of the gNB is
greater than that of the D2D transmitter. Consequently, the D2D pair chooses either DM,
RM, or LM depending on the maximum SINR which is impacted by the distance.



Telecom 2025, 6, 12 23 of 25

07
[ DM
[ RM
06 LM
2
o 05F
s}
@
c
3
O 04
[m)]
N
[a)]
©03r
2
3
©
Q
02
o
0.1
50 70 90 110 130 150

Mx Distance Between D2D Pair

Figure 13. Probability of D2D connections versus max distance between D2D pairs.

Figure 14 demonstrates the number of disconnected pairs versus the number of
D2D pairs in the network with the goal of comparing the performance of the proposed
SD-scheme with the C-scheme. When the number of D2D pairs increases, the proposed
schemes increase in terms of the number of disconnected D2D pairs because of the increased
interference between D2D pairs and CUs. It is obvious that the proposed SD-scheme
achieves slightly better performance than the C-scheme because of its better ability to
mitigate interference and utilize resources effectively. The performance divergence across
both schemes increases with the number of D2D pairs, indicating that the SD-scheme
exhibits more adaptability and stability under higher network loads. This enhancement is
due to the SD-scheme’s optimized resource allocation technique, which reduces connection
failures and guarantees superior connectivity for D2D users.
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Figure 14. Number of disconnected pairs versus number of D2D pairs.

8. Conclusions

This paper presents an SD-scheme for mode selection, channel assignment, and power
allocation in D2D communications underlaying cellular networks. The primary goal of
this research is to enhance D2D performance while maintaining the QoS demands of CUs.
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Furthermore, the sub-channel of each single CU can be reused across several D2D pairs,
and the detrimental effects of the interference that occurs across D2D pairs are considered
during the process of resource allocation. The joint problems of mode selection, channel
assignment, and power allocation are MINLP and NP and difficult to resolve. Therefore, we
designed a hybrid scheme: a centralized mode selection and channel assignment approach,
followed by a distributed power management approach. The initial process involves
the concept of a centralized greedy-based mode selection and two-sided preference lists
channel assignment approach, followed by the implementation of a distributed power
control approach in the subsequent phase. Moreover, an SARSA-based RL power control
method has been proposed to iteratively update the transmission power for each D2D pair
utilizing the same assigned sub-channel of individual CUs with the goal of improving the
EE of the D2D communications in the network. The simulation findings demonstrated that
the introduced scheme yields better performance with low complexity and outperforms
traditional and Q-learning schemes in terms of data rate, SE, and EE. Future research may
include examining the influence of other networking factors such as users’ mobility as well
as including modern equipment like unmanned aerial vehicles and satellites to the network.
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