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Abstract: 6G will connect heterogeneous intelligent agents to make them natively operate complex
cooperative tasks. When connecting intelligence, two main research questions arise to identify
how artificial intelligence and machine learning models behave depending on (i) their input data
quality, affected by errors induced by interference and additive noise during wireless communication;
(ii) their contextual effectiveness and resilience to interpret and exploit the meaning behind the
data. Both questions are within the realm of semantic and goal-oriented communications. With this
paper, we investigate how to effectively share communication spectrum resources between a legacy
communication system (i.e., data-oriented) and a new goal-oriented edge intelligence one. Specifically,
we address the scenario of an enhanced Mobile Broadband (eMBB) service, i.e., a user uploading
a video stream to a radio access point, interfering with an edge inference system, in which a user
uploads images to a Mobile Edge Host that runs a classification task. Our objective is to achieve,
through cooperation, the highest eMBB service data rate, subject to a targeted goal effectiveness of
the edge inference service, namely the probability of confident inference on time. We first formalize
a general definition of a goal in the context of wireless communications. This includes the goal
effectiveness, (i.e., the goal achievability rate, or the probability of achieving the goal), as well as goal
cost (i.e., the network resource consumption needed to achieve the goal with target effectiveness). We
argue and show, through numerical evaluations, that communication reliability and goal effectiveness
are not straightforwardly linked. Then, after a performance evaluation aiming to clarify the difference
between communication performance and goal effectiveness, a long-term optimization problem is
formulated and solved via Lyapunov stochastic network optimization tools to guarantee the desired
target performance. Finally, our numerical results assess the advantages of the proposed optimization
and the superiority of the goal-oriented strategy against baseline 5G-compliant legacy approaches,
under both stationary and non-stationary communication (and computation) environments.

Keywords: goal-oriented communications; 6G; connecting intelligence; edge inference; edge artificial
intelligence

1. Introduction

Today, as the fifth mobile generation (5G) is at its deployment stage (https://www.
3gpp.org/technologies/5g-system-overview accessed on 20 July 2023), the race to 6G has
started all around the world [1,2]. The latter entails theoretical research of new technologies’
fundamental limits, the definition of new cutting edge use cases [3,4], their associated
Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) and, obviously, the
new technological levers to enable the ecosystem. New technological enablers are re-
quired at all layers of the protocol stack, from application and network to the physical
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layer [5,6], and also down to the wireless propagation environment with reconfigurable
intelligent surfaces [7–9]. This cross-layer perspective will give birth to a fully reconfig-
urable system that can adapt to extremely diverse requirements, with a joint orchestration
of heterogeneous resources (wireless, computing, storage). Following the revolution pro-
vided by Multi-access Edge Computing (MEC) [10], a paradigm shift in 6G will be the
integration of communication, computing and storage, natively enabling heterogeneous intel-
ligence (e.g., humans, robots or machines) to accomplish complex cooperative tasks [11–15].
Connecting intelligence requires informative cooperative interactions. New trends in
6G explore both the semantic problem of understanding the meaning of the source data
and the effectiveness problem, whose aim is accomplishing target goals through possibly
corrupted/compressed/encoded/misunderstood received information [16].

Achieving goals with target effectiveness requirements defines a new family of KPIs in
future 6G systems. We refer to such family of KPIs as goal effectiveness. This paper explores
as main KPIs the goal effectiveness together with its associated goal cost, which refers to
the price to pay to achieve a goal. Goal effectiveness is one of the main KPIs to assess
the performance of goal-oriented (GO) communication [16,17], a true paradigm shift from
data-oriented (DO) communication [11], envisioned to proliferate in 6G. While the aim of
DO communications is for an intended data destination to reliably receive the original data
generated by a data source, the aim of GO communications is rather for the data destination
(playing the role of an acting agent) to receive adequate data of sufficient quality in the
context of correctly performing a (possibly cooperative) task. Indeed, in our view, GO
communications can refer to:

• goal-oriented data compression [11,18–28], aiming at extracting and adapting the relevant
information needed to make the receiver accomplish a goal with desired effectiveness.
This can be based on semantic information extraction [22,28,29], but it is not restricted
to the meaning of data;

• goal-oriented transmission [30–32], aiming at adapting communication reliability (e.g.,
the Packet Error Rate—PER), to achieve target goal effectiveness, i.e., the probability
of achieving the goal. This can also involve semantic-aware packet protection, under
the assumption that some packets bring more relevant information than others, from
the perspective of the goal.

Both concepts above also entail the definition of costs, which can include, among
the others, energy consumption, delay, resource utilization and communication overhead.
Obviously, a combination of both approaches is possible and would represent a unified
view towards a fully GO system design.

As a second aspect tackled in this paper, a fundamental challenge of future 6G systems
is to accommodate, on the same network infrastructure, services that are heterogeneous
from several perspectives: requirements, resource consumption, time-variability, etc. There-
fore, while it is true, in our view, that 6G will enable new classes of GO and semantic
services, it is also certain that it will keep serving classical users and/or verticals [33]
(i.e., data-oriented services), which, in the sequel, we refer to as legacy communication or,
data-oriented systems and services (in this paper, we will refer to them as DO systems for
brevity). For this reason, at some point in the near future (e.g., in the next 10 years), a
natural question will arise on the coexistence of GO and DO systems, to understand how
one system affects the other, when they share the same network infrastructure and wireless
resources. A possible question in this context is:

How does the interference of a DO system affect GO performance, and at which cost?
A similar question is considered in [34], where the authors analyze the performance of

a system in which a semantic and a DO service coexist.
In this paper, we aim to answer the question of coexistence of GO and DO systems,

based on a formal definition of a goal, entailing effectiveness and costs that jointly take into
account GO and DO system requirements. After a general yet formal definition of goal and
GO optimization problems, we will consider the case of MEC-enabled edge inference as
a use case for the GO system. In the proposed setting, a GO system aims to classify data
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collected by an end device and transmitted to a nearby Mobile Edge Host (MEH), while
a DO system aims to upload data with the highest possible data rate. The fundamental
question to answer is then the following:

What is the highest DO system data rate that can be achieved while, at the same time, guar-
anteeing a target goal effectiveness of the GO system, assuming full spectrum sharing (i.e., in the
presence of co-channel interference)?

We believe that this and other related questions will arise in the future for several use
cases. Among the others, due to the bonding between communication and computing,
we can mention the edge intelligence paradigm for robot remote control in factory plans,
environment (e.g., factory floor) digital twins for manufacturing, identification of faulty
parts in a production line, vehicular communications for cooperative perception and the
coexistence of ground and aerial communications [4]. For the latter, the coexistence pertains
not only to GO and DO services but also to terrestrial and non-terrestrial communications,
which makes system optimization even more challenging. Of course, for such new services
and use cases, different metrics beyond the data rate can be taken into account and traded
off with the goal effectiveness of coexisting GO services.

1.1. Related Work

Although the semantic and GO communication paradigm is in its infancy within the
communication community, several works already started investigating the fundamental
limits and the algorithmic foundations. In [35], the authors propose an end-to-end semantic
communication model, entailing sampling, filtering, preprocessing, reception and control.
In [18], a GO data quantization scheme is proposed to reduce the communication overhead
of a decision-making service. Similarly, a GO data quantization and data clustering ap-
proach is proposed in [20]. In [19], the authors propose an online algorithm able to adapt to
channel conditions through the selection of a GO compression scheme in an edge inference
scenario. Similarly, reference [21] proposes a GO data compression method based on the
information bottleneck principle. The authors of [22] show the gain of a semantic-aware
transmission on the reconstruction error of a real-time tracking system, while [23] focuses
on the cooperation between agents with a common goal through a task-oriented mutual
information exchange. In [24], it is shown how cooperation of different Machine Learning
(ML) models can help improve the energy efficiency of an edge inference system with
quantized data transmission, and a similar GO resource allocation based on an adaptive
selection of JPEG compression is proposed in [25]. In [27], a goal-aware DNN splitting
and feature extraction is proposed in an edge inference scenario, while in [28], a unified
GO semantic communication framework is proposed in the context of a visual question
answering use case. From a GO transmission perspective, the authors of [30] propose a
joint transmission and recognition scheme, showing the effect of communication reliabil-
ity on the accuracy, however not considering delay and energy consumption, as well as
cooperative inference. Moreover, in our precursor conference paper [31], we investigate
the performance of communication KPIs (i.e., the bit error rate) on a real-time edge in-
ference task, taking into account classification accuracy, energy and delay. Furthermore,
reference [34] introduces, for the first time, the concept of coexistence between semantic
and DO services, with a performance evaluation aimed to achieve sum-rate maximization
of DO users, with a minimum required SNR constraint for semantic users, with mutual
interference. However, the authors of [34] do not consider goal-effectiveness constraints in
the presence of interfering DO users and do not propose a GO optimization, which is the
purpose of this paper for an edge inference use case.

Finally, references [32,36], which are the most closely related works, exploit semantic
communication for Non-Orthogonal Multiple Access (NOMA) by considering a system
with a primary and a secondary user served by the same Access Point (AP) through
NOMA. The authors show the gain of defining a semantic ergodic rate in the overall system
performance, with the aim of maximizing the primary (i.e., bit-level communication) user
data rate, under a semantic ergodic rate constraint of the secondary user, controlling
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transmit power and transmission time scheduling. Starting from the research question
of [32,36], we investigate a novel scenario, in which a GO and a DO communication system
coexist, thus focusing on GO, rather than semantic, communication.

1.2. Our Contribution

Similarly to [32,36], in this paper, we aim at analyzing the impact of mutual inter-
ference on future service classes. Differently from [32,36], whose focus is on semantic
communication and ergodic (semantic) rate, and where a single base station serves users
with bit and semantic streams, we rather focus on GO communication and resource alloca-
tion in connect-compute networks, in which a GO and a DO communication system coexist.
Therefore, the main contributions of our work are the following:

• We consider the communication effectiveness in accomplishing a predefined goal/task
as our system constraint. Therefore, the focus of our work is on GO communications
(i.e., effectiveness of communication toward achieving a goal—and in particular
through resource allocation) rather than semantic communications (i.e., understanding
the meaning of data).

• We introduce the edge inference service as the main use case under investigation,
defining it as a GO communication service and problem.

• We consider the communication reliability (i.e., Packet Error Rate—PER) as a variable
to be controlled to achieve target goal effectiveness at the GO system while maximizing
performance of the DO system in terms of data rate.

• We propose a computation resource-aware method for guaranteeing goal effectiveness,
taking into account the computing resource availability for edge inference.

In other words, our work is about goal-aware system coexistence, while [32,36] are
about a multiple access scheme where different traffic types (semantic, bit-oriented) are
multiplexed by a single AP that can process both sorts of data.

Then, as a first step of this work, we formally define a GO resource optimization
problem in the context of wireless communication systems. This will help us to introduce,
in the sequel, the fundamental problem of coexistence of GO and DO systems in 6G, with
full spectrum sharing. As a specific use case, we consider an edge inference service for the
GO system, in which an end device uploads data to a MEH, which runs a classification
task through a pre-trained and pre-uploaded ML model (here, a Convolutional Neural
Network—CNN). In such a system, we will define goal effectiveness and goal cost, with
the former relating to the probability of receiving confident classification results within a
predefined deadline and the latter relating to the data rate loss of the DO user, compared to
the case in which the GO user is absent. This bonds interference, communication reliability,
computing resources, goal effectiveness and goal cost into a unified framework. To the best
of our knowledge, this has never been studied before in the literature for GO communication
and edge inference scenarios jointly factoring in wireless and compute resources.

After a performance evaluation of the proposed scenario, aiming to gain insights about
the system behavior as a function of different free system parameters, we will propose a
simple yet relevant optimization problem, along with an adaptive algorithm able to opti-
mize radio resources to minimize the goal cost, under goal-effectiveness constraints, with a
connect-compute resources-aware approach. In summary, the main novelty of the paper
consists of conducting a GO performance analysis of an edge inference system sharing re-
sources with a DO system, along with an adaptive algorithm to attain desired performance,
being aware of application constraints, its online performance, as well as connect-compute
resource availability. After proposing an algorithm with theoretical guarantees, we test it
on scenarios with different parameters and requirements, against baseline strategies (e.g.,
orthogonal bandwidth splitting), but also on non-stationary environments in which GO
requirements (e.g., goal effectiveness) or computation resource availability statistics can
unexpectedly change over time.
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1.3. Organization of the Paper

The remainder of this paper is organized as follows: Section 2 provides a general
definition of a goal in the context of wireless communications, entailing effectiveness,
constraints, costs and goal achievability; Section 3 focuses on applying the definition to
the proposed scenario, in which GO and DO systems coexist, fitting the general defini-
tions to the specific use case of edge inference (GO user) and data upload (e.g., video
streaming—DO system). In addition, a numerical evaluation without optimization is
provided to explore performance and gain insights about the relevant parameters that
will be considered as optimization variables in Section 4, in which a long-term problem
formulation, along with a solution based on Lyapunov stochastic network optimization,
is proposed. Numerical results assessing the performance of the proposed algorithm are
presented in Section 5, while Section 6 draws the conclusions of the paper and proposes
some future research directions.

1.4. Notation and Acronyms

Throughout the paper, bold lower case and upper case letters denote vectors and
matrices, respectively; the operator | · | is the absolute value of a complex number, and
the superscript H denotes the Hermitian operator; card(·) denotes the cardinality of a set,
and 1A denotes the indicator function, which equals 1 if condition A is satisfied and 0
otherwise. Finally, calligraphic upper case letters always denote the long-term average
of a corresponding variable throughout the text; for instance, for variable x (or X), the
long-term average is denoted as X , and it reads as follows:

X = lim
T→∞

1
T

T−1

∑
t=0

E{xt}, (1)

where t indicates a temporal index. The acronyms used throughout the paper are defined
the first time they appear but can be also found in Table 1, in alphabetic order.

Table 1. List of acronyms.

AI Artificial Intelligence GPU Graphical Processing Unit

AP Access Point KPI Key Performance Indicator

CLD Conditional Lyapunov Drift KVI Key Value Indicator

CNN Convolutional Neural Network MEC Mutli-access Edge Computing

CPU Central Processing Unit MEH Mobile Edge Host

DNN Deep Neural Network MCS Modulation and Coding Scheme

DO Data-Oriented ML Machine Learning

DPP Drift Plus Penalty NREI Negative Relative average Entropy Increase

DRL Deep Reinforcement Learning NOMA Non-Orthogonal Multiple Access

E2E End-to-End PER Packet Error Rate

eMBB enhanced Mobile Broad Band SINR Signal-to-Interference-plus-Noise Ratio

GO Goal-Oriented UE User Equipment

2. Definition of a Goal

The GO communication paradigm constitutes a communication approach for which
performance is not measured by classical metrics, such as data rate or wireless link reliability,
but rather by the success level with which a network entity is able to perform a sequence of
application-related tasks, as a result of exchanging data with one or more other network
entities. In the sequel, we will also refer to these entities as agents. In this context, an agent
is any entity endowed with communication capabilities, which could also have computing
capabilities and be possibly embarked with Artificial Intelligence (AI) and/or ML models.
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In the latter case, we can refer to it as an AI agent. However, this distinction is not essential
in this paper.

A fundamental step is to formally define a goal to be able to properly formulate GO
communication problems. Indeed, a wrong, inexact, unclear or ambiguous definition of a goal
may lead to dramatically wrong or biased decisions and communication/computation policies.

In [37], E. Hollnagel defines a goal out of the context of wireless communications.
From its definitions, and with the aim of embedding the GO perspective into wireless
communication systems, in the most general case, a goal is characterized by a set of re-
quirements that, if guaranteed, determine its accomplishment. When embedded in wireless
scenarios with inter-agent communications, the accomplishment of these requirements is
directly linked to communication (and computation)-related performance and strategies.
As an example, suppose that the goal of the communication is to exchange sampled data
for anomaly detection. Then, data corrupted by a noisy (and possible interference-prone)
channel could lead to wrong decisions, depending on the wireless link reliability (e.g.,
the PER). At the same time, data encoding schemes (e.g., compression) affect the goal
achievement due to distortion. Both data encoding and wireless link reliability play a key
role in GO communications. A priori, it is not generally easy to predict the exact correlation
between goal accomplishment and wireless communication performance, data encoding,
etc. This depends on several aspects, including the goal definition, the connect-compute
network conditions and the a priori knowledge of communicating agents. Learning and
timely adapting communication parameters towards goal accomplishment is the main
target of the GO communication paradigm. As also remarked in [37], a goal is achieved
through a series of tasks, with a task being a collection of actions. Generally, an action
entails a decision on a set of parameters, which could involve communication, computation
and possibly control. Let us formally define the three measures that characterize a goal and
are necessary to formulate GO communication problems.

2.1. The Goal Value, Achievability and Effectiveness

As anticipated, the first fundamental step is for an agent to be able to verify whether a
goal has been achieved by carefully selecting metrics assessed by the agent for that purpose.
In this context, we define a quantified representation of the target system state indicating
goal accomplishment, which we name as goal value. The goal value can be, for instance, a
binary variable that equals 1 if the goal is achieved and 0 otherwise. Of course, it is not
restricted to this case, and it may be represented as a generic real vector (e.g., the position in
space of a robot with respect to a target one). In a dynamic system, a goal value is possibly
time-varying, i.e., at each time instant t, a new/updated goal value can be made available
to an agent as a result of environment states, agents’ actions and environment feedback.
Therefore, in the most general case, the goal value can be denoted as a real variable Θt ∈ Rl ,
with t denoting the time instant.

Goal Achievability and Goal Effectiveness

Going beyond the goal value, and, with focus on either repetitive or long-standing
application-related goals, agents eventually have to measure the goal accomplishment
rate, i.e., the probability of achieving the goal value. Indeed, a goal accomplishment must
not necessarily be deterministic. For instance, a goal value can be obtained with a certain
probability, which we can refer to as goal effectiveness. The goal effectiveness is inherently
non-negative and is a long-term measure. Indeed, even in the case that a goal is a sequence
of sub-goals, the sub-goal accomplishment is stochastic, and what we are interested in
is the success rate of the goal. We can give the following example: (i) edge pattern (e.g.,
image) classification: in this use case, we can choose the goal value to be equal to 1 if a
pattern is correctly classified and 0 otherwise. In this case, without additional constraints,
the goal effectiveness is the probability that the goal value equals 1 and corresponds to the
correct classification rate.
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Nonetheless, besides the goal value itself, the goal effectiveness may be subject to J
instantaneous constraints that, if not met, prevent the goal from being perceived by the
agent as accomplished, per a user service-level agreement. Sticking to the edge classification
use case, the goal value is defined as before, while a possible constraint is represented
by the End-to-End (E2E) delay being kept under a predefined threshold. Without loss of
generality, we can write these constraints (which we refer to as short-term goal constraints)
as gj,t ≤ 0, j = 1, . . . , J. Building on the goal value and the short-term goal constraints, we
can formally define the goal effectiveness as follows:

Eg = lim
T→∞

1
T

T−1

∑
t=0

E
{

1{Θt≥Θth} ·
J

∏
j=1

1{gj,t≤0}

}
, (2)

where Θth is a predefined goal value threshold, and the expectation is generally taken with
respect to the random context parameters and the strategy (policy) followed by the agents
to achieve the goal. From (2), we can already state that, as per our definition, the goal
effectiveness is a probability, thus Eg ∈ [0, 1].

Going further, besides the goal value, achieving a goal may also entail other M long-
term constraints. As an example, a typical long-term constraint is to keep the average
energy consumption of an agent below a predefined threshold, e.g., to not quickly drain its
battery level. In the most general case, we can write these long-term constraints as follows:

Gs := lim
T→∞

1
T

T−1

∑
t=0

E{Gs,t} ≤ Gs,th, ∀s = 1, . . . , S. (3)

Building on (2) and (3), we can write the following definition for goal achievability:
(i) a goal is achievable if there exists at least one policy that guarantees (2) to be above
a predefined threshold Eg,th; (ii) a goal is strongly achievable if there exists at least one
policy that guarantees (2) to be above a predefined threshold Eg,th, while guaranteeing all
other long-term constraints (3). In typical communication system management, long-term
constraints entail communication KPIs, e.g., PER below a threshold. This translates into,
e.g., adaptive Modulation and Coding Scheme (MCS) selection, able to guarantee the target
PER. Instead, with the GO paradigm, communication KPIs are not necessarily required to be
satisfied a priori, while measures belonging to the physical/human world, or, in general, to
the application, are used to assess the performance of the communication system. In this
case, classical communication KPIs can be learnt from experience, and dynamically adapted,
to achieve the target goal effectiveness in (2) in the most efficient way, possibly subject to
constraints (3).

2.2. The Goal Cost

Every goal should be accompanied by a cost spent to achieve it, i.e., a price to pay in
terms of, e.g., radio and computation resources. We refer to this price as goal cost. Indeed,
there are possibly several strategies achieving the goal with target goal effectiveness, i.e.,
a goal is possibly achievable via multiple strategies. However, different strategies have
also different costs. The aim of GO communications is to find the strategy that achieves the
target goal effectiveness with the lowest goal cost. We can differentiate between short-term
(or even instantaneous) and long-term costs. In the case of the definition of a long-term
cost, we can define an average or a cumulative cost, with the latter being the sum of all
instantaneous costs spent to achieve the goal. Normally, the latter refers to a strategy to
achieve a goal, where goal success is indicated by reaching a specific terminal state for the
(physical) system, e.g., for a robot going from point A to point B, i.e., an episodic task, as
defined in (Deep) Reinforcement Learning (DRL). On the other hand, the average cost can
also be used for those goals that last virtually infinite time, e.g., continuous collection and
classification of patterns. Denoting by Ct the instantaneous cost, we can define a long-term
cost as follows (cf. (1)):
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C = lim
T→∞

1
T

T−1

∑
t=0

E{Ct}. (4)

In what follows, we aim to shed lights on how communication service requirements may
impact goal effectiveness and propose formulating the overall GO communication problem
involving selection of policies across communication, computation and control domains.

2.3. Identifying Goal-Achieving Communication KPIs

In edge AI/ML scenarios and use cases, multiple agents (at least two), equipped
with more or less powerful computing units and complex (ML) models, communicate
to achieve a (possibly common) goal. The issue is then how to allocate connect-compute
resources in order to guarantee a target goal effectiveness subject to short and long-term
constraints, paying the lowest possible goal cost. First, when exchanging data, availability
of communication resources affects the level of distortion on the received data with respect
to the original information. In classical communication systems, communication KPIs
are defined a priori, depending on the different service requirements. This paradigm has
started a long race towards adding “9s” to the communication reliability [38] in terms of,
e.g., packet success rate. Here, based on the definitions provided in the previous section,
we argue that this is not the most efficient way of designing the system and orchestrating
operations and resources. Indeed, we do not formulate a problem in which communication
KPIs are explicitly taken into account, but they are rather controlled by learning and
adaptation to communication policies that achieve target levels of goal effectiveness. In this
context, let us denote by πcomm a communication policy entailing, in the most general case:
(i) source encoding (e.g., data compression schemes) [25,26]; (ii) modulation and channel
coding [39]; (iii) wireless channel scheduling, including node participation selection [40]
and association [41] ; (iv) multiple antenna transmission scheme, devising power allocation
and precoding [42]. Moreover, let us denote by πcomp a computation policy entailing, in
the most general case: (i) local computing resource scheduling at each device/agent; (ii)
computation resource scheduling at shared computing units (e.g., in MEHs) [43–45]; (iii)
selection of a single one or multiple collaborative AI agents containing relevant ML models
for ensemble-based inferencing [24,46] or federated learning [40]. Finally, we denote by
πcontr a control policy entailing AI agents’ mobility and trajectories.

A general GO communication problem can be then formulated as follows:

min
{πcomm,πcomp,πcontr}

C := lim
T→∞

1
T

T−1

∑
t=0

E{Ct} (5)

subject to

(a) πcomm ∈ Pcomm

(b) πcomp ∈ Pcomp

(c) πcontr ∈ Pcontr

(d) Eg ≥ Eg,th

(e) Gs ≤ Gg,th, s = 1, . . . , S,

where Pcomm, Pcomp, Pcontr denote the feasible sets of communication, computation and
control actions, respectively. The constraints in (5) have the following meaning: (a) the
communication policy belongs to the feasible set Pcomm (e.g., the transmit power is non-
negative and lower than a threshold); (b) the computation policy belongs to the feasible
set Pcomp (e.g., the sum of all CPU resources of an MEH assigned to a set of users does
not exceed the maximum CPU computing power); (c) the control policy belongs to the
feasible set Pcontr (e.g., a robot can move towards a predefined set of possible directions);
(d) the goal effectiveness is above a predefined threshold (e.g., the inference accuracy of an
edge inference system is above a threshold); (e) other long-term constraints are satisfied
(e.g., the average energy of an agent does not exceed a predefined threshold). The problem
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formulation in (5) is quite general, and it can be easily customized to specific use cases. In
the next section, we present a specific scenario in which a GO and a DO communication
system coexist. The aim is to hinge on the GO paradigm and formulation to maximize the
DO system data rate under goal-effectiveness constraints of the GO system.

3. Coexistence of a Goal-Oriented and a Data-Oriented Communication System

In this section, we apply the GO approach to a scenario in which two different systems
coexist: (i) a GO communication system, consisting of a User Equipment (UE) offloading
inference tasks to an MEH collocated to an AP, sharing radio spectrum with (ii) a classical
DO communication system, consisting of another UE connected to another AP, where
the device continuously uploads content, such as a video stream, to be cached in the
network. As an example, the focused scenario can refer to an industrial setting for low-
power networking, where a device uploading product images for anomaly detection (GO
transmitter/ receiver pair) coexists with a security camera providing continuous video
feed of the factory floor (legacy DO eMBB service). We believe that such a scenario will be
of extreme interest in the future, as in beyond 5G and 6G systems, and the same system
architecture will need to support both such services. As spectrum resources under 6 GHz
will continue to be pivotal in providing wide radio coverage [3], (non-orthogonal) spectrum
sharing is envisioned to be a standing feature, especially for low-power networking, e.g.,
in an industrial environment.

The GO approach may find direct application to system scenarios involving coexis-
tence of services of different types. For such services, the most relevant and important
communication KPIs (e.g., data rate, latency, reliability) may even be the same, however,
the tasks performed may substantially differ in scope, hence design trade-offs need to be
addressed to concurrently guarantee all application-related goal values by keeping goal
costs as low as possible for all tasks. To further elaborate on the problem of conflicting goals,
in this paper, we choose to investigate the coexistence of the two systems, inspired by the
Cognitive Radio (CR) networking paradigm [47,48], whose scope is to opportunistically use
a portion of the spectrum that is licensed to another usage [49]. Recently, the CR paradigm
has been investigated in several contexts, including that of relay networks [49,50].

The fundamental difference lies in that, for the CR problem, where a primary and a
secondary system operate together in space and time, focus is, in general, on allocating the
available secondary radio resources to maximize secondary system performance, subject to
the non-violation of radio performance constraints imposed by the primary system operator.
Nonetheless, for the focused GO/DO system coexistence, the ultimate design target is
service-effective communication, even with “softened” radio communication requirements for
the GO system that can be learned during goal accomplishment.

3.1. System Setup

The system of interest is illustrated in Figure 1. A GO transmitter-receiver pair (which
we, in short, term after as GO system), consisting of a single-antenna UE, denoted as UEg
and referred to as GO user, and an AP, denoted as APg and referred to as GO AP, equipped
with Mg antennas, fully shares the available radio frequency spectrum of bandwidth W (Hz)
with a DO transmitter-receiver pair (which we, in short, term after as DO system) of the
same characteristics, i.e., a single-antenna UE, denoted as UEd and referred to as DO user
and an AP, denoted as APd and referred to as DO AP, equipped with Md antenna elements.
It is assumed that APg and APd are interconnected via a backhaul link characterized by
high capacity and low delay. In addition to radio infrastructure, it is assumed that an MEH
is collocated with APg, where the interconnection delay can be considered as negligible.
Generalizing this would be straightforward and is left for future investigations.
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Figure 1. Reference scenario: a GO edge inference system coexists with a legacy DO system; the two
systems generate mutual interference, which affects inference performance (goal effectiveness) and
DO user data rate (goal cost).

Uplink data communication takes place for both systems during operation time.
For the GO system, uplink data communication is carried out to offload a batch of data
patterns (e.g., images, either received or generated at UEg) to the MEH to obtain clas-
sification information as output by means of a downlink transmission (whose delay is
considered negligible in this work). In contrast to the GO system, the aim of DO system
communication is for UEd to provide an incoming data stream, e.g., a video feed, to APd.
Storage and distribution of this content are not investigated in this paper and are left for
future investigations.

At the physical layer, we consider an uplink Single-Input Multiple-Output (SIMO)
system. We denote by hij,t ∈ CM×1 the uplink channel vector between UEj (with j = g, d)
and APi (with i = g, d) at time slot t, which can be written as

hij,t =

√
β−1

ij,t√
(K + 1)

(√
Khij,t,LOS + hij,t,NLOS

)
, (6)

where the t-th component of the Line-Of-Sight (LOS) component vector reads as hij,LOS(t) =

e−
j2πdmij,t

λ , with λ the wavelength, dmij,t the distance from UEj single antenna to the m-th
antenna of APi, while the Non-LOS (NLOS) component follows a circularly symmetric
Gaussian distribution, i.e., hij,t,NLOS ∼ CN (0, 1). Path loss between UEj and APi is repre-
sented by βij,t, while K is the Rician factor, strongly dependent on the scenario (e.g., indoor,
outdoor, etc.).

In this reference setting, both system communication and computing resources are
involved. From a computation point of view, we assume an MEH hosting a relevant
ML model (e.g., a Deep Neural Network—DNN, that is assumed to be already trained),
which dynamically assigns resources to the GO system, based on its current availability.
Therefore, on a per-slot basis, the MEH communicates with APg to select an inferencing
pattern offloading policy, based on current connect-compute conditions, and based on the
goal cost and goal effectiveness definition.

3.2. Edge Inference: Goal Value and Effectiveness

In what follows in this section, we will define goal value, effectiveness and cost for
the focused system. To do so, let us first consider the communication, computation and
inference performance of the GO system. Indeed, as already mentioned, and as it will be
clarified for this particular scenario, we are interested in assessing system performance in
terms of inference delay, entailing communication and computing phases, and inference
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confidence, which translates into inference accuracy. These two measures, when jointly
considered, define the goal effectiveness for edge inference, as it will be formalized later on
in this section.

3.2.1. Uplink Radio Performance of GO User

Let us recall that the GO user offloads inference tasks to the MEH. From a wireless
perspective, performance is affected by multiple factors: (i) the uplink data rate; (ii) the
interference received from the DO user; (iii) the target packet error rate. Let us denote by
wg ∈ CMg×1 the combining vector at APg, denoting by Pg the transmit power of UEg, and
by Pd the transmit power of UEd. Assuming time as organized in slots t = 1, 2, 3, . . ., the
Signal-to-Interference-plus-Noise Ratio (SINR) at the GO receiver (APg), at time t, reads as

SINRg,t =
|wH

g,thgg,t|2Pg,t

N0W + |wH
g,thgd,t|2Pd,t

, (7)

where index t denotes the time dependence of the involved random and controlled vari-
ables; whereas N0 denotes the power spectral density, and W the uplink bandwidth,
assumed to be fully shared between the two systems. Now, considering finite blocklength
transmissions [51–53], and denoting by γt the target PER at time t, we can write the
achievable rate of UEg (in bits/s) at time t as follows [51]:

Rg,t =W

[
log2

(
1 + SINRg,t

)
− 1

log(2)

√
Vt

ng
Q−1(γt)

]
, (8)

where ng is the blocklength, Q−1(·) is the inverse of the Gaussian Q function, while Vt is
the channel dispersion, given by [52,53]

Vt = 1 − 1(
1 + SINRg,t

)2 , (9)

which is well approximated as V ≈ 1 with SINR above 5 dB [52]. Nevertheless, in this
work, we keep it general, as our system may be required to work at low SINR regimes,
provided that a target goal effectiveness is guaranteed. Finally, assuming (without loss of
generality) that a batch of Nt new patterns is requested to be inferred at time slot t, the
uplink transmission delay for GO communication reads as follows:

Dtx,t =
Ntnb
Rg,t

, (10)

where nb denotes the number of bits encoding one pattern. In this work, we do not focus on
the specific encoding scheme, which we assume to be fixed. Semantic and GO compression
can also play a role in optimizing nb, which goes beyond the scope of this paper and is
left for future investigations. Preliminary works on online compression level selection are
available in [11,24–27,30].

3.2.2. Computation Delay of GO User

Uplink transmission is just the first of the (at least two) phases of wireless edge
inference, whose second step is remote processing through an ML model (e.g., a DNN),
running in an MEH. The processing phase constitutes another source of delay, which is,
typically, non-negligible, especially for demanding inferencing tasks served by MEHs
of limited computing capabilities, as compared to the ones at the distant cloud. The
computation delay is not, in general, a deterministic quantity, as it depends on CPU loading,
execution of background processes, access to memory, etc. Obviously, it strongly depends
on the employed ML model [54]. In this paper, we assume that the MEH, irrespective of
wireless and computing resource availability, always employs the same model (assumed
already trained), and we leave GO model selection criteria for future investigations. As
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such, we denote by Dcomp,t a random variable (whose statistics are possibly unknown)
representing the computation time at the MEH. At each time slot, the computing time is
possibly different, and its estimation is assumed to be available at the MEH, making it able
to optimize connect-compute resources.

Finally, the total inference time, neglecting downlink transmission of small size results
(typically a few bits for binary or multi-class classification), is given by

Dtot,t = Dtx,t + Dcomp,t. (11)

Part of the goal is to retrieve inference results earlier than a predefined deadline Dmax,
as clarified in the remainder of this section. However, retrieving incorrect inference results
within the deadline can be extremely harmful for a special purpose functionality. For this
reason, we need to define a measure of inference confidence to be incorporated into the
overall definition of goal effectiveness.

3.2.3. On the Use of Entropy to Define the Goal Value

We now introduce the metric reflecting inference accuracy, which will be then used to
define the goal value. As we are dealing with a classification task, the actual performance
metric could be the one of correct pattern classification rate. However, to evaluate this
metric, the ground truth, i.e., the true label, would need to be always available, which is
not the case, in general. In a practical setting, a metric suitable for evaluating classification
tasks as they emerge needs to be characterized by the following features: (i) it must be
measurable online without any ground truth; (ii) it should reflect, in the best possible way,
the value of the goal, i.e., the classification accuracy. A possible metric fulfilling these
requirements is the entropy computed on a posteriori probabilities, which are the typical
output of any discriminative or generative classifier, such as a DNN [25,55,56]. In particular,
the output of a discriminative classifier can be written as a vector p = [p1, . . . , pL]

H of
probabilities, with each probability being associated with one out of the L possible labels of
the data set under investigation. Obviously ∑L

l=1 pl = 1 holds true. Given p, the entropy
associated to a classified pattern b is

Hb = −pH log(p). (12)

The entropy is a scalar measure, which can be interpreted as the classification confi-
dence of an ML model in classifying a pattern. The lower the entropy, the more confident the
classifier is. Namely, for a data set with L labels, the worst case for a single pattern classifica-
tion is pl =

1
L , ∀l = 1 . . . , L (i.e., throwing an L facets dice), which translates into the maxi-

mum entropy Hmax = log(L); also, noting that limp→0+ p log(p) = 0, and that p log(p) = 0
if p = 1, the minimum value attained by the entropy in case of a completely sure classifier
is 0. Therefore, the entropy is always a bounded metric 0 ≤ H ≤ Hmax = log(L). Since we
are considering inference on batches of data (cf. (10)), we can define the average entropy Ht
on the batch classified during slot t as

Ht =
1

Nt
∑b∈Bt

Hb,t, (13)

where Bt denotes the set of patterns in the batch and Nt = card(Bt) (cf. (10)). For simplicity,
and for the sake of coherence with the goal-value definition in Section 2, we will use, as goal
value, the negative relative average entropy increase (referred to as NREI in the sequel),
with respect to the its minimum value, attained on a validation subset of the original data
set, i.e., without any communication impairment, i.e., interference from DO user (It can
be, for instance, assumed that model training is performed using a radio bandwidth (of
same size as in inference phase) exclusively used by the GO system.) This choice is dictated
by the fact that, even for the original data set, the average entropy is not actually 0, but it
attains a minimum value that depends on the training phase. Therefore, denoting by Hmin
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the minimum average entropy over the considered data set, we write the NREI (i.e., the
goal value) as follows:

Θt = −Ht − Hmin

Hmin
. (14)

Then, the higher the absolute value of the NREI, the lower the goal value is, and
vice versa. A natural question arises on the dependence of this goal value on wireless
performance, e.g., on the PER. In this paper, since we consider the PER as a source of
classification entropy increase/decrease, we make the following principled and mild
assumptions on entropy and accuracy, which we validate by experimental results.

Assumption 1. The classification entropy is a monotonic non-decreasing function of the PER.

This assumption, despite not being supported by a mathematical proof, is based on
the rationale that a more severely degraded version of the inferencing input data (i.e.,
distorted input patterns received by APg) generates higher “confusion” in the classifier,
thus increasing the classification entropy.

Assumption 2. The classification accuracy is a monotonic non-increasing function of the
average entropy.

Assumption 2 is also not supported by a mathematical proof and can fail in some
specific cases (e.g., a very different data distribution in a test set). However, it is mild
and valid in many operating conditions. In addition, the cross-entropy is the typical loss
for DNN training. In Figure 2, we validate the two assumptions on the CIFAR-10 data
set [57], whose detailed description, along with the one of the trained CNN architecture, is
provided in Section 3.4.2 to enlighten the reader. In particular, Figure 2a shows the average
entropy over the test set, as a function of the PER, while Figure 2b shows the test accuracy
as a function of the average entropy. Finally, for the sake of complete definition of goal
effectiveness, we remind that the end-to-end inferencing delay is given by (11).

Now, we can formalize the goal and its effectiveness for the investigated system,
i.e., the edge inference service, coexisting with a legacy communication service. The goal
is to obtain inference results within a maximum delay Dmax from the time instant the
classification request is issued, with goal value (cf. (14)) higher than a predefined threshold
Θth (in this paper, with reference to a batch of patterns, we assume that the time instant of
batch-based classification task generation coincides with the start of batch transmission
in the uplink; this assumption can be easily generalized and will be investigated in future
works). Formally, the goal is achieved if the event {Dtot,t ≤ Dmax} ∩ {Θt ≥ Θth} occurs,
or, equivalently, a goal outage is represented by one of the following events: (i) {Dtot,t >
Dmax} ∪ {Θt ≥ Θth}, (ii) {Dtot,t ≤ Dmax} ∪ {Θt < Θth} or (iii) {Dtot,t > Dmax} ∪ {Θt <
Θth}. Then, we can define the goal effectiveness as the probability of achieving the goal:

Eg = lim
T→∞

1
T

T−1

∑
t=0

E
{

1{Θt≥Θth} · 1{Dtot,t≤Dmax}

}
. (15)

Now, let us note that the data rate in (8) is a monotonic increasing function of the target
PER γt, i.e., a higher PER tolerance allows UEg to transmit data at higher speed, which also
means lower E2E delay (cf. (10) and (11)). This straightforward yet fundamental behavior
and the goal-effectiveness definition in (15) come with non-trivial consequences, among
which we identify the following: the edge inference system can be either limited by the
inference entropy or by the E2E delay, depending on the selected target PER and received
interference by the DO system (i.e., wireless performance), as well as on edge processing
delay (i.e., computation performance). Indeed, due to Assumption 1, lower PER leads to
better inference performance (from a classification confidence point of view), while it could
be highly detrimental from an E2E delay, and, therefore, classification timeliness perspective



Telecom 2024, 5 78

(cf. (8)). As a consequence, it is not necessarily more convenient to transmit classification
input data with ultra high communication reliability (e.g., target PER below 10−7), but
rather with the minimum level of communication reliability that jointly guarantees the
target level of classification confidence and its timeliness. We argue that, based on the definition
in (15), a lower goal effectiveness could be achieved as a result of ultra-reliable yet slower
wireless communication, which is the purpose of the next section.
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Figure 2. Validation of Assumptions 1 and 2.

The aim of the goal-oriented optimization approach is to find the right balance between
the two measures, to attain the desired goal effectiveness, entailing both inference timeliness
and inference confidence (goal value). So far, we have not formalize the goal cost of the
scenario under our investigation.

3.3. The DO User Data Rate Loss as Goal Cost

Let us recall that our aim is to assess performance in a scenario in which a GO system
coexists with a DO system. In the considered scenario, the DO user, UEd, uploads data
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(e.g., a video stream) with the aim of maximizing its data rate. However, the system is
cooperative, and the DO user aims to maximize its data rate without preventing the GO
user from attaining the desired goal effectiveness. Denoting by wd ∈ CMd×1 the combining
vector of APd, the received SINR at APd at time t reads as follows:

SINRd,t =
|wH

d,thdd,t|2Pd,t

N0W + |wH
d,thdg,t|2Pg,t

, (16)

and the data rate can be approximated by the Shannon formula, as we do not need to
assess the PER performance for the DO system (however, generalizing this would be
straightforward):

Rd,t = W log2(1 + SINRd,t). (17)

Denoting by Rd,max the maximum achievable average data rate by the DO system in
the absence of the GO one and with transmission power Pd = Pd,max, where Pd,max stands
for the maximum transmission power of UEd, the goal cost can be defined as the average
relative UEd data rate loss, i.e., it can be written as follows (cf. (1)):

C =
Rd,max −Rd

Rd,max
. (18)

The lower the DO user data rate is, the higher the goal cost is. In other words, the
price to make the GO user achieve its goal with target goal effectiveness is paid by the DO
user through its achievable uplink data rate. In the sequel, we assume that the DO user
always has backlogged traffic, i.e., it continuously transmits and interferes with the GO
system. This can be easily generalized.

Now, we have all elements describing goal effectiveness and goal cost in the investi-
gated scenario. In the next section, to gain insights on relevant parameters to be controlled
and optimized in the proposed system, we will first present a performance assessment,
obtained through Monte Carlo simulations. Then, based on the acquired messages, a goal-
oriented problem formulation, along with its solution, will be presented in Section 4. We
believe that this gentle introduction will help the reader understand all ingredients of the
system, and also the reasoning behind the goal-oriented approach and the corresponding
proposed optimization problem.

3.4. Evaluation of the System without Optimization

In this section, we evaluate the performance of the overall system, in which GO
and DO systems coexist. To do so, Monte Carlo experiments are conducted, considering
different realizations of wireless channels, computation delays and pattern inference re-
quests (i.e., number of patterns generated at each time slot). Results are obtained from
T = 50,000 independent realizations of such parameters. The following assumptions hold
for communication, computation, and inference settings.

3.4.1. Wireless Communications Assumptions

We consider two users (i.e., UEg and UEd), two APs (i.e., APg and APd) and an MEH, as
in Figure 1. UEg, APg, UEd and APd are placed at [5, 0], [5, 20], [8, 0] and [8, 20], respectively.
Both UEs are equipped with a single antenna, and both APs employ a uniform linear array
of Mg = Md = 8 elements. Maximal ratio combining is employed for the receive filters at
both APg and APd. Channel coefficients are generated as in (6), with path loss βij with expo-
nent 4, while Rice fading with factor K = 3 is considered. A different channel realization is
extracted for each experiment from the described distribution. To evaluate the performance,
we assume the transmit power of UEg to be fixed to Pg = 100 mW, while we vary the
transmit power of UEd, choosing it in [0, Pc,max] W, with 500 evenly spaced points, and
Pc,max = 200 mW, in order to explore the performance as a function of UEd data rate (in each
simulation, we will specify the selected value whenever needed). The carrier frequency
is fc = 28 GHz (https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/

https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
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guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.
pdf accessed on 20 July 2023), with total bandwidth W = 1 GHz, fully shared among UEg
and UEd, while the noise power spectral density is fixed to N0 = −174 dBm/Hz, with a
3 dB noise figure at the receiver. The transmission of UEg is organized in packets, each of
equal size of 32 Bytes. The PER is chosen from the vector γ = [10−7, 10−6, 10−5, 10−4, 2 ×
10−4, 4 × 10−4, 8 × 10−4, 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 10−2, 2 × 10−2] to explore per-
formance in terms of communication reliability. Therefore, at time t, given a PER γt, the
transmitted packets are considered to be incorrectly received with probability γt chosen
from the vector (and specified for each simulation whenever needed). When a packet is not
correctly received, no retransmission is requested, and the bits within the packet payload
are randomly chosen.

3.4.2. Data Set and Inference Assumptions

We evaluate the performance on the CIFAR-10 data set [57], which consists of 32× 32 pixel
RGB images, with 50,000 patterns in the training set and 10,000 patterns in the test set.
We resize each image to have 64 × 64 pixel RGB images, representing each of the 3
base colors with 32 bits. We assume that a pre-trained CNN is pre-onboarded at the
MEH and ready to provide classification results. We consider batches Bt of equal size
of Nt = 20 patterns (cf. (10) and (13)) for each realization. Therefore, considering the
packet size of 32 Bytes and the image size, the total number of packets transmitted for
each experiment (i.e., time slot) is 642×3×32×20

256 = 30,720. We assume that a state-of-the-
art model (https://appliedmachinelearning.wordpress.com/2018/03/24/achieving-90
-accuracy-in-object-recognition-task-on-cifar-10-dataset-with-keras-convolutional-neural-
networks/ accessed on 20 July 2023) is pre-trained and pre-uploaded in the MEH. The
model is trained using Matlab®. For simplicity, we also assume a fixed blocklength
ng = 64 Bytes.

3.4.3. Computation Delay Assumption

In the absence of a model for the computing delay, we have empirically built a delay
distribution from real-world experiments. The inference runs on a GPU NVIDIA® Tesla®

V100. The CPU characteristics are the following: Intel® Xeon® Gold 6244 CPU@ 3.6 GHz,
with 4 cores and 8 GB of memory. Then, we run batch inference for T = 50,000 independent
realizations, we save the computing time and we retrieve a computing delay distribution,
from which we can extract a random realization when evaluating performance. For the
interest of the reader, the estimated probability density function of the computing delay
is shown in Figure 3, for all values of PER, as (a priori) the distribution may change as
a function of the PER. However, from the figure, it can be noted that the distribution is
stable over PER values, showing only slight variations, probably caused by fluctuations in
the CPU usage and background processes. Therefore, in the sequel, we will consider the
computation delay distribution as independent from the target PER.

We will now present the results in terms of goal effectiveness, as per its definition
in (15). Let us recall that the goal effectiveness generally entails the goal value and other
system constraints. For instance, in the case of edge inference, the goal value is represented
by the NREI (cf. (14)), and the other system constraint is represented by the E2E delay
(cf. (11) and (10), Figure 3). However, for the sake of smooth exposition, we will first
present two separate results, i.e., the goal effectiveness by only taking into account the goal
value—NREI (c.f. (14)), and the goal effectiveness by only taking into account the delay,
respectively. We believe that this gentle introduction will help us with commenting on the
results, and the reader with comprehending the conveyed message, via a clear explanation
of the different sources of goal outages. The two notions of goal effectiveness will be then
merged in Section 3.4.6 as a final result to coherently consider the complete definition
in (15). Afterwards, an optimization problem will be proposed in Section 4.

https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
https://www.bmwk.de/Redaktion/EN/Publikationen/Digitale-Welt/guidelines-for-5g-campus-networks-orientation-for-small-and-medium-sized-businesses.pdf
https://appliedmachinelearning.wordpress.com/2018/03/24/achieving-90-accuracy-in-object-recognition-task-on-cifar-10-dataset-with-keras-convolutional-neural-networks/
https://appliedmachinelearning.wordpress.com/2018/03/24/achieving-90-accuracy-in-object-recognition-task-on-cifar-10-dataset-with-keras-convolutional-neural-networks/
https://appliedmachinelearning.wordpress.com/2018/03/24/achieving-90-accuracy-in-object-recognition-task-on-cifar-10-dataset-with-keras-convolutional-neural-networks/
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Figure 3. Empirical probability density function of computing delay, estimated through
real experiments.

3.4.4. The Goal Effectiveness from the Goal-Value Perspective

Let us evaluate the performance of goal effectiveness, only from the point of view of
the goal value, i.e., the first term on the right-hand side of (15) (the inference reliability—
negative relative entropy increase—NREI). In other words, we consider a received batch
result with goal value higher than the predefined threshold, as a goal achievement, even
if results are issued after the deadline Dmax. Let us first notice that the goal value, as per
its definition in (14), is only affected by the PER, i.e., the errors generated by the wireless
communication between the GO user and the GO AP. Then, in Figure 4, we show the goal
effectiveness related to the goal value as a function of the PER for different thresholds Θth.
First, we can notice how the probability of the goal value being above a threshold decreases
as the PER increases and as more errors occur throughout the uplink communication phase.
This result is also in line with Assumption 1 (Figure 2a). In addition, by increasing the
threshold Θth (recall that the average NREI assumes non-positive values), performance
degrades, as expected.
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Figure 4. Probability of goal value (NREI cf. (14)) being above a predefined threshold, as a function
of PER, for different threshold values.
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As already mentioned, this result does not take into account the delay, which is a
fundamental part of the goal (i.e., the edge inference service). In the following, we consider the
goal effectiveness from the delay perspective then merge the two perspectives in Section 3.4.6.

3.4.5. The Goal Effectiveness from the Delay Perspective

First, it is worth noting that the E2E delay depends on the computation delay, the
PER and the interference (cf. (8) and (10)). In Section 3.4.3 (Figure 3), we empirically
illustrated the independence between PER and computation delay. On the other hand,
the communication delay is highly dependent on PER and received interference. Indeed,
at fixed channel conditions and GO user transmit power Pg, by increasing the DO user’s
transmit power Pd, the data rate of the latter increases, thus generating more interference
to the GO system, which causes higher delay in the case of fixed-target PER. To show the
effect of the E2E delay on the effectiveness, we consider a delay threshold Dmax = 50 ms,
and we plot, in Figure 5, the probability for a batch to be classified by the deadline as
a function of the DO user data rate loss (i.e., the goal cost in (18)) for a subset of target
PER [10−7, 10−4, 10−3, 10−2] (for ease of readability). This is obtained by increasing the DO
user transmit power Pd by [0, 200] mW. As we can notice, contrarily, as before, lower PER
leads to lower effectiveness (as the effectiveness only entails delay, i.e., the GO user does
not care about receiving high entropy results, provided that they are received within the
predefined E2E delay). This result is due to the strong dependence of the communication
delay (and thus the E2E delay) on PER and interference. Indeed, as an example, let us
show, in Figure 6, the empirical probability density function of the GO system E2E delay
(communication and computation) for the left-hand point of Figure 5, i.e., for a single value
of Pc = 200 mW. As we can notice, the distribution of the delay experiences longer tails for
lower PER, as expected from (8). From the last results, we can easily conclude that:

• From a goal-value perspective, the goal effectiveness is only affected by the PER
(although not strongly, depending on the PER value), and a higher PER (i.e., lower
communication reliability) leads to lower (partial) goal effectiveness; also, from γ =
10−7 to γ = 10−3, stable performance is experienced.

• From an E2E-delay perspective, the goal effectiveness is affected by the PER and the
DO user interference, and higher PER (i.e., lower communication reliability) leads to
higher (partial) goal effectiveness.

The goal of this work is to analyze and optimize performance by taking into account
the overall definition of a goal (and goal effectiveness), entailing the goal value and the
end-to-end delay but also the goal cost. Therefore, in what follows, we finally present the
results in terms of goal effectiveness, as per its overall definition in (15), together with the
corresponding goal cost.
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Figure 6. Empirical probability density function of E2E delay for goal cost C ≈ 6% (left-hand points
of Figure 5).

3.4.6. The Goal Effectiveness and its Dependence on PER, Interference and Goal Cost

The goal effectiveness in (15) depends on two performance indicators: (i) the goal
value (represented by the NREI), which, in our setting, directly and exclusively depends
on the PER, and (ii) the E2E delay, which depends on the PER, the interference caused by
the DO user and the remote computation delay. As a first joint result, in Figure 7, we show
heat maps representing the goal effectiveness (i.e., the goal effectiveness is represented by
the different colors, from dark blue to yellow) as a function of PER (y-axis) and maximum
delay threshold Dmax (x-axis) for a fixed DO user data rate (i.e., fixed Pd = 200 mW) and
for different goal value thresholds in three different plots, i.e., Θth,1 = −0.8, Θth,1 = −0.5
and Θth,1 = −0.4, shown in Figure 7a–c, respectively (we remind that a higher threshold
indicates a stricter constraint in the sense of goal achievability). Note that the heat maps
are interpolated a posteriori for better visualization, while results have been obtained
for the sub-selected PER and Dmax values. In these figures, we also show different goal-
effectiveness thresholds (i.e., Eg,th = 0.7, Eg,th = 0.8, Eg,th = 0.9), through contours plots. All
the points interior to these contour plots represent a goal feasibility region for each respective
goal-effectiveness constraint, i.e., all the combinations of (fixed) PER and end-to-end delay,
whose corresponding goal effectiveness exceeds a predefined threshold. However, these
regions are subject to the fact that there is no adaptation of transmit power and target PER
across time; whereas, as we will show in the sequel, much better results can be obtained in
the optimized setting. From these plots, we can make the following considerations:

• The goal effectiveness increases as the delay threshold (y-axis) increases (for each
fixed target PER), while it does not necessarily decrease as a function of the PER, as
expected and shown before in the disjoint plots, creating goal effectiveness feasibility
regions, whose surface depends on Eg,th.

• The goal effectiveness feasibility regions shrink as the goal value (NREI) threshold
increases (see the difference between surface extensions in Figure 7a–c—looking at
Figure 7c, we can even notice that no combination of fixed PER and Dmax guarantees
goal effectiveness above 0.9 for Θth = −0.4 in this setting).

• Given a goal-effectiveness requirement, there always exists a minimum E2E delay
threshold guaranteeing feasibility; whereas, below this threshold, it is infeasible (for
any PER) to guarantee the requirement (examples of this point are shown by the red
arrows in the figures). Moreover, each target PER experiences a different minimum
Dmax that can be guaranteed. The lower the PER is, the higher the minimum feasible
delay is.
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• As the delay threshold decreases, the feasible region in terms of PER also shrinks, i.e.,
with a lower delay constraint, higher PER values are needed to guarantee effective-
ness; however, this is not always feasible due to the goal value constraint (see, e.g.,
Figure 7c).

• As a consequence of the previous remark, as the PER decreases (y-axis), the minimum
delay threshold to guarantee a target goal effectiveness increases, i.e., to guarantee
lower PER (reliable communication), UEg needs more time for offloading, resulting in
more frequent delay outages.

Let us now focus on Figure 7d–f, in which we plot the goal effectiveness as a function
of DO user data rate loss in (18), i.e., the goal cost (y-axis) and the PER (x-axis), for a fixed
Dmax = 45 ms, and different goal value (NREI) thresholds across figures, namely the same
as the previous results. In addition, a contour plot representing the 80% goal effectiveness
feasibility region is shown in all figures. These plots are obtained by also varying the DO
user transmit power (within the range [0, 200] mW). From these results, we can appreciate
the goal feasibility region, also as a function of the goal cost (i.e., the aim of this paper), and
we can draw the following conclusions:

• Again, the goal effectiveness feasibility region is a surface, i.e., there are multiple
solutions guaranteeing the goal-effectiveness constraint.

• While the above consideration holds, there exists a minimum goal cost solution, i.e.,
the minimum cost needed to achieve the target goal effectiveness. The latter is the
lowest point of the contour plots representing the effectiveness thresholds and is
represented by the black horizontal dashed lines in each plot.

• By increasing the goal value threshold (i.e., across different figures), the feasibility
region shrinks as before and, as an additional observable effect, the minimum goal
cost increases (e.g., above 60% of DO user data rate loss in Figure 7e). In other words,
the stricter the constraint in terms of goal value is, the higher the minimum goal cost
able to guarantee effectiveness is.

• In certain conditions (see Figure 7f), desired values of goal effectiveness are not
attainable (e.g., goal effectiveness above 80%)

Interestingly, these results relate the performance of a legacy (DO) and a GO commu-
nication system interfering with each other, showing non-trivial outcomes, which suggest
that higher communication reliability does not necessarily imply higher goal effectiveness.
Therefore, they represent the basis to formulate a goal-oriented optimization problem in
the next section. Indeed, the aim of a goal-oriented resource orchestration framework is to
move within the goal effectiveness feasibility region, possibly finding the lowest cost in
such region.

Then, from these results and their corresponding conclusions, it is straightforward to
formulate a goal-oriented resource allocation problem involving the variables that mostly
affect goal effectiveness and goal cost: (i) the PER of GO communication and (ii) the DO user
transmit power, in this work. Other variables can be taken into account, which represents
further research directions on this topic.

(a) Θth = −0.8 (b) Θth = −0.5 (c) Θth = −0.4

Figure 7. Cont.
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(d) Θth = −0.8 (e) Θth = −0.5 (f) Θth = −0.4

Figure 7. (a–c) Goal-effectiveness heat maps as a function of GO communication PER and E2E delay
constraint for fixed goal cost and different goal value thresholds Θth; (d–f) goal-effectiveness heat
maps as a function of goal cost (relative DO user data rate loss) and target PER of the GO system for
fixed GO communication E2E delay threshold (45 ms) and different goal value thresholds Θth.

4. Problem Formulation and Solution

The aim of this section is to propose a resource allocation policy able to minimize the
UEd data rate loss (cf. (18)), subject to a goal-effectiveness constraint of the GO system. Of
course, minimizing (18) is equivalent to maximizing the average data rate of UEd. Then,
following the general formulation in (5), the edge inference problem can be formulated
as follows:

max
{Ψt}t

Rd := lim
T→∞

1
T

T−1

∑
t=0

E{Rd,t} (19)

subject to

(a) lim
T→∞

1
T

T−1

∑
t=0

E
{

1{Θt≥Θth} · 1{Dtot,t≤Dmax}

}
≥ Eg,th,

(b) Pd,t ∈ Pd, ∀t, (c) γt ∈ Γg, ∀t,

where Ψt = [Pd,t, γt] is the action set, i.e., the optimization variables, involving DO user
transmit power and target GO user PER. The constraints of the problem have the following
meaning: (a) the goal effectiveness of the GO system is higher than a predefined threshold;
(b) the instantaneous transmit power of UEd is chosen from a discrete set Pd involving a
minimum value of transmission power (0 in this case) and a maximum value being equal
to Pd,max; (c) the target PER of the GO system is chosen from a discrete set Γg. In addition,
we make the following assumptions:

1. The goal is achievable, i.e., problem (19) is feasible.
2. The optimization is performed at the MEH, which is provided with the needed

connect-compute instantaneous information, as specified here below.
3. All effective channels (i.e., including the receive filters) are perfectly known instanta-

neously, while their statistics are unknown in advance.
4. The computation delay at the current time slot is estimated and known with high

confidence, i.e., we assume the computation delay is known at time t.
5. The GO user has no buffered data, but it is able to accept all data patterns generated

at time t, to be transmitted to the MEH.
6. The DO user always has backlogged traffic, i.e., it continuously transmits and inter-

feres with the GO system
7. All thresholds (delay, entropy, effectiveness) are known in advance, i.e., they are

requested as part of a service-level agreement.
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Problem (19) is difficult to solve due to the lack of distribution knowledge of wireless
channels (i.e., only instantaneous realizations are observed) and computation delays at the
MEH. Therefore, we hinge on the tools of Lyapunov stochastic network optimization to
solve the problem on a per-slot basis, with instantaneous observations of context parameters.
To this end, let us first introduce the concept of virtual queue [58], whose aim is to keep
track of constraint violations and take specific actions to drive the system towards desired
operating modes. In particular, given a long-term constraint written as

X := lim
T→∞

1
T

T−1

∑
t=0

E{xt} ≤ xth, (20)

we can define an associated virtual queue that evolves as follows over successive time slots:

Zt+1 = max(0, Zt + xt − xth). (21)

The evolution of this mathematical model is straightforward: the size of the virtual
queue grows whenever the constraint is violated, and it decreases otherwise. Interestingly,
as easily proved in ([58], Section 4.4) constraint (20) is guaranteed if the associated virtual
queue is mean-rate stable, i.e.,

lim
T→∞

1
T
E{ZT} = 0. (22)

To ensure the mean-rate stability of the virtual queue, it is sufficient to guarantee that
the so-called Conditional Lyapunov Drift (CLD) is bounded by a finite constant at each slot.
Therefore, let us introduce the CLD by first defining the Lyapunov function [58]

L(Zt) =
1
2

Z2
t , (23)

which is a measure of the congestion state of the system in terms of the defined virtual
queue(s). From (23), the CLD is defined as follows:

∆t(Zt) = E{L(Zt+1)− L(Zt)|Zt}, (24)

i.e., it is the expected variation of the Lyapunov function over two successive time slots.
Guaranteeing that ∆t(Zt) ≤ B, with B a finite constant, also ensures the mean-rate stability
of Zt, and therefore constraint (20). Now, for the virtual queue defined in (21), it is easy to
prove that

Z2
t+1 − Z2

t
2

≤ (xmax − xth)
2

2
+ Zt(xt − xth), (25)

where xmax is the (finite by hypothesis) maximum value that xt can take, given system
design constraints. Then, one can write the following upper bound ([58], Equation (4.47)):

∆t(Zt) ≤
(xmax − xth)

2

2
+E{Zt(xt − xth)|Zt}. (26)

Following stochastic optimization arguments [58], it is sufficient to remove the ex-
pectation and minimize the CLD upper bound in (26) in a per-slot basis to guarantee the
mean-rate stability of Zt and, as a consequence, constraint (20), under the assumption of
i.i.d. realizations of context parameters (an assumption that can be relaxed in some cases).
However, in this way, no importance is assigned to the objective function of the problem,
i.e., the goal cost in this case. To take the latter into account, denoting by Ct the goal cost at
time t, one can write the so-called drift-plus-penalty (DPP) function [58]:

∆p(Zt) = E{L(Zt+1)− L(Zt) + Ω · Ct|Zt}, (27)

where Ω denotes a scalar hyper-parameter (the only one) controlling the trade-off between
(original) constraint guarantees and objective function value minimization. The DPP is
an augmented version of the CLD, and it penalizes high values of the objective function,
e.g., excessive usage of resources in a network. Interestingly, by bounding the DPP, one



Telecom 2024, 5 87

can derive a similar result on virtual queue stability and long-term constraint guarantees,
i.e., if ∆p(Zt) ≤ B, ∀t, the same result applies, with the following difference: by increasing
the trade-off hyper-parameter Ω, the value of the objective function decreases at the cost
of longer convergence time of the virtual queue and its average value ([58], Theorem 4.8).
Finally, to adapt the above analysis to problem (19), we can define the following virtual
queue evolution for constraint (a) of problem (19):

Zt+1 = max
(

0, Zt − 1{Θt≥Θth} · 1{Dtot,t≤Dmax} + Eg,th

)
. (28)

For virtual queue Zt in (28), we can write (cf. (25)):

Z2
t+1 − Z2

t
2

≤
(1 − Eg,th)

2

2

− Zt

(
1{Θt≥Θth} · 1{Dtot,t≤Dmax} − Eg,th

)
,

which leads to the following DPP upper bound (recalling the objective function of (19)):

∆p(Zt) ≤ B1 +E
{
− Zt

(
1{Θt≥Θth} · 1{Dtot,t≤Dmax}−Eg,th

)
− Ω · Rd,t|Zt

}
, (29)

with B1 =
(1 − Eg,th)

2

2
. Finally, by minimizing (29) in a per-slot basis, we obtain the

following instantaneous problem (we omit the constant terms):

min
Ψt

− Zt1{Θt≥Θth} · 1{Dtot,t≤Dmax} − Ω · Rd,t (30)

subject to

(a) Pd,t ∈ Pc, (b) γt ∈ Γg.

Hinging on the theoretical findings in ([58], Th. 4.5 and Th. 4.8), under the i.i.d.
assumption of context parameters (i.e., wireless channels and remote computing delay), by
solving (30) in each time slot, the mean-rate stability of the virtual queue is guaranteed (i.e.,
constraint (a) of (19) is met). Moreover, asymptotic optimality is achieved as the trade-off
parameter Ω increases, at the cost of higher average virtual queue value and convergence
time. Finally, thanks to the concept of Γ-additive approximation, non-exact solutions are
allowed in expected sense, provided that the solution is within a bounded value Γ from
the infimum of all possible solutions, with an impact on the optimality performance of the
algorithm that depends on Γ. Then, the next step is to solve problem (30). Problem (30) is
an integer program, however, on a limited feasible set with cardinality |Pc| × |Γg|. As such,
we will simply solve it through an exhaustive search over the feasible set. This is a typical
outcome of Lyapunov stochastic optimization, thanks to the decoupling of the long-term
problem into a sequence of (simpler) problems, based only on instantaneous observations
of context parameters and properly defined state variables (virtual queues). The virtual
queue (which evolves over time) and the parameter Ω drive the trade-off between UEd
data rate loss (i.e., the goal cost), UEg goal effectiveness and convergence time.

4.1. Solution of the Instantaneous Problem

Let us notice that the first indicator function in (30) (1{Θt≥Θth}) is strongly dependent
on the choice of the PER (equivalently, in practice, on the specific MCS employed for
GO communication at time slot t). It should be noted that, in general, there is no known
function relating PER and entropy relative increase (goal value). In addition, differently
from the one related to the delay (which is known if system state is perfectly known at the
MEH—as we assume here), the actual value of such indicator variable is made available
by the server only after the inference takes place, i.e., after the computation phase, which is
obviously too late to make a decision. Therefore, the decision has to be made on a “best
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guess” of what the outcome could be. For this reason, as an approximation to solve (30),
we replace the first indicator function with its expectation, i.e., the probability of the goal
value exceeding the threshold. Nevertheless, this approximation is not enough to solve
the problem, as a model linking the PER and this probability is generally not available
in advance. One possible solution is to exploit model-free optimization tools, such as
DRL [59]. However, as the scope of this paper (and, in particular, of this section) is to
provide a contribution to the coexistence of GO and DO systems, we will rely on a look-up
table built on a validation set. Specifically, using a validation set from the considered input
pattern set, we build a look-up table linking PER at APg and the probability of the goal
value being above the predefined threshold, to be used during operation time to select the
desired PER, based on current virtual queue states and context parameter realizations.

Once the first indicator function in (30) (i.e., 1{Θt≥Θth}) is replaced with its expected
value (i.e., the probability of the event) and the look-up table is built, the remaining part of
the problem can be optimally solved via an exhaustive search over the involved variables.
The overall procedure to dynamically select DO user transmit power and GO system PER
is described in Algorithm 1.

Algorithm 1: Goal-oriented resource allocation
At each time slot t:
1. Observe wireless channel realizations, computation resources and virtual

queue states;
2. Solve (30) as described in Section 4.1
3. Observe the real goal value outcome at the output of the classifier (14), and

update the virtual queue Zt as in (28)
4. Go to next time slot t + 1

The main challenge of the proposed method is the need of modeling the whole system,
including the inference performance as a function of the PER. In more practical scenarios,
such a system modeling requirement can be bypassed through the exploitation of data-
driven techniques, such as RL. By applying such an approach, the system can adapt through
exploration and exploitation of previously performed actions to find the right balance
towards an optimized policy. The latter investigation is left for future works, while, in this
paper, we make use of a model to give insights on the achievable system performance.

5. Numerical Evaluation

In this section, we evaluate the performance of the proposed GO optimization strategy
in Algorithm 1 in the proposed coexistence network setting. To be able to compare the per-
formance with fixed PER and Pd, we consider the same scenario of the previous evaluation
(Figure 7). As a first result, in Figure 8, we show the trade-off between goal effectiveness
and goal cost, for a fixed goal-effectiveness threshold Eg = 82%, two different values of
total system bandwidth (Figure 8a with W = 1 GHz and Figure 8b with W = 500 MHz)
and for different goal value thresholds (the same as the previous figure). Moreover, let us
recall that our solution hinges on the problem approximation that replaces the first indicator
function in (30) with its expectation computed on a validation set. Therefore, in Figure 8a,b,
we compare this solution with the one involving a genie that uses a posteriori knowledge
on the resulting entropy at the output of the classifier. Obviously, this solution cannot be
implemented in practice, but it represent our benchmark, as it approaches the optimum
of (19) as the trade-off parameter Ω increases. Finally, we compare our goal-oriented
optimization method with a strategy that splits the bandwidth across the two systems, thus
resulting in zero co-channel interference leaked from one system to another, however, at
the cost of less radio bandwidth available for each of the two systems. In this case, only the
PER of the GO user is selected dynamically. This can also be considered as a goal-oriented
communication KPIs selection, but the interference to and from a DO system is not man-
aged, as the system is assumed to not be affected by interference. Note that the bandwidth
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splitting is empirically selected to obtain the target level of goal effectiveness to compare
the results in terms of goal cost. In other words, UEg is allocated the minimum amount of
bandwidth needed to achieve the target goal effectiveness, while the remaining portion
of the bandwidth is allocated to UEd. In the curves of Figure 8a, the hyper-parameter Ω
increases from right to left. The curves with the same colors are obtained with the same
system parameters, but they represent the three different strategies: (i) GO optimization
(i.e., our proposed strategy) with solid lines, (ii) genie-aided GO optimization with dashed
lines and (iii) bandwidth splitting scenario with the pentagrams. First, we can notice how
our solution is able to always guarantee the goal-effectiveness constraint, with the goal cost
decreasing towards the point in which the constraint is exactly attained (left-hand side of
the plot). Moreover, as the goal value threshold (Θth) increases, the minimum achieved
goal cost increases, as expected (see, e.g., yellow curve vs. blue curve). In particular, for
the case with larger bandwidth (Figure 8a), the effect is more visible, but still limited,
through the approximation, while the genie-aided solution is able to keep the cost close to
optimal even when increasing Θth. However, as Θth decreases, the approximated solution
becomes closer to the genie solution. Notably, both non-orthogonal spectrum sharing solutions
outperform the one with bandwidth splitting, with considerable gain for the case of limited
total available bandwidth (up to 50%—Figure 8a). This suggests that the power of a GO
system optimization is even more relevant under communication resource scarcity, as also
pointed out in the introduction of this work. Still, it should be noted the large difference
between the GO communication KPIs selection and the legacy one, which is the purpose of
the following performance evaluation.

As a second result, Figure 9 builds on the results of Figure 7 to compare our optimiza-
tion method with the fixed PER and Pd setting (i.e., the non-optimized case). In particular,
let us focus on Figure 9a, i.e., the case with Θth = −0.8. We compare three strategies: (i)
the fixed (i.e., non-adaptive) strategy of Figure 7 (black curve), (ii) a strategy with fixed
PER, with our adaptive algorithm only controlling Pd,t (red curve), and (iii) our adaptive
strategy for both PER and Pd (blue pentagram). First, we can notice how strategy (i) (i.e.,
fixed PER and adaptive Pd,t) is shown only for a subset of possible PERs, i.e., only the
feasible ones, given the target goal effectiveness. Then, from the red curve, we can notice
how the proposed optimization method (although without adaptive PER control) is able
to follow the profile of the non-optimized case, however slightly enlarging the feasibility
region for some values of PER (e.g., γ = 10−4), i.e., achieving lower goal costs, thanks
to power control and adaptation. However, this gain is negligible in most of the cases.
On the other hand, the full optimization strategy (i.e., the adaptive PER and Pd method),
which is the main novelty of this work, achieves the lowest goal cost (around 6% vs. 12%
of the fixed PER strategy), with a different resulting average PER. Similar considerations
can be made for Figure 9b (with Θth = −0.5), however with a much larger gain obtained
by our strategy with respect to the two benchmarks. In addition, in Figure 9c, the two
non-adaptive solutions do not provide feasible points for Θth = −0.4, while our strategy is
able to guarantee the target goal effectiveness with a goal cost around 8.5%, to be compared
with the optimal value obtained by the genie (6.5%).

From Figure 9, we can conclude that it is highly beneficial to adapt the target PER
(i.e., communication reliability of GO communication) to higher layer performance (i.e.,
application performance) rather than adapting communication parameters to keep, e.g.,
a fixed target PER. This can have a huge consequence in adaptive MCS mechanisms,
whose aim would be to guarantee application performance (adapting PER and interference
tolerance) rather than guaranteeing a target PER a priori, in the case of GO communications.
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Figure 8. Trade-off between goal cost and goal effectiveness, with our method and with genie, against
bandwidth splitting scenario.
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Figure 9. Goal-effectiveness heat maps as a function of goal cost (DO user data rate loss) and target
PER of GO system, with and without optimization, for fixed E2E delay threshold (Dmax = 45 ms)
and different goal value thresholds Θth.
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Let us now focus on the adaptation capabilities of our proposed optimization. In
particular, in Figure 10, we show a moving version of the goal effectiveness (i.e., the goal
effectiveness estimated over the past 2000 slots—Figure 10a) and moving average goal
cost (Figure 10b) as functions of time, introducing two unexpected events that need the
algorithm to adapt to new conditions. Namely, at the beginning, the system requirements
are Dmax = 45 ms, Θth = −0.4 and Eg = 0.8. Then, after 10,000 iterations, we switch
from Θth = −0.4 to Θth = −0.5, keeping the same target E2E delay and goal effectiveness.
After another 10,000 iterations (i.e., at slot 20,000), we switch from Eg = 0.8 to Eg = 0.85,
while keeping the same goal value target and E2E delay requirement (i.e., Θth = −0.5
and Dmax = 45 ms). First, from Figure 10a, we can notice how, from a goal-effectiveness
perspective, the method is able to keep the desired value, switching to the new requirement
after t = 20000. In addition, looking at Figure 10b, we can appreciate how the method
always seeks the optimal solution in terms of goal cost. Indeed, when switching from
Θth = −0.4 to Θth = −0.5, the goal cost reduces, thanks to the more relaxed goal value
threshold. Then, when imposing a stricter goal-effectiveness constraint (t = 20,000), the
goal cost increases again to attain the desired performance.

From Figure 10, it is then possible to appreciate the adaptation capabilities of the
proposed method with respect to online requirement modifications. In particular, the
method is able to autonomously detect this change through the virtual queue and take
corresponding actions to stabilize the system towards desired performance.

We have shown how the method behaves in the presence of requirement changes,
but how does it react to a non-stationary environment? Moreover, what is the effect
of computation resource availability (i.e., computing delay) in the proposed scenario
under investigation?

To answer these questions, we consider a system in which, after 10,000 iterations,
due to an exogenous event, the computing time experiences an offset of +5 ms, i.e., it
is systematically increased by 5 ms. Similarly, after 30,000 iterations, it is systematically
increased by an additional 2 ms (i.e., 7 ms with respect to the starting point). The E2E delay
constraint is set to Dmax = 50 ms. The results in terms of goal effectiveness and goal cost are
shown in Figure 11a,b, respectively, with the same approach of Figure 10 (moving averages).
From a goal-effectiveness perspective, we can notice how the method is able to attain the
desired performance (Eg = 80%), despite a transient period after the non-stationarity
appears in the system, highlighted by the dashed ellipses in the plot. At the same time,
adapting to the new system conditions (higher computing time) increases the cost, as
a lower communication delay is required to guarantee the delay constraint (we always
assume that the inference input/ image upload rate is such that no classification request
buffering at the MEH occurs, even when the delay of GO communication is substantially
reduced). Indeed, the only way is to reduce interference, i.e., the DO system data rate.
Again, the method is able to autonomously detect this change through the virtual queue
and take corresponding actions to stabilize the system towards desired performance.

From Figure 11, we can conclude that the computing resources available to a GO system
have a strong impact on the cost of a DO system that coexists and interferes with the former. This is
a clear way of seeing the effect of connect-compute resource availability in goal-oriented
communication systems for edge inference.

From the numerical results shown in this section, we can draw the following
general conclusions:

• There exists a trade-off between goal effectiveness and goal value, with the latter being
related to communication performance of a DO system coexisting with the GO system;
our method is able to explore this trade-off, with close to optimal performance in
different conditions, depending on the specific requirements (cf. Figure 8a).

• Fixing the PER (i.e., adapting communication to maintain an a priori target PER) while
adapting the DO user transmit power does not provide much better performance
than a strategy with both variables fixed across time (cf. Figure 9). Higher gains are
achieved via a fully adaptive system.
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• Our method is able to dramatically reduce the goal cost, while guaranteeing target
goal effectiveness, by adaptively selecting target PER and DO user transmit power,
based on measured application performance, even in the cases in which the fixed
strategy fails to find a feasible solution (cf. Figure 9c).

• Changing requirements over time (e.g., because of new application constraints) does
not prevent our method from adaptively allocating resources to attain new levels of
goal effectiveness and/or goal values (cf. Figure 10). Moreover, the method works
in both directions: it increases the cost when a transition to stricter requirements
occurs, while it reduces the cost whenever requirements are relaxed. The latter,
thanks to properly defined state variables (i.e., virtual queues), is able to capture the
behavior of the system in terms of constraint violations. Obviously, this capability is
limited to the cases in which non-stationarity occurs on a longer time scale than the
method’s adaptation.

• Computation resource availability at the GO system strongly affects the goal cost in
terms of DO system data rate loss, a non-trivial result, never shown in the literature
before, to the best of our knowledge. In addition, non-stationary environments, in
terms of connect-compute resource availability, do not affect the adaptation capabilities
of our method (cf. Figure 11).

• The proposed evaluations have been performed through system-level simulations
and represent a first step towards a demonstration of a GO system optimization.
The model-based analysis presented in this paper is useful to obtain insights on
the potential gains that can be obtained in a real system. Obviously, a real-world
demonstration would give rise to several new challenges, including the message
passing between agents, translating to a coordination overhead that needs to be
considered when designing an interface inter-connecting the systems. However, the
obtained gains show the convenience of adopting such a GO approach for system
optimization and lay the foundations for more practical works.
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Figure 10. Adaptation capabilities of proposed method to online GO system requirement changes
(i.e., Θth and Eg).
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Figure 11. Adaptation capabilities of proposed method to compute resource availability (i.e.,
computing delay).

6. Conclusions and Future Directions

We have analyzed and optimized a wireless network scenario in which a GO and
a legacy DO communication system coexist, fully sharing the same spectrum resources.
While this has been proposed previously for the coexistence of DO and semantic commu-
nication systems, we focused on GO communication, also analyzing the effect of commu-
nication errors and availability of computing resources toward accomplishing the goal
of communication.

We first explained the concept of GO communications, and we provided a general
problem formulation approach to then tailor it to the proposed system scenario, showing
how a GO resource allocation strategy can bring high gains in terms of overall system
performance. The latter has been defined through two measures, goal effectiveness and
goal cost, with the former translating into probability of confident inference on time, and
the latter referring to the performance loss of the legacy system, in terms of data rate. The
proposed GO approach is to adapt communication KPIs (i.e., PER) to the actual outcome
of communication, measured at the application level. In addition to a first numerical
performance evaluation for a non-optimized setting aimed at showing the potential trade-
offs, our proposed optimization leverages application performance measures to update
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suitably defined state variables, whose long-term stability has been exploited to achieve
the goal with the lowest cost.

After proposing an algorithm with theoretical guarantees, we tested it on the proposed
scenario, in which the two systems coexist and interfere with each other. It has been shown,
through numerical simulations, the gain, in terms of DO system data rate for a given goal
effectiveness of the GO system, of using an adaptive method for both communication
reliability (i.e., PER) and legacy system user transmit power (i.e., affecting interference
received by goal-oriented system and legacy system user data rate). Moreover, the pro-
posed approach has been tested in non-stationary environments, showing good adaptation
capabilities to new requirements and computing resource availability, showing the strong
link between communication and computing in future networks. Overall, the paper shows
the superiority of a GO selection of communication KPIs, based on communication and
computation resource availability, as well as interference.

Future steps involve scenarios with multiple GO and legacy system users, the optimiza-
tion of GO user transmit power and other communication related parameters, cooperative
inference, but also other applications beyond edge inference. Finally, an interesting research
direction is that of semantic and GO feature extraction into a unified framework in which
only the most important features are transmitted and/or protected from wireless errors
by the GO users. From a methodological point of view, the exploration of data-driven
techniques such as DRL could help in solving the issue of not having a model relating
communication reliability (e.g., PER) to the goal value. In this case, this relation would be
learnt from experience, by the interaction of the agent(s) with the environment. Further,
practical demonstrations of the proposed GO communication paradigm are worth being
investigated, with clear challenges related to the validity of the models (including energy
consumption, delay and inference confidence), the needed message exchange between
agents to enable the proposed scheme and the interaction/interface between network and
MEC operators, also from an economic perspective. Finally, we note that existing radio
equipment, cybersecurity and privacy-related regulation and market access frameworks
such as the Radio Equipment Directive [60], the EU Cybersecurity Act [61] and the upcom-
ing Cyber Resilience Act [62] rely on classical communication approaches; new paradigms
such as GO communications are considered insufficiently, and corresponding adaptations
will be necessary.
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